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Background
In-memory caching is ubiquitous in the modern web services
To reduce latency, increase throughput, reduce backend load
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How to use cache in memory?

Cache use cases

Write-heavy workloads

Object size distribution and evolution 

Time-to-live (TTL) and working set
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Timeline:

2011 – Microservices (Migration to a service-oriented arch)

2011 – Developing its container solution

2020 – Real-time service stack (hundreds of services running 
inside containers in production)
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In-memory caches at Twitter

In-Memory Cache = A core component of Twitter’s Infrastructure
• Grown alongside the transition above
• Petabytes of DRAM and hundreds of thousand of cores are provisioned for caching cluster
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In-memory caching is a Managed Service

New Clusters are provisioned semi-automatic (look-aside cache)

Two in-memory caching solution:

1. TwemCache (Fork of Memcached) (Key-value cache)

2. Nighthawk (Redis-based)
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In-memory caches at Twitter
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• Single tenant, single layer
• Container-based deployment

• Large scale deployment
• 100s cache clusters

• 1s billion QPS 

• 100s TB DRAM

• 100,000s CPU cores 
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In-memory caches at Twitter

Source: https://res.cloudinary.com/practicaldev/image
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• Often stores small and variable-size objects (a few bytes ~ 10s of KB)

• Inherits the Slab-based memory management
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Overview of Twemcache
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Memory is    
allocated as   
fixed size      
chunks 
(Slab)

Def: 1MB

Smaller chunks (Items)

Default, Twemcache grows item size from 88 bytes ~ under whole slab
The Growth controlled by Growth factor (1.25)

49 bytes

Class : 12
Items : 891 items of 1176 bytes each
@ Item : 1127 bytes of key + val
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Store new object in slab-based cache

New Object
Compute the slab  
class by object size

Free item in   
this slab class

Add new slab

Use free item

Yes

No
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• Caching for storage
• Most common and use most 

resources 

• Caching for computation
• Increasingly popular
• Machine learning, stream    

processing

• Transient data with no      
backing store
• Rate limiters
• Negative caches

11

Cache use cases
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• Source : Production traces from 153 in-memory cache 
clusters at Twitter

• Week-long unsampled traces from one instance of each 
Twemcache cluster
• 700 billion requests, 80 TB in size 
• Focus on 54 representative clusters 

• Traces are open source
• https://github.com/twitter/cache-trace
• https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20
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Trace collection and open source

https://github.com/twitter/cache-trace
https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20
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Relative Use of Each Operation
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35% of clusters are write-heavy 
(more than 30% writes)
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Write-heavy workloads analysis

Implication for future research:
• Optimization needed for write-heavy workloads

• Challenges: scalability, tail latency
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Object Size Analysis
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Object sizes are small

• 24% cluster mean object size < 100 bytes 

• Median 230 bytes 

Metadata size is large 

• Memcached uses 56 bytes per-obj metadata 

• Research systems often add more metadata 

• -> Reduce effective cache size
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Object size

Implication for future research:
• Minimizing object metadata to increase effective cache size
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Value/key size ratio can be small

• 15% cluster value size <= key size

• 50% cluster value size <= 5 x key size

Small value/key size ratio 

• Name spaces are part of keys

• Ns1:ns2:obj or obj/ns1/ns2

17

Object size

Implication for future research:
• A robust and lightweight key compression algorithm can increase effective cache size
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Dynamic size distribution
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Size distribution over time

Implication for future research:
• Size distribution changes pose challenges to memory management 
• Innovations needed on better memory management techniques 
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• How long an object can be used for serving requests

• Set during object writes 

• Expired objects cannot be served
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Time-to-live (TTL)
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• Bounding inconsistency 
• Cache updates are best-effort

• Periodic refresh 
• Caches for computation store  

computation based on          
dynamic features

• Implicit deletion 
• Rate limiter 

• GDPR compliant 
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TTL use cases and usages
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Short TTLs lead to bounded working set sizes

Implication for future research:
• Efficient proactive expiration techniques are more important than evictions 
• Innovation needed on efficient TTL expiration
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Cache workloads follow Zipfian distribution?
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Eviction Algorithm Candidates (LRU vs FIFO)
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Eviction Algorithm Candidates (LRU vs FIFO)
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1. Although read-heavy workloads account for more than half
of the resource usages, write-heavy workloads are also common.

2. In-memory caching clients often use short TTLs, which limits
the effective working set size. Thus, removing expired objects
needs to be prioritized before evictions.

3. Read-heavy in-memory caching workloads follow Zipfian
popularity distribution with a large skew.

4. The object size distributions of most workloads are not static.
Instead, it changes over time with both diurnal patterns and
sudden changes, highlighting the importance of slab
migration for slab-based in-memory caching systems.

5. For a significant number of workloads, FIFO has similar or lower
miss ratio performance as LRU for in-memory caching
workloads.
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Conclusion


