
J. Choi, DKU

Lecture Note 1: OS Introduction

February 26, 2021
Jongmoo Choi

Dept. of software
Dankook University

http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)

J. Choi, DKU

Contents

From Chap 1~2 of the OSTEP
Chap 1. A Dialogue on the Book
Chap 2. Introduction to Operating System
ü Virtualizing the CPU
ü Virtualizing Memory
ü Concurrency
ü Persistence
ü Design Goals
ü Some History
ü References

2

J. Choi, DKU

Chap 1. A Dialog on the Book

OSTEP
ü Operating Systems: Three Easy Pieces

3

(Source: https://www.amazon.com/Six-Easy-Pieces-Essentials-Explained/dp/0465025277)

ü Homage to the Feynman’s famous “Six Easy Pieces on Physics”
§ OS is about half as hard as Physics: from Six to Three Pieces

J. Choi, DKU

Chap 1. A Dialog on the Book

OSTEP
ü What are Three Pieces: Virtualization, Concurrency, Persistence

4

(Source: http://pages.cs.wisc.edu/~remzi/OSTEP/)

J. Choi, DKU

Chap 1. A Dialog on the Book

OSTEP
ü What to study?

ü How to study?

5

J. Choi, DKU

Chap 2. Introduction to Operating Systems

2.1 Virtualizing CPU
2.2 Virtualizing Memory
2.3 Concurrency
2.4 Persistence
2.5 Design Goals
2.6 Some history
2.7 Summary
References

6

J. Choi, DKU

Introduction

Layered structure of a computer system

7

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

Introduction

What happens when a program runs?
ü 1. Simple view about running a program

8

(Source: W. Stalling, “Operating Systems: Internals and Design Principles”)

J. Choi, DKU

Introduction

What happens when a program runs?
ü Details: execute instructions

§ Fetch and Execute

9

(Source: W. Stalling, “Operating Systems: Internals and Design Principles”)

<Instruction cycle>

<Hypothetical machine>
<Run example>

J. Choi, DKU

Introduction

What happens when a program runs?
ü 2. A lot of stuff for running a program

§ Loading, memory management, scheduling, context switching, I/O
processing, file management, IPC, …

§ Operating system: 1) make it easy to run programs, 2) operate a system
correctly and efficiently

10

(Source: computer systems: a programmer perspective)

J. Choi, DKU

Introduction

Definition of operating system
ü Resource manager

§ Physical resources: CPU (core), DRAM, Disk, Flash, KBD, Network, …
§ Virtual resources: Process, Thread, Virtual memory, Page, File,

Directory, Driver, Protocol, Access control, Security, …
ü Virtualization (Abstraction)

§ Transform a physical resource into a more general, powerful, and easy-
to-use virtual form

11

(Source: Linux Device Driver, O’Reilly)

J. Choi, DKU

Introduction

System call
ü Interfaces (APIs) provided by OS

12

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

Introduction

System call
ü Standard (e.g.. POSIX, Win32, …)
ü Mode switch (user mode, kernel mode)

13

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

2.1 Virtualizing CPU

A program for the discussion of virtualizing CPU
ü call Spin (busy waiting and return when it has run for a second)
ü print out a string passed in on the command line

14

J. Choi, DKU

2.1 Virtualizing CPU

Execute the CPU program

Execute the program in parallel

15

E Process, Scheduling, …

J. Choi, DKU

2.1 Virtualizing CPU

Issues for Virtualizing CPU
ü How to run a new program? è process
ü How to make a new process? è fork()
ü How to stop a process? è exit()
ü How to execute a new process? è exec()
ü How to block a process? è sleep(), pause(), lock(), …
ü How to select a process to run next? è scheduling
ü How to run multiple processes? è context switch
ü How to manage multiple cores (CPUs)? è multi-processor

scheduling, cache affinity, load balancing
ü How to communicate among processes? è IPC (Inter-Process

Communication), socket
ü How to notify an event to a process? è signal (e.g. ^C)
ü …

16

E Illusion: A process has its own CPU even though there are less CPUs than processes

J. Choi, DKU

Quiz for 1st-Week 2nd-Lesson

Quiz
ü 1. Operating system is defined as a resource manager. What kinds of

resources are managed by operating system? Discuss physical and
virtual resources separately.

ü 2. What is the role of “&” in the below example? (I do this experiment
using wsl(windows subsystem for Linux) in my laptop.)

ü Due: until 6 PM Friday of this week (5th, March)

17

J. Choi, DKU

2.2 Virtualizing Memory

Memory
ü Can be considered as an array of bytes

Another program example
ü Allocate a portion of memory and access it

18

J. Choi, DKU

2.2 Virtualizing Memory

Execute the Mem program

Execute the program in parallel

19

E Same address but independent

J. Choi, DKU

2.2 Virtualizing Memory

Issues for Virtualizing Memory
ü How to manage the address space of a process? è text, data, stack,

heap, …
ü How to allocate memory to a process? è malloc(), calloc(), brk(), …
ü How to deallocate memory from a process? è free()
ü How to manage free space? è buddy, slab, …
ü How to protect memory among processes? è virtual memory
ü How to implement virtual memory? è page, segment
ü How to reduce the overhead of virtual memory? è TLB
ü How to share memory among processes? è shared memory
ü How to exploit memory to hide the storage latency? è page cache,

buffer cache, …
ü How to manage NUMA? è local/remote memory
ü …

20

E Illusion: A process has its own unlimited and independent memory even though
several processes are sharing limited memory in reality

J. Choi, DKU

2.3 Concurrency

Background: how to create a new scheduling entity?
ü Two programming model: process (task) and thread
ü Key difference: data sharing

21

// fork example (Refer to the Chapter 5 in OSTEP)
// by J. Choi (choijm@dku.edu)
#include <stdio.h>
#include <stdlib.h>

int a = 10;

void *func()
{

a++;
printf("pid = %d\n", getpid());

}

int main()
{

int pid;
if ((pid = fork()) == 0) { //need exception handle

func();
exit(0);

}
wait();
printf("a = %d by pid = %d\n", a, getpid());

}

// thread example (Refer to the Chapter 27 in OSTEP)
// by J. Choi (choijm@dku.edu)
#include <stdio.h>
#include <stdlib.h>

int a = 10;

void *func()
{

a++;
printf("pid = %d\n", getpid());

}

int main()
{

pthread_t p_thread;
if ((pthread_create(&p_thread, NULL, func, (void *)NULL))

< 0) {
exit(0);

}
pthread_join(p_thread, (void *)NULL);
printf("a = %d by pid = %d\n", a, getpid());

}
(Source: System programming lecture note)

J. Choi, DKU

2.3 Concurrency

Concurrency
ü Problems arise when working on many things simultaneously on the

same data
A program for discussing concurrency

22

J. Choi, DKU

2.3 Concurrency

Execute the multi-thread program

ü Programing model
§ thread model: share data section (a.k.a data segment)
§ process model: independent, need explicit IPC for sharing

ü Reason for the odd results for the large loop
§ Lack of atomicity, scheduling effect, … è need concurrency control

23

J. Choi, DKU

2.3 Concurrency

Issues for Concurrency
ü How to support concurrency correctly? è lock(), semaphore()
ü How to implement atomicity in hardware? è test_and_set(), swap()
ü What is the semaphore?
ü What is the monitor?
ü How to solve the traditional concurrent problems such as producer-

consumer, readers-writers and dining philosophers?
ü What is a deadlock?
ü How to deal with the deadlock?
ü How to handle the timing bug?
ü What is the asynchronous I/Os?
ü …

24

E Illusion: Multiple processes run in a cooperative manner on shared resources even
though they actually race with each other on the resources

J. Choi, DKU

2.4 Persistence

Background: DRAM vs. Disk

25

VS

ü Capacity, Speed, Cost, …
ü Access granularity: Byte vs. Sector
ü Durability: Volatile vs. Non-volatile

(Source: Google Image)

J. Choi, DKU

2.4 Persistence

Persistence
ü Users want to maintain data permanently (durability)
ü DRAM is volatile, requiring write data into storage (disk, SSD)

explicitly
A program for discussing persistence
ü Use the notion of a file (not handle disk directly)

26

J. Choi, DKU

2.4 Persistence

Issues for Persistence
ü How to access a file? è open(), read(), write(), …
ü How to manage a file? è inode, FAT, …
ü How to manipulate a directory?
ü How to design a file system? è UFS, LFS, Ext2/3/4, FAT, F2FS,

NFS, AFS, …
ü How to find a data in a disk?
ü How to improve performance in a file system? è cache, delayed

write, …
ü How to handle a fault in a file system? è journaling, copy-on-write
ü What is a role of a disk device driver?
ü What are the internals of a disk and SSD?
ü What is the RAID?

27

E Illusion: Data is always maintained in a reliable non-volatile area while it is often kept
in a volatile DRAM (for performance reason) and storage is broken from time to time.

J. Choi, DKU

2.5 Design Goals

Abstraction
ü Focusing on relevant issues only while hiding details

§ E.g. Car, File system, Make a program without thinking of logic gates
ü “Abstraction is fundamental to everything we do in computer science”

by Remzi
Performance
ü Minimize the overhead of the OS (both time and space)

Protection
ü Isolate processes from one another
ü Access control, security, …

Reliability
ü Fault-tolerant

Others
ü Depend on the area where OS is employed
ü Real time, Energy-efficiency, Mobility, Load balancing, Autonomous,

…

28

J. Choi, DKU

2.5 Design Goals

Separation of Policy and Mechanism
ü Policy: Which (or What) to do?

§ e.g.) Which process should run next?
ü Mechanism: How to do?

§ e.g.) Multiple processes are managed by a scheduling queue or RB-tree

29

(Source: Security Principles and Policies CS 236 On-Line MS Program Networks and
Systems Security, Peter Reiher, Spring, 2008)

J. Choi, DKU

2.6 Some History

Early Operating Systems: Just libraries
ü Commonly-used functions such as low-level I/Os (e.g. MS-DOS)
ü Batch processing

§ a number of jobs were set up and then run all together (Not interactive)

Beyond Libraries: Protection
ü Require OS to be treated differently than user applications
ü Separation user/kernel mode, system call
ü Use trap (special instruction, SW interrupt) to go into the kernel mode

§ Transfer control to a pre-specific trap handler (system_call handler)

30

(Source: Google Image) (Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

2.6 Some History

The Era of Multiprogramming (c.f. multitasking)
ü Definition: OS load a number of applications into memory and switch

them rapidly
ü Reason: Advanced hardware è Want to utilize machine resources

better è Multiple users share a system (workstation, minicomputer)
è multiprogramming (and multitasking)

ü Especially important due to the slow I/O devices è while doing I/O,
switch CPU to another process è enhancing CPU utilization

ü Memory protection and concurrency become quite important è UNIX

31

(Source: Google Image)

J. Choi, DKU

2.6 Some History

The Era of Multiprogramming (c.f. multitasking)
ü UNIX

§ By Ken Thompson and Dennis Ritche (Bell Labs), Influenced by Multics
§ C language based, excellent features such as shell, pipe, inode, small,

everything is a file, …
§ Influence OSes such as BSD, SUNOS, AIX, HPUX, Nextstep and Linux

32(Source: Wikipedia)

J. Choi, DKU

2.6 Some History

The Modern Era
ü PC

§ MS Windows, Mac OS X, Linux, …
ü Smartphone

§ Android, iOS, Windows Mobile, …
ü IoT

§ What is the next?

33

J. Choi, DKU

2.7 Summary

OS
ü Resource manager (Efficiency)
ü Make systems easy to use (Convenience)

Cover in this book
ü Virtualization, Concurrency, Persistence

Not being covered
ü Network, Security, Graphics
ü There are several excellent courses for them

34

E Homework 1: summarize the chap 2 of the OSTEP
− Requirement: 1) personal, 2) up to 6 pages for summary, 3) 1 page for the

goal you want to study
− Due: until 6 PM, 19th March (Friday)
− Bonus: Snapshot of the results of example programs in a Linux system

(ubuntu on virtual box or wsl or Linux server)

E Any questions? Feel free to put your questions at “문의게시판”!!

J. Choi, DKU

Quiz for 2nd-Week 1st-Lesson

Quiz
ü 1. What are the differences between disks and DRAM? (at least 3

differences). These differences lead operating system to manage
them differently (memory object vs. file)

ü 2. Discuss differences between interrupt and trap which was
discussed in page 30.

ü Due: until 6 PM Friday of this week (12th, March)

35

J. Choi, DKU

Appendix

OS structure in General
ü

36

(Source: Linux Device Driver)

(Source: Operating System Concepts) (Source: https://www.cs.rutgers.edu/~pxk/416/notes/03-concepts.html)

(Source: Modern Operating System)

