
Cells: A Virtual Mobile Smartphone Architecture

단국대학교
컴퓨터 보안 및 OS 연구실

peonix120@gmail.com
임경환

2015. 06. 09

Jeremy Andrus, Christoffer Dall
SOSP’11, October 23-26, 2011

Computer Security & OS Lab.

Contents

2

 INTRODUCTION

 OVERALL ARCHITECTURE

 Security Features

 Security policy

 Conclusion

 Reference

 Q & A

Computer Security & OS Lab.

INTRODUCTION

3

 Platform shifting from computers to smartphones

 Need of Virtualizing smartphones

 Existing (system) virtualizations

• High overhead

• Hardware devices

 CELLS: lightweight virtualization architecture

Computer Security & OS Lab.

Overview of Cells

4

 Virtual Phones

 Multiple Android instead of multiple OS instances

 Union FS

 To maximize Sharing common read-only code and data across VPs

 minimizing memory consumption, enabling additional VPs to be instantiated
without much overhead

 Small display form factors of smartphones

 Foreground / Background model

 Using a VoIP service

 To provide individual telephone numbers for each VP without the need for
multiple SIM cards.

Computer Security & OS Lab.

USAGE MODEL

5

 Each VP is completely isolated from other VPs

 Foreground / Background model

 A user can easily switch among VPs by selecting one of the background VPs
to become the foreground one.

 VPs are created and configured on a PC and downloaded to a phone
via USB.

 Each VP can be configured to have different access rights for
different devices.

 No access, shared access, or exclusive access

Computer Security & OS Lab.

SYSTEM ARCHITECTURE

6

 Lightweight OS virtualization for virtual phones isolation

 Single OS Kernel

 Virtualizes identifiers, kernel interfaces and hardware resources

 Transparently remapping OS resource identifiers to virtual ones

Computer Security & OS Lab.

Kernel-Level Device Virtualization

7

 Device namespaces

 Hardware resource multiplexing and isolation

 Callback functions

 These are called when a device namespace changes state.

 Cells virtualizes existing kernel interfaces based on three methods of
implementing device namespace functionality.

 The first method is to create a device driver wrapper using a new device
driver for a virtual device.

 The second method is to modify a device subsystem to be aware of device
namespaces.

 The third method is to modify a device driver to be aware of device
namespaces.

Computer Security & OS Lab.

User-Level Device Virtualization

8

 Name space proxy mechanisms

 Virtualize device configuration

 Kernel device namespaces export an interface to the root namespace
through the /proc file system that is used to switch the foreground
VP and set access permissions for devices.

 CellD also coordinates user space virtualization mechanisms such as
the configuration of telephony and wireless networking

Computer Security & OS Lab.

GRAPHICS

9

 Framebuffer

 To virtualize FB access in multiple VPs, Cells leverages the kernel-level device
namespace and its foreground-background usage model in a new
multiplexing FB device driver, mux_fb.

 The foreground VP is given exclusive access to the screen memory and
display hardware

Computer Security & OS Lab.

POWER MANAGEMENT

10

 Early suspend subsystem

 The subsystem is an ordered callback interface

 Frame buffer early suspend:

 Fbearlysuspend driver exports display device suspend and resume state into
user space.

 Block all processes using display while display powered off/ redraws screen
when powered on.

 Wake locks: Two states

 Active-locked

 Inactive-unlocked

 Wake locks can be created statically at compile time or dynamically
by kernel drivers or user space.

Computer Security & OS Lab.

TELEPHONY

11

 Radio stack virtualization

 RIL proxy

 CELLS own proxy RIL library by RILD

 RIL library + CELLD=RIL proxy

 Multiple phone numbers

 Pairing cells with VOIP service

 Single digit scheme

 Asterisk server

Computer Security & OS Lab.

Telephony/Outgoing Calls

12

Computer Security & OS Lab.

Telephony/Incoming Calls

13

Computer Security & OS Lab.

EXPERIMENTAL RESULTS

14

 Experiment aim to measure:

 runtime overhead;

 power consumption;

 memory usage.

 Testing configuration:

 Nexus1, Nexus S

 Up to 5 Virtual phones;

 With App and NoApp modes;

 Network test downloading 400 Mb file using wi-fi;

 Power consumption test 4 and 12 hours Active and Idle modes

Computer Security & OS Lab.

Runtime overhead(Baseline)

15

 No App mode, Nexus 1 perform worse than Nexus S on
Quadrant(File I/O) and Network tests(might be SD card
usage). Overall performance overhead of Cells was
within 7% in comparison to Baseline(original).

Computer Security & OS Lab.

Runtime overhead(With App)

16

 In “With App” mode background music was continuously
played during the test. Performance of Nexus S shown less
than 10% overhead.

Computer Security & OS Lab.

Power consumption

17

 Power consumption in active mode 4 hours and 12 passive
mode. Nexus 1 during playing the music shows gradual
increase up to 20% overhead because of scheduling more
processes. While on Nexus S power overhead was within 2%.

Computer Security & OS Lab.

Memory usage

18

 Memory test in “Apps mode” running applications such as
Web browser, mail client, Calendar on all VPs. Nexus 1 show
20% better result because of Kernel Same page Merging
algorithm(KSM).

 Nexus S use Low memory killer that free the memory during
the execution 4th VP in “No Apps” mode and after 3rd VP in
“Apps” mode.

Computer Security & OS Lab.

Conclusion

19

 First complete OS virtualization for mobile devices.

 Device namespaces + Foreground/Background = Complete virtualization

 Less overhead

 No visible performance variation for benchmark configurations

Computer Security & OS Lab.

Reference

20

 S. Bhattiprolu, E. W. Biederman, S. Hallyn, andD. Lezcano. Virtual Servers and
Checkpoint/Restart in Mainstream Linux. ACM SIGOPS Operating Systems Review,
42:104{113, July 2008.

 S. Osman, D. Subhraveti, G. Su, and J. Nieh. TheDesign and Implementation of Zap: a System
for Migrating Computing Environments. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, Boston, MA, Dec. 2002.

감사합니다.

