System Software for
Persistent Memory

Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy,
Philip Lantz, Dheeraj Reddy, Rajesh Sankaran and Jeff Jackson

72131715 Neo Kim
phoenixise@gmail.com

Contents

e Abstract

e Introduction

e System Architecture

e Design and Implementation
e Evaluation

e References

Topics in Operating Systems | Dankook University

Contents

e Abstract

e Introduction

e System Architecture

e Design and Implementation
e Evaluation

e References

Topics in Operating Systems | Dankook University

Abstract
e PMFS

o File system for accessing PM with low performance overhead

o Legacy applications are supported without changes.

o Light-weight POSIX file system

o Byte-addressability enables direct PM access with memory-mapped I/O.
o Guarantee consistency with a simple hardware primitive

o0 Memory protection from stray writes

o Performance is evaluated using a hardware emulator.

Topics in Operating Systems | Dankook University

Contents

e Abstract

e Introduction

e System Architecture

e Design and Implementation
e Evaluation

e References

Topics in Operating Systems | Dankook University

Introduction

e Persistent Memory

o Large capacity, byte-addressable, storage class memory
o Even though the performance gap is brought down, PM is still accessed as
block device which causes unnecessary overheads.

e PMFS

o Implements a file system for accessing PM without block layer

o Complies with POSIX interface to support for legacy applications

o Light-weight file system and optimized memory-mapped I/O because of no
need to copy data between DRAM and storage

Topics in Operating Systems | Dankook University

Introduction

e Challenges

o Ordering and durability
o Protection from stray writes
o Validation and correctness testing of consistency

Applications
° ° PMLib
e Contributions e/ A

. . free write ~ mMap mmap
o Asimple new hardware primitive =~ - | —— S TR, ENNSIU S

= oS

o Design and implementation o [rpended, | pMEs | DU

m Alight-weight POSIX file system o — S — —

Fine-grained logging for consistency ‘Seemmmm—rm————————m——o—r——

m

5 Platform
m Direct mapping of PM to application E CPU
m Low overhead scheme for protecting PM

. Figure 1: PM System Architecture
from stray writes

Topics in Operating Systems | Dankook University

Contents

e Abstract

e Introduction

e System Architecture

e Design and Implementation
e Evaluation

e References

Topics in Operating Systems | Dankook University

System Architecture

e Consistency - ordering and durability

o Approaches

m PM as write-through

m PM writes bypassing the CPU cache (non-temporal)

m Epoch base ordering
o Using PM as write-back cacheable and flushing works well.
o To reach the durability point, propose pm_wbarrier.

Volatile Area Non-volatile Area Volatile Area Non-volatile Area

r o load/store to PM
- Qe m

| Ioad/store to DRAM

read/wnte to M read/wnte to

SSD/HDD . 1 SSD/HDD

Topics in Operating Systems | Dankook University

Contents

e Abstract

e Introduction

e System Architecture

e Design and Implementation
e Evaluation

e References

Topics in Operating Systems | Dankook University

Design and Implementation

e Goals
o Optimization for byte-addressable storage
m To avoid copies to DRAM during file I/O

o Enable efficient access to PM by apphca.tlons
PM (in physical address space ——>1
o Protect PM from stray writes STS[PMFsLog " PMES Data Pages .

1
; File System Root

B-Tree
Pointers

¢ Memory-mappedI/0

Inode Table B-Tree

o PMFS Layout Pageﬁ
o Memory-mapped I/O Dj [i]] iﬂ i
m Chooses largest page table T mode oy | File
/ Inode Inode
i A s
Dir;cto;yEnuy
: for New File I
Directory File Data File

Figure 3: PMES data layout

Topics in Operating Systems | Dankook University

Design and Implementation

e Consistency

o Possible techniques
m CoW, journaling, log-structured updates
o CoW, log-structured file systems performs at block or segment size
granularity
m Metadata updates are small so large granularity causes large write
amplification
o Journaling can log the metadata updates at finer granularity
o Found that 64-byte (cacheline) granularity incurs the least overhead for
metadata updates.
o Use CoW for file data updates.

Topics in Operating Systems | Dankook University

Design and Implementation

e Journaling

o Redojournaling
m The new data islogged and made durable.
Once transaction committed, the new data is
written to the file system.
Pros - Needs only 2 pm_wbarriers

Cons - Reads during transaction need to PMESTog
search the log entries He=ad Old File Tnode data (128B)
o Undo journaling ; Old Dir Entry (64B)
m The old data to be overwritten is logged and | | _Old Dirlnode data (64B)
Zil COMMIT Marker (64B)

made durable. And the new data is writtento T

the file system during transaction. !
.
m Pros- Simple and fine-granularity is possible \
Cons - One pm_wbarrier for every log entry
(a)

Topics in Operating Systems | Dankook University

Design and Implementation

e Atomic in-place updates

o Update the metadata directly without using logging.
o PMEFS leverages processor features for 8, 16, 64-byte atomic updates
m 8-byte - Use to update inode access time on file read
m 16-byte - Use to update inode size and modification time when appending

m 64-byte - Use to modify a number of inode fields

Topics in Operating Systems | Dankook University

Design and Implementation

e Write Protection

o Corruption can be occurred due to bugs in unrelated software (stray write)
o How write protection works

m Row name refers to the address space
m Column name refers to the privilege level

User Kernel
User | Process Isolation SMAP
Kemel | Privilege Levels | Write windows

Table 2: Overview of PM Write Protection

o Protection “kernel from user” - by Privilege levels
o Protection “user from user” - by Paging
o Protection “user from kernel” - by SMAP(Supervisor Mode Access Prevention)

m Supervisor-mode (ring o or kernel) accesses to the user address space are
not allowed

Topics in Operating Systems | Dankook University

Design and Implementation

e Write Protection (..continued)

o Protection “kernel from kernel” - Write windows
m Map the entire PM as read-only during mount
m Upgrades it to writeable only for the sections of code that write to PM

P: Read-only PM page in kernel virtual address
write(P): Write to page P in ring 0 (kernel)
GP: General protection fault

// CRO.WP 1n x86 // Using CRO.WP in PMFS
disable_wnte protection() {
if (ring0 && CRO.WP —0)| CRO.WP = 0;
write(P) is allowed: disable_interrupts():
else }
wiite(P) causes GP; enable write protection() {
enable_interrupts():
CRO.WP=1:
}
// Writes to PM in PMFS
disable write protection():
write(P);

enable_wrnte_protection():

Figure 5: Write Protection in PMES

Topics in Operating Systems | Dankook University

Design and Implementation

e Testing and Validation

O

@)

Maintaining consistency is challenging.
PM software needs to track dirty cachelines, to flush them explicitly before
issuing pm wbarrier.
The same concern applies to any PM software.
To address this issue built Yat, which is framework to help validate PM
Yat operates in two phases

m Records atrace of all the writes, clflush, ordering, pm_wbarrier

m Replays the collected traces and test all subsets and orderings

Topics in Operating Systems | Dankook University

Contents

e Abstract

e Introduction

e System Architecture

e Design and Implementation
e Evaluation

e References

Topics in Operating Systems | Dankook University

Evaluation

e Experimental Setup

o PM Emulator
m System-level evaluation of PM software is challenging due to lack of real
hardware.
m Built PMEP(PM Emulation Platform)
Partitions the available DRAM memory into emulated PM and regular
volatile memory
m Emulate PM latency
m Emulate PM bandwidth
o PMBD
m Use PMBD for a fair comparison with block devices

Topics in Operating Systems | Dankook University

Evaluation - File-based Access

e File-basedI/0O

o o = o
o o o o
283 283 283 283
= 3 = = =
Eo 1 o1 Eo o1
£93 £S73 £S1 =
g 3 g E g 3 % 3
c T o T c 7 = T
B2 = = b= e
3 —e— PMFS 3 —e— PMFS E —— PMFS 3, . —=— PMFS
] - 8- EXT4+PMBD] -&- EXT4+PMBD b -0- EXT4+PMBD 1" -0 - EXT4+PMBD
— 9 EXT2+PMBD — 9 EXT2+PMBD — 9+ EXT2+PMBD — 9 EXT2+PMBD

64 256 1K 4K 16K 64K 256K
Size (in Bytes)

d) Random write

64 256 1K 4K 16K 64K 256K
Size (in Bytes)

¢) Random read

64 256 1K 4K 16K 64K 256K
Size (in Bytes)

b) Sequential write

64 256 1K 4K 16K 64K 256K
Size (in Bytes)

a) Sequential read
Figure 6: Evaluation of File I/O performance; X-axis is the size of the operation; Y-axis is the bandwidth in MB/s.

o For all the tests, with improvements ranging from 1.1x (for 64B sequential
reads) to 16x (for 64B random writes).

o The drop in writes for sizes larger than 16KB is due to the use of non-temporal
instructions. These instructions bypass the cache but still incur the cache-
coherency overhead

Topics in Operating Systems | Dankook University

Evaluation - File-based Access

e Consistency

o Atomic in-place updates to avoid logging

@)

m write system call using 16-byte atomic updates - up by 1.8x

m delete an inode using 64-byte atomic updates - 18% faster

Logging overhead - benefits of fine-grained logging

m For PMFS and ext4, measured the amount of metadata logged

m For BPFS, measured the amount of metadata copied (using CoW).

PMES | BPES (vs PMES) | ext4 (vs PMES)
touch | 512 12288 (24x) 24576 (48x)
mkdir | 320 12288 (38x) 32768 (102x)

mv | 384 16384 (32x) 24576 (64x)

Table 3: Metadata CoW or Logging overhead (in bytes)

Topics in Operating Systems

Dankook University

Evaluation

e Memory-mapped /0

o Neo4j Graph Database
m By default, Neo4j accesses files by mmap
m The graph has 10M nodes and 100M edges.

m Compared to ext2, ext4, 1.1x (Insert) to 2.4x (Query)

Topics in Operating Systems | Dankook University

Evaluation

e Write Protection

o Compared to No-WP, PGT-WP(page table permission)
o File server - workload with writes from several threads (23% slower)
o OLTP - asingle log thread
o Webserver - less write intensive workload
°= No-WP
g_ oy ; CRO-WP
o] G - O PGT-WP
283 S
B-—: - B
=] ol
g g -
39—5 —— No-WP E;-
. -8- CRO-WP <]
_ -6 PGT-WP < |
64 256 1K 4K 16K 64K 256K Q | _l
Size (in Bytes) © Fileserver OLTP Webserver
a) fio file write b) Filebench

Figure 11: Evaluation of PMFES write protection overhead

Topics in Operating Systems | Dankook University

“I'REGRET NOTHING!

-

Topics in Operating Systems | Dankook University

References

e Instruction of System Software for Persistent Memory, http://www.slideshare.

net/makotoshimazu/readingcircle-20141218
e Wear Leveling, http://en.wikipedia.org/wiki/Wear_leveling
e Write Amplification, http://en.wikipedia.org/wiki/Write_amplification

e Write-back cache - http://www.webopedia.com/TERM/W /write_back_cache.

html

e Cache line - http://stackoverflow.com/questions/3928995/how-do-cache-lines-

work

e Out-of-order Execution, http://en.wikipedia.org/wiki/Out-of-

order execution

Topics in Operating Systems | Dankook University

http://www.slideshare.net/makotoshimazu/readingcircle-20141218
http://www.slideshare.net/makotoshimazu/readingcircle-20141218
http://www.slideshare.net/makotoshimazu/readingcircle-20141218
http://en.wikipedia.org/wiki/Wear_leveling
http://en.wikipedia.org/wiki/Write_amplification
http://www.webopedia.com/TERM/W/write_back_cache.html
http://www.webopedia.com/TERM/W/write_back_cache.html
http://www.webopedia.com/TERM/W/write_back_cache.html
http://stackoverflow.com/questions/3928995/how-do-cache-lines-work
http://stackoverflow.com/questions/3928995/how-do-cache-lines-work
http://stackoverflow.com/questions/3928995/how-do-cache-lines-work
http://en.wikipedia.org/wiki/Out-of-order_execution
http://en.wikipedia.org/wiki/Out-of-order_execution
http://en.wikipedia.org/wiki/Out-of-order_execution

