
System Programming

Lecture Note 1.
What is System Programming

August 26, 2020

Jongmoo Choi
Dept. of Software

Dankook University
http://embedded.dankook.ac.kr/~choijm

(Copyright © 2020 by Jongmoo Choi, All Rights Reserved. Distribution requires permission)

Objectives

Understand the definition of system program
Describe the types of system program
ü Compilation system
ü Operating system
ü Runtime system

Hardware consideration
Realize the concept of abstraction

Reference: Chapter 1 in the CSAPP

2

(Source: CSAPP)

3

Definition of System Program (1/8)

Computer organization

ComputerComputer

SoftwareSoftware

I/O DevicesI/O Devices

MemoryMemoryCPUCPU

System programSystem program

HardwareHardware

Application programApplication program

4

Definition of System Program (2/8)

Hardware components: PC

Input device

CPU

Main memory

Secondary storage

Output device

Communication Device

5

Definition of System Program (3/8)

Hardware components: DRAM vs. Disk
ü 1. Speed
ü 2. Capacity

§ Memory Hierarchy
ü 3. Volatility: Volatile vs. Non-volatile

§ Need to write data into disk explicitly for persistency (file I/O)
ü 4. Interface: Byte-unit interface vs. Sector-unit interface

§ Need to load a program from disk to RAM before execution (loading)

(Source: CSAPP) (Source: Google Image)

6

Definition of System Program (4/8)

Hardware components: Smart Phone
ü CPU: ARM based Multicore
ü Memory: LPDDR, SRAM
ü Storage: NAND flash
ü Input: Touch Screen, Sensors, Voice, Iris, ...
ü Output: LCD, LED, Sound, Buzzer, …
ü Communication

§ WLAN
§ LTE, CDMA, GSM
§ IrDA, Bluetooth, NFC
§ UART, USB
§ …

(Source: Google Image)

Definition of System Program (5/8)

Hardware components: Requirements for Mobile devices
ü Power Saving

§ Make use of RICS CPU instead of CISC CPU
• RISC: Reduced Instruction Set Computing è Small Instructions è Compact

CPU internal è Consume less Power
§ Make use of LPDDR (Low-Power DDR) instead of General DRAM

• LPDDR: Reduce power by using lower voltage and less refreshing
ü Portability

§ Make use of Flash memory instead of Disk
• Lightweight, Shock resistance

ü User friendliness
§ Make use of diverse input, output and communication devices

7

(Source: http://egloos.zum.com/donghyun53/v/4125772)

Definition of System Program (6/8)

Software components
ü Application program vs. System program

§ Application program: how to do a specific job

§ System program: address the following issues
• How to run this application program on CPU?
• What is the role of printf()?
• How the string is displayed on Monitor?
• How this program can be executed with other programs concurrently?
• What are the differences between local and global variables?
• What kinds of techniques can be applied to enhance the performance of this

program?

8

#include <stdio.h>

int main()
{

printf(“hello, world\n”);
}

9

Definition of System Program (7/8)

Software components: System program
ü How to run a program on CPU?

§ object, binary, compiler, assembler, loader, ...
ü What is the role of printf()?

§ library, linker, ...
ü How the string is displayed on Monitor?

§ device driver, file system, ...
ü How a program can be executed with other programs

concurrently?
§ process, scheduler, context switch, IPC (Inter process

communication), ...
ü What are the differences between local and global memory?

§ data, stack, heap, virtual memory, buddy system, ...
ü What kind of techniques can be applied to enhance the

performance of a program?
§ compiler optimization (loop unrolling, reordering), CPU optimization

(pipeline, superscalar, out-of-order execution), …

10

Definition of System Program (8/8)

Software components: System program
ü Supporting computing environments for application programs

(Support Interfaces such as commands, library functions and
system calls)

ü Strongly related to hardware (hardware management)

ü Abstraction
§ CPU and Task (Process)
§ DRAM and Virtual memory
§ Disk and File
§ Device and Driver
§ Machine level language and High level language
§ Untrusted and Trusted Domain
§ ...

11

Types of System Program

Classification

compiler

assembler

linker

editor

loader

scheduler

driver

IPC

file system

protocol stack

library

shell

window system

buddy system

utility

command

Compilation system

Operating system

Runtime system

Hardware Consideration

CPU Memory Devices

debugger

12

Compilation System (1/5)

Concept: Language Hierarchy

…
movl 0x8049388, %eax
addl 0x8049384, %eax
movl %eax, 0x804946c
...

…
movl 0x8049388, %eax
addl 0x8049384, %eax
movl %eax, 0x804946c
...

C = A + B; C = A + B; High-level Language

Assembly Language

Machine Language
(Binary code)

…
00a1 8893 0408
0305 8493 0408
00a3 6c94 0408
…

…
00a1 8893 0408
0305 8493 0408
00a3 6c94 0408
…

13

Compilation System (2/5)

Overall structure and 6 key components

Input Data Results

Editor

Compiler Linker

Loader

C File

Error Msg Relocatable
Object File

Other Object File & library

Executable Object
File (binary)ASM File

Assembler

Debugger

Quiz for 1st-Week 2nd-Lesson

Quiz
ü Explain why loader is required in a computer system. (hint: using the

difference between Disk and DRAM)
ü Due: until 6 PM Friday of this week(4th, September)

14

15

Compilation System (3/5)

Relation between Language Hierarchy and Overall Structure

(Language hierarchy) (Compilation system)

Compilation System (4/5)

Example in Linux

16

Compilation System (5/5)

Example in Linux: details
ü Location of collect2, crt1.o, … depend on gcc version

F What are the differences btw hello.c and hello.s?
F What are the differences btw hello.o and a.out?

17

18

Operating System (1/15)

Overall structure and 7 key components

System Call Interface

Buffer Cache

Virtual Memory

Process ManagerFile system

Device Manager Network Manager

Ext4 proc vFAT

LFS nfs NTFS

Console KBD SCSI
CD-ROM PCI ethernet

Socket TCP/IP
IrDA

Memory Management

Task Management
Scheduler
Signaling

Hardware Interface (HAL)

process 3

dev1 dev2 dev3 dev4 devn

block character

User Space

Kernel Space

process nprocess 2process 1

(Source: Linux Kernel Internals)

Operating System (2/15)

Relation between hardware component and overall structure
ü OS: a resource manager è abstract HW resources into logical ones

19

(Physical resources) (Logical resources)

20

Operating System (3/15)

Behaviors: 1) initial state

OS

CPU
Disk

Memory

21

Operating System (4/15)

Behaviors: 2) create a file (user’s viewpoint)

OS

CPU
Disk

Memory

vi test.c
int sum = 0;

int main()
{

int i;

for (i=0; i<10;i++)
sum += i;

printf(“%d”, sum);
}

22

Operating System (5/15)

Behaviors: 2) create a file (system’s viewpoint)

OS

CPU
Disk

Memory

vi test.c
int sum = 0;

int main()
{

int i;

for (i=0; i<10;i++)
sum += i;

printf(“%d”, sum);
}

69 6e
74 20
...

inode block

(Source: CSAPP)

23

Operating System (6/15)

Behaviors: 3) compile the file (user’s viewpoint)

OS

CPU
Disk

Memory

vi test.c
int sum = 0;

int main()
{

int i;

for (i=0; i<10;i++)
sum += i;

printf(“%d”, sum);
}

69 6e
74 20
...

compile

a.out
.data

.align 4

.type sum,@object

.size sum,4
.text
.global main

.type main, @func
main:

pushl %ebp
…
movl -4(%ebp), %eax
addl %eax, sum
…

24

Operating System (7/15)

Behaviors: 3) compile the file (system’s viewpoint)

OS

CPU
Disk

Memory

vi test.c
int sum = 0;

int main()
{

int i;

for (i=0; i<10;i++)
sum += i;

printf(“%d”, sum);
}

69 6e
74 20
...

inode

compile

a.out
.data

.align 4

.type sum,@object

.size sum,4
.text
.global main

.type main, @func
main:

pushl %ebp
…
movl -4(%ebp), %eax
addl %eax, sum
…

block

25

Operating System (8/15)

Behaviors: 4) execute the a.out (user’s viewpoint)

OS

CPU
Disk

Memory

vi test.c
int sum = 0;

int main()
{

int i;

for (i=0; i<10;i++)
sum += i;

printf(“%d”, sum);
}

69 6e
74 20
...

compile

a.out
.data

.align 4

.type sum,@object

.size sum,4
.text
.global main

.type main, @func
main:

pushl %ebp
…
movl -4(%ebp), %eax
addl %eax, sum
…

execute

run a.out è

We can see 45

on the Monitor

26

Operating System (9/13)

Behaviors: 4) execute the a.out (system’s viewpoint)
ü To run a.out, OS first loads it into memory

OS

CPU
Disk

Memory

vi test.c
int sum = 0;

int main()
{

int i;

for (i=0; i<10;i++)
sum += i;

printf(“%d”, sum);
}

69 6e
74 20
...

inode

compile

a.out

.data
.align 4
.type sum,@object
.size sum,4

.text

.global main
.type main, @func

main:
pushl %ebp
…
movl -4(%ebp), %eax
addl %eax, sum
…

execute

run a.out è

We can see 45

on the Monitor

page

block

27

Operating System (10/13)

Behaviors: 4) execute the a.out (system’s viewpoint)
ü Then, OS makes a new process (active object)

OS

CPU
Disk

Memory

vi test.c
int sum = 0;

int main()
{

int i;

for (i=0; i<10;i++)
sum += i;

printf(“%d”, sum);
}

69 6e
74 20
...

compile

a.out

.data
.align 4
.type sum,@object
.size sum,4

.text

.global main
.type main, @func

main:
pushl %ebp
…
movl -4(%ebp), %eax
addl %eax, sum
…

execute

run a.out è

We can see 45

on the Monitor

new process

segment/page table

inode block

page

28

Operating System (11/13)

Behaviors: 4) execute the a.out (system’s viewpoint)
ü Then, OS schedule the process

OS

CPU
Disk

Memory

vi test.c
int sum = 0;

int main()
{

int i;

for (i=0; i<10;i++)
sum += i;

printf(“%d”, sum);
}

69 6e
74 20
...

inode

compile

a.out

.data
.align 4
.type sum,@object
.size sum,4

.text

.global main
.type main, @func

main:
pushl %ebp
…
movl -4(%ebp), %eax
addl %eax, sum
…

execute

run a.out è

We can see 45

on the Monitor

new process

segment/page table

CPUCPU

scheduling

29

Operating System (12/13)

Behaviors: 4) execute the a.out (system’s viewpoint)
ü Actually there are multiple processes

OS

CPU
Disk

Memory

vi test.c
int sum = 0;

int main()
{

int i;

for (i=0; i<10;i++)
sum += i;

printf(“%d”, sum);
}

69 6e
74 20
...

inode

compile

a.out

.data
.align 4
.type sum,@object
.size sum,4

.text

.global main
.type main, @func

main:
pushl %ebp
…
movl -4(%ebp), %eax
addl %eax, sum
…

execute

run a.out è

We can see 45

on the Monitor

new process

segment/page table

CPU
prev process

prev process

Time-sharing system

Operating System (13/13)

Operating system: summary
ü Process manager (Task manager): CPU

§ process manipulation, schedule, IPC, signal, context switch
§ fork, exec, wait, getpid, (pthread_create) , …

ü Virtual Memory: Main memory
§ page, segment, address translation, buddy, LRU
§ brk, (malloc, free), …

ü File system: Storage
§ file, directory, disk scheduling, FAT
§ open, read, write, mknod, pipe, (fopen, fwrite, printf), …

ü Device driver: Device
§ IO port management, interrupt, DMA
§ open, read, write, ioctl, module, …

ü Network protocol: Network
§ connection, routing, fragmentation
§ socket, bind, listen, send, receive, …

30

Quiz for 2nd-Week 1st-Lesson

Quiz
ü Discuss the role of inode and page table. What are the similarity and

differences between page table and inode?
ü Due: until 6 PM Friday of this week(11th, September)

31

32

Runtime System (1/5)

Command
ü file related: ls, cat, more, cp, mkdir, cd, …
ü task related: ps, kill, jobs, …
ü utility: vi, gcc, as, make, tar, patch, debugger, ..
ü management: adduser, passwd, ifconfig, mount, fsck, shutdown, ..
ü others: man, file, readelf, grep, wc, …

shell
ü command interpreter
ü pipe, redirection, background processing,
ü shell script programming

user shell

command
processing

command

33

Runtime System (2/5)

library
ü A collection of functions, invoked frequently by a lot of users

§ Relocatable objects
§ Most languages have standard libraries (also programmers can make

their own custom libraries using ar, ranlib and libtool.)
ü Type

§ Static: 1).a, 2) statically linked (compile time), 3) simple
§ Shared: 1) .so, 2) dynamically linked (runtime), 3) memory efficient

User program

Library functions
printf()

write() agent

write() system call

user space

kernel space

34

Runtime System (3/5)

Framework (also called as Platform)
ü A set of functionalities such as windows, database, graphics,

multimedia, web, RPC, protocol, ...
ü Mobile framework (e.g. Android), machine learning (e.g. Tensorflow)

and bigdata framework (e.g. MapReduce or Hadoop)

(Source: https://www.guru99.com/introduction-to-mapreduce.html)(Source: google image)

Runtime System (4/5)

Virtual machine and Docker
ü Virtual machine: make virtual devices from hypervisor (or host OS)

§ Run GuestOS on the virtual devices
ü Docker: make a container (an isolated environment) using

namespace and cgroup
§ Docker commands are quite similar to Linux (UNIX) command

35

Runtime System (5/5)

Key-Value Store
ü Bigdata è un-structured è need new database è Key-value store

(or document store or graph store)
§ E.g. Google’s LevelDB, Facebook’s RocksDB, Amazon’s Dynamo, …

ü Key data structure: LSM-tree, Skipped-list, Bloom filter, …

36

Hardware consideration (1/6)

Computer organization
ü CPU: registers (include PC), ALU, cache, …
ü Memory: “address, content” pair
ü Device: controller + device itself
ü Bus: hierarchical

(Source: CSAPP)

37

Hardware consideration (2/6)

Computer organization
ü When a program load

F program (binary)

F task (process)

38

Hardware consideration (3/6)

Computer organization
ü When printf(“Hello World\n”) is conducted

39

40

Hardware consideration (4/6)

Memory matters
ü array programming example

/* program A */
int a[1000][1000];
int i, j;
....

for (i=0; i<1000; i++)
for (j=0; j<1000; j++)

a[i][j] ++;

/* program B */
int a[1000][1000];
int i, j;
....

for (i=0; i<1000; i++)
for (j=0; j<1000; j++)

a[j][i] ++;

VS

41

Hardware consideration (5/6)

Memory matters
ü Memory layout of the array programming example
ü Note that, in limited memory, some data are swapped out and in

A[0][0]
A[0][1]
A[0][2]
A[0][3]
A[0][4]

…

A[0][999]
A[1][0]
A[1][1]
A[1][2] …

A[1][999]
A[2][0]
A[2][1]
A[2][2] …

A[2][999]
A[3][0]
A[3][1]
A[3][2]

…

A[999][996]
A[999][997]
A[999][998]
A[999][999]

42

Hardware consideration (6/6)

CPU also matters
ü Loop unrolling example

§ Two programs show different resource utilization in CPU (è See
Chapter 5 in CSAPP)

VS

void combine4(vec_ptr v, data_t *dest)
{

int i;
int length = vec_length(v);
data_t *data = get_vec_start(v);
data_t x = 0;

for (i = 0; i < length; i++) {
x = x + data[i];

}
*dest = x;

}

void combine5(vec_ptr v, data_t *dest)
{

int i;
int length = vec_length(v);
data_t *data = get_vec_start(v);
data_t x = 0;
int limit = length – 2;

for (i = 0; i < limit; i += 3) {
x = x + data[i] + data[i+1] + data[i+2];

}

for (; i < length; i++) {
x = x + data[i];

}
*dest = x;

}

(Source: Chapter 5 in CSAPP)

43

Abstraction (1/9)

Key of System Program: Abstraction
ü Abstraction is the process of generalization by reducing the

information content of a concept or an observable phenomenon,
typically in order to retain only information which is relevant for a
particular purpose.

ü In computer science, abstraction tries to reduce and factor out details
so that the programmer can focus on a few concepts at a time. A
system can have several abstraction layers whereby different
meanings and amounts of detail are exposed to the programmer.

44

Abstraction (2/9)

CPU

Compilation system

Human-Friendly High Level Language
(ISA: Instruction Set Architecture)

45

Abstraction (3/9)

Multitasking

Scheduler

process
(logical CPU)

Physical CPUs

...process
(logical CPU)

process
(logical CPU)

process
(logical CPU)

46

Abstraction (4/9)

Memory management

virtual memory

Relocatable Unlimited Memory Space

Fixed Limited Memory Space

47

Abstraction (5/9)

File system

file system

48

Abstraction (6/9)

Device driver

device driver

Handle and I/O STREAM
(open, read, write, close)

49

Abstraction (7/9)

Data representation

data manipulation

char

bits

integer float pointer ...

50

Abstraction (8/9)

Security and reliability

security and fault-tolerant system

Secure and Trusted World

Real World

51

Abstraction (9/9)

Software layers (Layered architecture)

application program

library

system call

file system

device driver

device itself

52

Importance of System Program

Compact Flash Storage Card Internals

Flash
Controller NAND Flash

Memory
(32Mb-256Mb)

Data
IN/OUT

Control

ARM
core

SRAM
16KB

NOR
48KBHOST

PCMCIA-ATA
Interface

DMA
0/1

F Knowledge about how HW and SW are cooperated becomes indispensable
in recent computing industry (HW/SW Co-design)

Summary

Definition of System Program
ü Supporting computing environments
ü Managing hardware directly

3 Types of System Program
ü Compilation system, operating system, runtime system
ü Hardware consideration

Concept of Abstraction
ü Information hiding
ü Layered architecture

53

F Homework 1: Read the Chapter 1, “A Tour of Computer Systems” and summarize it.
ü Requirement: 1) From the beginning to the Section 1.4 (at most 4 pages, 10

font (can be larger for section or subsection title)), 2) What is the purpose of
studying System Programming? (1 page), 3) Section 1.7 (2 pages, discuss
about “process, thread, virtual memory and file”)

ü Deadline: 6 PM Friday of the next week (18th, September)
ü Caution: Do not copy!! Send your report as a “pdf” file!!

Quiz for 2nd-Week 2nd-Lesson

Quiz
ü Describe an example of abstraction in your life and discuss the

features of abstraction in the example (e.g. information hiding,
focusing on what you are interested in).
§ If it is funny, better grade :-)

ü Due: until 6 PM Friday of this week (11th, September)

54

(Source: https://thevaluable.dev/abstraction-type-software-example/)

55

Appendix

RISC vs. CISC
ü assembly language example

§ a = b + c;
load b, eax
add c, eax
store eax, a

add b, c, a

VS

(Source: W. Stalling, “Operating Systems: Internals and Design Principles”)

ü Instruction execution

