
System Programming

Lecture Note 4.
Process Structure

September 26, 2020

Jongmoo Choi
Dept. of Software

Dankook University
http://embedded.dankook.ac.kr/~choijm

(Copyright © 2020 by Jongmoo Choi, All Rights Reserved. Distribution requires permission)

Objectives

Understand the definition of a process
Explore the process structure
Discuss the relation between program and process structure
Grasp the details of stack

Refer to Chapter 8 in the CSAPP and Chapter 6 in the LPI

2

Process Definition (1/2)

What is a process (also called as task)?
ü Program in execution
ü Having its own memory space and CPU registers
ü Scheduling entity
ü Conflict each other for resource allocation
ü Parent-child relation (family)

3

(Source: CSAPP)

program

Process (task)

Process Definition (2/2)

Related terminology
ü Load

§ from disk into main memory
§ disk: file system (LN 3)
§ main memory: virtual memory (CSAPP 9, OS Course)
§ carried out by OS (e.g. page fault mechanism)

ü Fetch
§ From memory into CPU
§ instruction fetch and data fetch (LN 7)
§ carried out by hardware

4

Process Structure (1/6)

Conceptual structure
ü text, data, heap, stack

5

(Source: LPI)

Process Structure (2/6)

Process structure in C program: function pointer

6

/* f_pointer.c: for function pointer exercise, by choijm, choijm@dku.edu */
#include <stdio.h>

int a = 10;

int func1(int arg1)
{

printf("In func1: arg1 = %d\n", arg1);
}

main()
{

int *pa;
int (*func_ptr)(int);

pa = &a;
printf("pa = %p, *pa = %d\n", pa, *pa);
func1(3);

printf("Bye..^^\n");
}

func_ptr = func1;
func_ptr(5);

Process Structure (3/6)

Process structure in C program: address printing

7

/* task_struct.c: display addresses of variables and functions, choijm@dku.edu */
#include <stdlib.h>
#include <stdio.h>

int glob1, glob2;

int func2() {
int f2_local1, f2_local2;

printf("func2 local: \n\t%p, \n\t%p\n", &f2_local1, &f2_local2);
}

int func1() {
int f1_local1, f1_local2;

printf("func1 local: \n\t%p, \n\t%p\n", &f1_local1, &f1_local2);
func2();

}

main(){
int m_local1, m_local2; int *dynamic_addr;

printf("main local: \n\t%p, \n\t%p\n", &m_local1, &m_local2);
func1();

dynamic_addr = malloc(16);
printf("dynamic: \n\t%p\n", dynamic_addr);
printf("global: \n\t%p, \n\t%p\n", &glob1, &glob2);
printf("functions: \n\t%p, \n\t%p, \n\t%p\n", main, func1, func2);

}

Process Structure (4/6)

Process structure in C program: address printing

8

stack for main

stack for func1

text for func2

text for func1

text for main

data

heap

0xffb5cf04
0xffb5cf00

0xffb5cec4
0xffb5cec0

0xffb5cea4
0xffb5cea0

0x080483c2

0x080483e4

0x0804840b

0x080497c4
0x080497c0

0x0819d410

F Addresses can be different based on Compiler, OS and CPU (32bit vs. 64bit)

stack for func2

Process Structure (5/6)

Summary
ü Process: consist of four regions, text, data, stack and heap

ü Text
§ Program code (assembly language)
§ Go up to the higher address according to coding order

ü Data
§ Global variable
§ Initialized and uninitialized data are managed separately (for the

performance reason)
ü Stack

§ Local variable, argument, return address
§ Go down to the lower address as functions invoked

ü Heap
§ Dynamic allocation area (malloc(), calloc(), …)
§ Go up to the higher address as allocated

9

Also called as segment or vm_object

Process Structure (6/6)

Relation btw program and process

10

data

text

stack

Process Structure in CSAPP

Another viewpoint for process structure
ü text, data, heap, stack + shared region, kernel

11

(Source: CSAPP)

Stack Details (1/6)
What is Stack?
ü A contiguous array of memory locations with LIFO property

§ Stack operation: push and pop
§ Stack management: bottom and top (e.g. SS and ESP in intel)

(Source: CSAPP)

12

Stack Details (2/6)

Stack in Intel architecture
ü How to access Intel manual?

1313

Stack Details (3/6)

Stack in Intel architecture
ü Real manipulation of push and pop

§ ESP (Extended Stack Pointer): pointing the top position (LN 6)
§ push: decrement the ESP and write data at the top of stack (down)
§ pop: read data from the top and increment the ESP (up)

ü What are in the stack?
§ 1) argument (parameters), 2) return address, 3) local variable, …
§ Return address: an address that returns after finishing a function (usually

an address of an instruction after “call”)

14(Source: Intel 64 and IA-32 Architectures Software Developer’s Manual)

Stack Details (4/6)

Stack in Linux

15

int func2(int x, int y) {
int f2_local1 = 21, f2_local2 = 22;
int *pointer, i;

...
}

void func1()
{

int ret_val;
int f1_local1 = 11, f1_local2 = 12;

...
ret_val = func2(111, 112);
f1_local++;
...

}

int main()
{

...
func1();
...

}

arguments,
return address,
local variables

arguments,
return address,
local variables

argument 2

argument 1

return address

saved ebp

local variable 1

local variable 2
...

stack frame
for func2

F Compiler (and version) dependent (see Appendix 2)
F Especially, recent compiler makes use of obfuscation, where the locations

of local variables are changed according to program contents.
F But, gcc 3.* version comply with the Intel’s suggestion (like this figure)

For lecturing purpose, gcc 3.* is more effective (Use 3.4 in this lecture note)

...

stack frame
for func1

stack frame
for main

Stack Details (5/6)

Stack example 1

16

/* stack_struct.c: stack structure analysis, by choijm. choijm@dku.edu */
#include <stdio.h>

int func2(int x, int y) {
int f2_local1 = 21, f2_local2 = 22;
int *pointer;

printf("func2 local: \t%p, \t%p, \t%p\n", &f2_local1, &f2_local2, &pointer);
pointer = &f2_local1;

printf("\t%p \t%d\n", (pointer), *(pointer));
printf("\t%p \t%d\n", (pointer-1), *(pointer-1));
printf("\t%p \t%d\n", (pointer+3), *(pointer+3));

*(pointer+4) = 333;
printf("\ty = %d\n", y);
return 222;

}

void func1() {
int ret_val, f1_local1 = 11, f1_local2 = 12;

ret_val = func2(111, 112);
}

main() {
func1();

}

Quiz for 6th-Week 1st-Lesson

Quiz
ü 1. Explain the differences among 1) file, 2) program (binary program),

and 3) process.
ü 2. In C language, the scope of local variables and global variables

are different. Discuss the reason of the differences using the process
structure.

ü Due: until 6 PM Friday of this week (9th, October)

17

(Source: https://dasima.xyz/c-local-global-variables/)

Stack Details (6/6)

Stack example 2

18

/* stack_destroy.c: 스택 구조 분석 2, 9월 19일, choijm@dku.edu */
#include <stdio.h>

void f1() {
int i;
printf("In func1\n");

}

void f2() {
int j, *ptr;
printf("f2 local: \t%p, \t%p\n", &j, &ptr);
printf("In func2 \n");

}

void f3() {
printf("Before invoke f2()\n");
f2();
printf("After invoke f2()\n");

}

main() {
f3();

}

ptr = &j;
*(ptr+2) = f1;

Summary

Understand the differences between process and program
Discuss the differences among text, data, heap and stack
Find out the details of stack structure
ü Argument passing, Return address, Local variables
ü Stack overflow

19

F Exercise 1 (old homework 4): Make a program of the stack example 2
and examine its results.

ü Requirements
- shows student’s ID and date (using whoami and date)
- overcome the segmentation fault problem
- hand out the report that includes a snapshot and discussion

20

Appendix 1

Snapshot for the Exercise 1

Appendix 2

Assembly differences between gcc 9.* and gcc 3.4.*
ü Using WSL (Windows subsystem for Linux) in my computer

21

Appendix 2

Assembly differences between gcc 9.* and gcc 3.4.*
ü 1) Obfuscation, 2) Optimization, 3) CFI, …

22

Appendix 2

Assembly differences between 32-bit and 64-bit CPU
ü 1) Register (eax vs rax), 2) PIC, 3) Argument passing, 4) …
ü We will discuss further in LN6 and LN9

23

Appendix 3

Function pointer practice

24

/***************************/
/* f_ptr_exam.c : 함수 포인터 예, */
/* 10월 4일, choijm@dku.edu */
/**************************/
#include <stdio.h>

int add(int a, int b)
{

return a+b;
}

int substract(int a, int b)
{

return a-b;
}

int multiply(int a, int b)
{

return a*b;
}

int divide(int a, int b)
{

return a/b;
}

main()
{

int (*ALU)(int x, int y);
int a, b;
char c;

printf("USAGE: number operator number ==>");
scanf("%d %c %d", &a, &c, &b);

switch (c)
{

case '+':
ALU = add;
break;

case '-':
ALU = substract;
break;

case '*':
ALU = multiply;
break;

case '/':
ALU = divide;
break;

}

printf("\n%d %c %d = %d\n", a, c, b, ALU(a,b));
}

