
Embedded System Lab.

A large scale analysis of hundreds of in-memory cache
clusters at Twitter

2021. 05. 12

Presentation by Agung Rahmat Ramadhan

agungnet@dankook.ac.kr

Juncheng Yang (Carnegie Mellon University)

Yao Yue (Twitter)

Rashmi Vinayak (Carnegie Mellon University)

Embedded System Lab.

1. Background

2. Twitter’s Timeline

3. In-memory caches at Twitter

4. Twemcache

5. Trace collection

6. Analyses of Workloads

7. Time-to-live (TTL)

8. Eviction Algorithm Candidates (LRU vs

FIFO)

9. Conclusion

2

Table of contents

3

Background
In-memory caching is ubiquitous in the modern web services
To reduce latency, increase throughput, reduce backend load

Embedded System Lab.

How to use cache in memory?

Cache use cases

Write-heavy workloads

Object size distribution and evolution

Time-to-live (TTL) and working set

4

Embedded System Lab.

Timeline:

2011 – Microservices (Migration to a service-oriented arch)

2011 – Developing its container solution

2020 – Real-time service stack (hundreds of services running
inside containers in production)

5

In-memory caches at Twitter

In-Memory Cache = A core component of Twitter’s Infrastructure
• Grown alongside the transition above
• Petabytes of DRAM and hundreds of thousand of cores are provisioned for caching cluster

Embedded System Lab.

In-memory caching is a Managed Service

New Clusters are provisioned semi-automatic (look-aside cache)

Two in-memory caching solution:

1. TwemCache (Fork of Memcached) (Key-value cache)

2. Nighthawk (Redis-based)

6

In-memory caches at Twitter

Embedded System Lab.

• Single tenant, single layer
• Container-based deployment

• Large scale deployment
• 100s cache clusters

• 1s billion QPS

• 100s TB DRAM

• 100,000s CPU cores

7

In-memory caches at Twitter

Source: https://res.cloudinary.com/practicaldev/image

Embedded System Lab.

• Often stores small and variable-size objects (a few bytes ~ 10s of KB)

• Inherits the Slab-based memory management

8

Overview of Twemcache

Embedded System Lab.

9

Memory is
allocated as
fixed size
chunks
(Slab)

Def: 1MB

Smaller chunks (Items)

Default, Twemcache grows item size from 88 bytes ~ under whole slab
The Growth controlled by Growth factor (1.25)

49 bytes

Class : 12
Items : 891 items of 1176 bytes each
@ Item : 1127 bytes of key + val

Embedded System Lab.

10

Store new object in slab-based cache

New Object
Compute the slab
class by object size

Free item in
this slab class

Add new slab

Use free item

Yes

No

Embedded System Lab.

• Caching for storage
• Most common and use most

resources

• Caching for computation
• Increasingly popular
• Machine learning, stream

processing

• Transient data with no
backing store
• Rate limiters
• Negative caches

11

Cache use cases

Embedded System Lab.

• Source : Production traces from 153 in-memory cache
clusters at Twitter

• Week-long unsampled traces from one instance of each
Twemcache cluster
• 700 billion requests, 80 TB in size
• Focus on 54 representative clusters

• Traces are open source
• https://github.com/twitter/cache-trace
• https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20

12

Trace collection and open source

https://github.com/twitter/cache-trace
https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20

Embedded System Lab.

13

Relative Use of Each Operation

Embedded System Lab.

35% of clusters are write-heavy
(more than 30% writes)

14

Write-heavy workloads analysis

Implication for future research:
• Optimization needed for write-heavy workloads

• Challenges: scalability, tail latency

Embedded System Lab.

15

Object Size Analysis

Embedded System Lab.

Object sizes are small

• 24% cluster mean object size < 100 bytes

• Median 230 bytes

Metadata size is large

• Memcached uses 56 bytes per-obj metadata

• Research systems often add more metadata

• -> Reduce effective cache size

16

Object size

Implication for future research:
• Minimizing object metadata to increase effective cache size

Embedded System Lab.

Value/key size ratio can be small

• 15% cluster value size <= key size

• 50% cluster value size <= 5 x key size

Small value/key size ratio

• Name spaces are part of keys

• Ns1:ns2:obj or obj/ns1/ns2

17

Object size

Implication for future research:
• A robust and lightweight key compression algorithm can increase effective cache size

Embedded System Lab.

18

Dynamic size distribution

Embedded System Lab.

19

Size distribution over time

Implication for future research:
• Size distribution changes pose challenges to memory management
• Innovations needed on better memory management techniques

Embedded System Lab.

• How long an object can be used for serving requests

• Set during object writes

• Expired objects cannot be served

20

Time-to-live (TTL)

Embedded System Lab.

• Bounding inconsistency
• Cache updates are best-effort

• Periodic refresh
• Caches for computation store

computation based on
dynamic features

• Implicit deletion
• Rate limiter

• GDPR compliant

21

TTL use cases and usages

Embedded System Lab.

22

Short TTLs lead to bounded working set sizes

Implication for future research:
• Efficient proactive expiration techniques are more important than evictions
• Innovation needed on efficient TTL expiration

Embedded System Lab.

23

Cache workloads follow Zipfian distribution?

Embedded System Lab.

24

Eviction Algorithm Candidates (LRU vs FIFO)

Embedded System Lab.

25

Eviction Algorithm Candidates (LRU vs FIFO)

Embedded System Lab.

1. Although read-heavy workloads account for more than half
of the resource usages, write-heavy workloads are also common.

2. In-memory caching clients often use short TTLs, which limits
the effective working set size. Thus, removing expired objects
needs to be prioritized before evictions.

3. Read-heavy in-memory caching workloads follow Zipfian
popularity distribution with a large skew.

4. The object size distributions of most workloads are not static.
Instead, it changes over time with both diurnal patterns and
sudden changes, highlighting the importance of slab
migration for slab-based in-memory caching systems.

5. For a significant number of workloads, FIFO has similar or lower
miss ratio performance as LRU for in-memory caching
workloads.

26

Conclusion

