
System Programming

Lecture Note 6.
IA Assembly Programming

October 12, 2020
Jongmoo Choi

Dept. of Software
Dankook University

http://embedded.dankook.ac.kr/~choijm

(Copyright © 2020 by Jongmoo Choi, All Rights Reserved. Distribution requires permission)

Objectives

Understand various viewpoints about CPU
Apprehend the concept of ISA (Instruction Set Architecture)
ü Learn the IA Register model
ü Learn the IA Memory model
ü Learn the IA Program model

Make a program with IA assembly language

Refer to Chapter 3 in the CSAPP and Intel SW Developer
Manual

2

Introduction (1/2)

Summarizing what we have learnt
ü Program development: compile, linking, ELF, …
ü Program execution: task (text, data, stack), load, fetch, …

§ text: consists of machine instructions

3

버스

Introduction (2/2)

Assembly language
ü Language hierarchy

§ locate between high-level language and machine language
§ Symbolic (mnemonic) representation of machine language

• One-to-one mapping, CPU dependent (Not easy)

ü Application field
§ Hardware control: system initialization, device driver, interrupt handler,

embedded systems, IoT, ECU, CPS, Wearable computer, …
§ Vulnerability test (Virus identification, IDS)
§ Optimization
§ SW copyright protection, SW similarity analysis, …

ü Importance
§ Making a program, debugging, analyzing binary
§ Understand the behavior of hardware (especially CPU)
§ Grape the mechanism how hardware and software are cooperated

(hardware software co-design)

4

5

CPU (1/5)

What is a Processor?

Abstraction

6

CPU (2/5)

Various Viewpoints of Processor
ü 1. Transistor + Gate + Logic + Clock

ü 2. ALU (Arithmetic Logic Unit) + Registers + CU (Control Unit) + BUS

ü 3. Instruction Set Architecture (CISC, RISC, VLIW, EPIC, …)
ü 4. Performance Characteristics (Pipeline, Superscalar, Cache, …)

(Source: MU0 in Appendix 1)

7

CPU (3/5)

Instruction Set Architecture: Register + Instructions

ü Register model
ü Memory model
ü Instruction model

registers

instructions

data

processor

memory
0x00..00

0xFF..FF

instructions
and data

address

8

CPU (4/5)

Performance Characteristics: Pipeline, Superscalar, Cache

ü For efficient pipeline
• Similar latency of instructions (not complex)
• Conflict between I. fetch and D. fetch
• Branch prediction, Out-of order executions
• L1, L2 cache …

Dec Dfet Exe ResIfet
Dec Dfet Exe ResIfet

Dec Dfet Exe ResIfet
Abbreviation
•Ifet: Instruction fetch
•Dec: Decode
•Dfet: Data fetch
•Exe: Execution
•Res: Results write

F Details will be discussed in LN 7

9

CPU (5/5)

Performance Characteristics: Pipeline, Superscalar, Cache
8086 Pentium

(Source: Intel SW Developer’s Manual, Volume 1: Basic Architecture)

Register Model (1/3)

Register definition
ü A small amount of memory available in a CPU
ü Can be accessed quickly, compared with main memory

IA registers

10

(Source: Intel SW Developer’s Manual, Volume 1: Basic Architecture)

Register Model (2/3)

Functionality of each register
ü Segment register

§ CS(code segment): the base location of all executable instructions
§ DS(data segment): the base location for variables
§ SS(stack segment): the base location of the stack
§ ES(extra segment): an additional base location for variables

ü General purpose register
§ EAX (accumulator): for arithmetic operation (operand and result data)
§ EBX (base): pointer to data in the DS segment
§ ECX (counter): counter for loop and string operations
§ EDX (data): I/O pointer, a special role in multiply and divide operations
§ ESP (stack pointer): pointer to the top of the stack
§ EBP (base pointer): used as base for accessing variables on the stack (base

for stack frame)
§ ESI (source index): source pointer for string operations
§ EDI (destination index): destination pointer for string operations
§ Having its specialty, but commonly being used for general purpose

ü EIP (instruction pointer): role of PC(Program counter)
ü EFLAGS: Control and Status Register

11

F rax, rbx, rip, … for Intel 64

Register Model (3/3)

Details of EFLAGS register
ü Set of control and status Flags

12

F Refer to the IA-32 Basic Architecture, Chapter 3.4.3 for the role of each bit
F Intel CPU has several additional registers such as CR0, CR2, CR3, IDTR, GDTR,

debugging registers, FPU registers, and MMX registers. (see LN_chapter 7)

Quiz for 9th-Week 1st-Lesson

Quiz
ü 1. There are various viewpoints regarding CPU. What is the ISA?

Explain three components of ISA.
ü 2. There are 8 GP registers in 32-bit Intel CPU. It increases 16 in 64-

bit Intel CPU. Discuss the merit and demerit of larger registers.
ü Due: until 6 PM Friday of this week (30th, October)

13

(Source: http://melonicedlatte.com/computerarchitecture/2019/01/30/192433.html)

14

Memory Model (1/6)

Memory abstraction in IA
ü logical address (virtual address)
ü linear address
ü physical address

logical
address

linear
address

physical
addresssegmentation paging

text

data

stack

logical memory
(virtual memory)

text

data

stack

linear memory

text

data

stack

Page 2

Page 1

physical memory
Page 4

Page 3

Page 1

Page 2

Page 3
Segment

Descriptor
Table

Page
Table

Page 5

Page 6

15

Memory Model (2/6)

Paging and Segmentation in detail
ü Segmentation: variable size

§ Address translation: base address + offset, using segment table
(segment descriptor table)

ü Paging: fixed size
§ page start address (PT + index) + offset, using page table

(commonly multi-level tables)

F Some CPUs make use of paging only or segmentation only

16

Memory Model (3/6)
Segmentation vs Paging example
ü Assumption

§ Physical memory is fragmented
§ Virtual memory consists of 12 elements

ü Segmentation vs. Paging
§ Address translation: segment table vs. page table
§ How to: seg # + offset vs. page # + offset

0
1
2
3
4
5
6
7
8
9

10
11

0
1
2
3
4
5
6
7
8
9

10
11

8

24

40

8

24

40

0 à 8, size = 5
5 à 44, size = 7
Segment table

0 à 8
4 à 44
8 à 24

Page table

44 44

VM
PM

VM
PMF What is the PA of the VA 10 in segmentation? (or Paging)

17

Memory Model (4/6)

Revisit
ü Process structure in LN 4 vs. After fork in LN 5
ü Virtual memory vs. Using Segmentation

18

Memory Model (Optional) (5/6)

Segmentation on IA
ü Real Address Model: 8086 compatible, support 1MB (seg.<<4+offset)
ü Flat Model: protected mode with segment descriptor
ü Segmented Model: protected mode with segment descriptor table

real address model segmented model

19

Memory Model (Optional) (6/6)

Paging on IA
ü Usually make use of multi-level structure

§ 32 bit: 2-level paging
• Page directory, page table

§ 64 bit: 4-level paging
• PML4, page directory pointer, page directory, page table

32 bit CPU 64 bit CPU

F The basic concept of address mapping is similar to the indexing in the inode
(Source: Intel SW Developer’s Manual, Volume 1: Basic Architecture)

20

Instruction Model (1/2)

Instruction format
here: movl 0x8049388, %eax

addl 0x8049384, %eax
movl %eax, 0x804946c

here: movl 0x8049388, %eax
addl 0x8049384, %eax
movl %eax, 0x804946c

(Source: Intel SW Developer’s Manual, Volume 1: Basic Architecture)

(Source: CSAPP)

21

Instruction Model (2/2)
Opcode summary
ü General Purpose

§ Data Transfer Instruction: MOV, CMOVNZ, XCHG, PUSH, POP
§ Arithmetic Instruction: ADD, SUB, MUL, DIV, DEC, INC, CMP
§ Logical Instruction: AND, OR, XOR, NOT
§ Shift and Rotate Instruction: SHR, SHL, SAR, SAL, ROR, ROL
§ Bit and Byte Instruction: BT, BTS, BTC
§ Control Transfer Instruction: JMP, JE, JZ, JNE, LOOP
§ Function related Instruction: CALL, RET, LEAVE
§ String Instruction: MOVS, CMPS, LODS
§ Flag Control Instruction: STC, CLC, STD, CLD, STI, CLI
§ Segment Register Instruction: LDS, LES
§ Miscellaneous: INT, NOP, CPUID

ü Special Purpose
§ FPU Instruction: FLD, FST, FADD, FSUB, FCOM
§ SIMD Instruction (MMX) : MOVD, MOVQ, PADD, PSUB
§ SSE Instruction: MOVSS, ADDSS
§ System Instruction: LGDT, SGDT, LIDT, …

Instruction Detail: Component (1/11)

Data Transfer Instruction
ü Edit move_exam.c and create assembly program using gcc –S

§ Using gcc version 3.4.6 (Since the obfuscation techniques employed in
higher gcc version make learning rather complex)

F what if we execute “movl 2, a”?
comments: # or /* */

operand : reg, mem, literal
• reg: begin with %
• memory: alphanumeric
• literal: begin with $

22

23

Instruction Detail: Component (2/11)
Data Transfer Instruction (cont’)

Basic opcode(mov) + suffix [l|w|b|q]
• b: byte (1 byte)
• w: word (2 bytes)
• l: long (double) word (4 bytes)
• q: quad word (8 byte)
(refer to Figure 3.1 in CSAPP)

24

Instruction Detail: Component (3/11)

AT&T vs. Intel (cf. Microsoft ASM)

Quiz for 9th-Week 2nd-Lesson

Quiz
ü 1. Explain the three components of an IA instruction format.
ü 2. There are various optimization options in gcc such as “O0, O2, O3

and Os”. What if we create an assembly program using O3 when we
create the move_exam.s in slide 22?

ü Bonus. What if we create an assembly program using O3 when we
declare the a, b, c as local variables?

ü Due: until 6 PM Friday of this week (30th, October)

25

26

Instruction Detail: Component (4/11)

Arithmetic Instruction

“movl a, %eax”
“subl b, %eax”
“movl %eax, c”
are also feasible
(cf. load-store architecture)

mul: multiply operand with eax
result is stored in edx:eax

div: divide edx:eax by operand
the quotient is stored in eax,
while the remainder is in edx

27

Instruction Detail: Component (5/11)
Control Transfer Instruction: if

Compare instruction: Perform
subtraction, but not store the
result (only bits in EFLAGS are
changed)

Jump to the label .L2 if (SF == 1 or
ZF == 1) è (EIP = .L2)
Otherwise, go to the next instruction
è (EIP = EIP +1).
(precisely, if (SF == 1 or SF==OF))

Example of logic instruction

F switch statement: extension of “if else” statement

Types of jmp instruction: jmp,
je, jne, jg, jge, jl, jle, …

28

Instruction Detail: Component (6/11)
Control Transfer Instruction: for

F while, do while statements:
another form of “for” statement

Instruction Detail: Component (7/11)
Function-related Instruction: stack revisit
ü Stack operation: push and pop
ü Stack management: bottom and top (SS and esp)

(Source: CSAPP)
29

Instruction Detail: Component (8/11)
Function-related Instruction: before function call

Decrease ESP. Put operand on the
stack. (cf. movl $222, 4(%esp))

stack frame for main

222

111

ret. address

Push EIP. Jump to the operand
(EIP = func1).

30

31

Instruction Detail: Component (9/11)
Function-related Instruction: in function

stack frame for main

222

111

ret. address

saved ebp EBP
a

b ESP

Decrease ESP. Put operand on the
stack. (cf. movl $222, 4(%esp))

Push EIP. Jump to the operand
(EIP = func1).

F Use relative address based on ebp instead of variable name
31

32

Instruction Detail: Component (10/11)
Function-related Instruction: after function

stack frame for main

222

111

ret. address

saved ebp EBP
a

b ESP

ESP = EBP. Then pop.
(Eventually pop local variables
and saved ebp from the stack)

pop and set it into EIP
(EIP = return address)

Pop arguments from the stack.

Return value is in eax
F 64bit CPU: make use of registers to pass parameters

(rdi, rsi, rdx, rcx, r9, r8)

Decrease ESP. Put operand on the
stack. (cf. movl $222, 4(%esp))

Push EIP. Jump to the operand
(EIP = func1).

Instruction Detail: Component (11/11)
Function-related Instruction: stack frame illustration

33

Revisit Stack Destroy in LN4
Stack example 2

/* stack_destroy.c: 스택 구조 분석 2, 9월 19일, choijm@dku.edu */
#include <stdio.h>

void f1() {
int i;
printf("In func1\n");

}

void f2() {
int j, *ptr;
printf("f2 local: \t%p, \t%p\n", &j, &ptr);
printf("In func2 \n");

ptr = &j;
*(ptr+2) = f1;

}

void f3() {
printf("Before invoke f2()\n");
f2();
printf("After invoke f2()\n");

}

main() {
f3();

} 34

Quiz for 10th-Week 1st-Lesson

Quiz
ü 1. Explain two ways how the C statement “d = b * 7” is translated

into assembly language.
ü 2. Describe how arguments and local variables are accessed in

CPU.
ü Due: until 6 PM Friday of this week (6th, November)

35

Revisit CSAPP
Assembly code example from CSAPP

F See Chapter 3 in CSAPP for more examples
36

37

Instruction Detail: Make a Program (1/6)
Practice1: function example
ü result = asm_sum(final_number), written by assembly language

.global directive: declare
“asm_sum” visible to the linker

Memory addressing: displacement(base)
or displacement(base, index, scale)

.text directive: declare text section
(the following instructions are
resided in the text section)

38

Instruction Detail: Make a Program (2/6)
Execution results of Practice 1

F Use “make” utility when there are a bunch of files

39

Instruction Detail: Make a Program (3/6)
Practice 2: Standalone assembly program

.data directive: declare data
section

.long directive: initialize 4B memory space
(address, initial value, expression, …)

.string directive: initialize string
(array of character)

40

Instruction Detail: Make a Program (4/6)
directive
ü Meta-statements (pseudo-instruction)
ü Used for giving information to assembler (affect how the assembler

operates. not directly executed on CPU)
ü Begin with . (period)
ü Representative directive

§ .file, .include
§ .text, .data, .comm, .section
§ .long, .byte,. string, .ascii, .float, .quad
§ .global, .align, .size
§ .set, .equal, .rept, .space
§ .macro, .endm
§ .if, .else, .endif
§ .cfi_startproc, .cfi_endproc for debugging
§ …

F refer to “GNU assembler” in the lecture site or “info as” on the Linux shell

41

Instruction Detail: Make a Program (5/6)
Software Interrupt
ü write() system call

system call arguments

system call index

IDT table index

42

Instruction Detail: Make a Program (6/6)
Software Interrupt (cont’)
ü Interrupt and system call handling

sys_call_table (sysent[])

sys_no_syscall()

sys_exit()

sys_fork()

sys_read ()

sys_write ()

….

0

1

2

3

4

sys_getpid()

….

255

47

sys_no_syscall()

Kernel

sys_fork()

sys_write()system_call()

IDT
divide_error()

debug()

nmi()

….

0x0

system_call()

….
0x80

F 64bit CPU: use “sysenter (syscall on AMD)” instead of “int”

43

Summary
Understand ISA
Know about IA register, memory, and instruction model
Learn the format of IA instruction
ü label, opcode, operands, comments

Learn the types of IA opcode
ü mov, add, cmp, jmp, push, call, ret, int, …

F Homework 5: Make an assembly program
ü Requirements

- print out the prime number from 1 to 100 (using loop è 28 page)
- using a function (36 page)
- shows student’s ID and date (using whoami and date)
- Make a report that includes a snapshot and discussion.

1) Upload the report to the e-Campus (pdf format!!, 30th October)
2) Send the report and source code to TA (이성현: wwbabaww@gmail.com)

ü Warn: DO NOT utilize “gcc –S option” (easily detected)

Quiz for 10th-Week 2nd-Lesson

Quiz
ü 1. What is the make utility in Linux? What is the role of a Makefile?
ü 2. Discuss the differences between function call and system call at

an assembly language viewpoint (at least three).
ü Due: until 6 PM Friday of this week (6th, November)

44

(System call and function call at the abstract viewpoint
Source: https://pediaa.com/what-is-the-difference-between-system-call-and-function-call/)

45

Appendix1: MU0, A Simple CPU

Simple CPU from Manchester University
Architecture
ü Register set

§ PC : program counter
§ ACC : accumulator
§ IR : Instruction Register

ü ALU : Arithmetic-Logic Unit
ü CU : Control Unit (instruction decode and control logic)
ü Memory

(Source: ARM System-on-Chip Architecture, by S. Furber)

46

Appendix1: MU0, A Simple CPU

Data Transfer

ü fetch and execution

47

Appendix1: MU0, A Simple CPU

MU0 instruction set
ü 16-bit machine with 12-bit address space
ü 8 instructions (4-bit opcode)
ü 12-bit operand (4096 address space)

48

Appendix1: MU0, A Simple CPU

Control Logic

ü FSM(Finite State Machine): Execute, Fetch state
§ Initialization: reset (known state) makes the ALU output as zero
§ Register change: when XXce is ‘1’
§ Multiplexer: Asel, Bsel

49

Appendix1: MU0, A Simple CPU

ALU logic for one bit
ü ALU functions required

§ A+B: normal adder
§ A-B: complement and adding
§ B: force A and carry-in to zero
§ B+1: force A to zero and carry-in to 1
§ 0: reset

50

Appendix1: MU0, A Simple CPU

MU0 extensions
ü Extending the address space
ü Adding more addressing modes
ü Allowing the PC to be saved in order to support a subroutine

mechanism
ü Adding more registers
ü Support interrupts
ü …

