
System Software for
Persistent Memory

72131715 Neo Kim
phoenixise@gmail.com

Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy,
Philip Lantz, Dheeraj Reddy, Rajesh Sankaran and Jeff Jackson

Contents

 Topics in Operating Systems | Dankook University

● Abstract

● Introduction

● System Architecture

● Design and Implementation

● Evaluation

● References

● Abstract

● Introduction

● System Architecture

● Design and Implementation

● Evaluation

● References

Contents

 Topics in Operating Systems | Dankook University

● PMFS
○ File system for accessing PM with low performance overhead

○ Legacy applications are supported without changes.

○ Light-weight POSIX file system

○ Byte-addressability enables direct PM access with memory-mapped I/O.

○ Guarantee consistency with a simple hardware primitive

○ Memory protection from stray writes

○ Performance is evaluated using a hardware emulator.

Abstract

 Topics in Operating Systems | Dankook University

● Abstract

● Introduction

● System Architecture

● Design and Implementation

● Evaluation

● References

Contents

 Topics in Operating Systems | Dankook University

Introduction

 Topics in Operating Systems | Dankook University

● Persistent Memory
○ Large capacity, byte-addressable, storage class memory
○ Even though the performance gap is brought down, PM is still accessed as

block device which causes unnecessary overheads.

● PMFS
○ Implements a file system for accessing PM without block layer
○ Complies with POSIX interface to support for legacy applications
○ Light-weight file system and optimized memory-mapped I/O because of no

need to copy data between DRAM and storage

● Challenges
○ Ordering and durability
○ Protection from stray writes
○ Validation and correctness testing of consistency

● Contributions
○ A simple new hardware primitive
○ Design and implementation

■ A light-weight POSIX file system
■ Fine-grained logging for consistency
■ Direct mapping of PM to application
■ Low overhead scheme for protecting PM

from stray writes

Introduction

 Topics in Operating Systems | Dankook University

● Abstract

● Introduction

● System Architecture

● Design and Implementation

● Evaluation

● References

Contents

 Topics in Operating Systems | Dankook University

● Consistency - ordering and durability
○ Approaches

■ PM as write-through
■ PM writes bypassing the CPU cache (non-temporal)
■ Epoch base ordering

○ Using PM as write-back cacheable and flushing works well.
○ To reach the durability point, propose pm_wbarrier.

System Architecture

 Topics in Operating Systems | Dankook University

● Abstract

● Introduction

● System Architecture

● Design and Implementation

● Evaluation

● References

Contents

 Topics in Operating Systems | Dankook University

● Goals
○ Optimization for byte-addressable storage

■ To avoid copies to DRAM during file I/O
○ Enable efficient access to PM by applications
○ Protect PM from stray writes

● Memory-mapped I/O
○ PMFS Layout
○ Memory-mapped I/O

■ Chooses largest page table

Design and Implementation

 Topics in Operating Systems | Dankook University

● Consistency
○ Possible techniques

■ CoW, journaling, log-structured updates
○ CoW, log-structured file systems performs at block or segment size

granularity
■ Metadata updates are small so large granularity causes large write

amplification
○ Journaling can log the metadata updates at finer granularity
○ Found that 64-byte (cacheline) granularity incurs the least overhead for

metadata updates.
○ Use CoW for file data updates.

Design and Implementation

 Topics in Operating Systems | Dankook University

● Journaling
○ Redo journaling

■ The new data is logged and made durable.
Once transaction committed, the new data is
written to the file system.

■ Pros - Needs only 2 pm_wbarriers
■ Cons - Reads during transaction need to

search the log entries
○ Undo journaling

■ The old data to be overwritten is logged and
made durable. And the new data is written to
the file system during transaction.

■ Pros - Simple and fine-granularity is possible
■ Cons - One pm_wbarrier for every log entry

Design and Implementation

 Topics in Operating Systems | Dankook University

● Atomic in-place updates
○ Update the metadata directly without using logging.

○ PMFS leverages processor features for 8, 16, 64-byte atomic updates

■ 8-byte - Use to update inode access time on file read

■ 16-byte - Use to update inode size and modification time when appending

■ 64-byte - Use to modify a number of inode fields

Design and Implementation

 Topics in Operating Systems | Dankook University

● Write Protection
○ Corruption can be occurred due to bugs in unrelated software (stray write)
○ How write protection works

■ Row name refers to the address space
■ Column name refers to the privilege level

○ Protection “kernel from user” - by Privilege levels
○ Protection “user from user” - by Paging
○ Protection “user from kernel” - by SMAP(Supervisor Mode Access Prevention)

■ Supervisor-mode (ring 0 or kernel) accesses to the user address space are
not allowed

Design and Implementation

 Topics in Operating Systems | Dankook University

● Write Protection (..continued)
○ Protection “kernel from kernel” - Write windows

■ Map the entire PM as read-only during mount
■ Upgrades it to writeable only for the sections of code that write to PM

Design and Implementation

 Topics in Operating Systems | Dankook University

● Testing and Validation
○ Maintaining consistency is challenging.

○ PM software needs to track dirty cachelines, to flush them explicitly before

issuing pm wbarrier.

○ The same concern applies to any PM software.

○ To address this issue built Yat, which is framework to help validate PM

○ Yat operates in two phases

■ Records a trace of all the writes, clflush, ordering, pm_wbarrier

■ Replays the collected traces and test all subsets and orderings

Design and Implementation

 Topics in Operating Systems | Dankook University

● Abstract

● Introduction

● System Architecture

● Design and Implementation

● Evaluation

● References

Contents

 Topics in Operating Systems | Dankook University

Evaluation

 Topics in Operating Systems | Dankook University

● Experimental Setup
○ PM Emulator

■ System-level evaluation of PM software is challenging due to lack of real
hardware.

■ Built PMEP(PM Emulation Platform)
■ Partitions the available DRAM memory into emulated PM and regular

volatile memory
■ Emulate PM latency
■ Emulate PM bandwidth

○ PMBD
■ Use PMBD for a fair comparison with block devices

● File-based I/O

○ For all the tests, with improvements ranging from 1.1× (for 64B sequential
reads) to 16× (for 64B random writes).

○ The drop in writes for sizes larger than 16KB is due to the use of non-temporal
instructions. These instructions bypass the cache but still incur the cache-
coherency overhead

Evaluation - File-based Access

 Topics in Operating Systems | Dankook University

● Consistency
○ Atomic in-place updates to avoid logging

■ write system call using 16-byte atomic updates - up by 1.8x

■ delete an inode using 64-byte atomic updates - 18% faster

○ Logging overhead - benefits of fine-grained logging

■ For PMFS and ext4, measured the amount of metadata logged

■ For BPFS, measured the amount of metadata copied (using CoW).

Evaluation - File-based Access

 Topics in Operating Systems | Dankook University

● Memory-mapped I/O
○ Neo4j Graph Database

■ By default, Neo4j accesses files by mmap

■ The graph has 10M nodes and 100M edges.

■ Compared to ext2, ext4, 1.1x (Insert) to 2.4x (Query)

Evaluation

 Topics in Operating Systems | Dankook University

Evaluation

● Write Protection
○ Compared to No-WP, PGT-WP(page table permission)
○ File server - workload with writes from several threads (23% slower)
○ OLTP - a single log thread
○ Webserver - less write intensive workload

 Topics in Operating Systems | Dankook University

 Topics in Operating Systems | Dankook University

References

 Topics in Operating Systems | Dankook University

● Instruction of System Software for Persistent Memory, http://www.slideshare.

net/makotoshimazu/readingcircle-20141218

● Wear Leveling, http://en.wikipedia.org/wiki/Wear_leveling

● Write Amplification, http://en.wikipedia.org/wiki/Write_amplification

● Write-back cache - http://www.webopedia.com/TERM/W/write_back_cache.

html

● Cache line - http://stackoverflow.com/questions/3928995/how-do-cache-lines-

work

● Out-of-order Execution, http://en.wikipedia.org/wiki/Out-of-

order_execution

http://www.slideshare.net/makotoshimazu/readingcircle-20141218
http://www.slideshare.net/makotoshimazu/readingcircle-20141218
http://www.slideshare.net/makotoshimazu/readingcircle-20141218
http://en.wikipedia.org/wiki/Wear_leveling
http://en.wikipedia.org/wiki/Write_amplification
http://www.webopedia.com/TERM/W/write_back_cache.html
http://www.webopedia.com/TERM/W/write_back_cache.html
http://www.webopedia.com/TERM/W/write_back_cache.html
http://stackoverflow.com/questions/3928995/how-do-cache-lines-work
http://stackoverflow.com/questions/3928995/how-do-cache-lines-work
http://stackoverflow.com/questions/3928995/how-do-cache-lines-work
http://en.wikipedia.org/wiki/Out-of-order_execution
http://en.wikipedia.org/wiki/Out-of-order_execution
http://en.wikipedia.org/wiki/Out-of-order_execution

