DANKDOK UNMIVERSITY

Lecture Note 1: OS Introduction

February 26, 2021
Jongmoo Choi

Dept. of software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)
[J. Choi, DKU

Contents

s From Chap 1~2 of the OSTEP
s Chap 1. A Dialogue on the Book

s Chap 2. Introduction to Operating System
Virtualizing the CPU

Virtualizing Memory

Concurrency

Persistence

Design Goals

Some History

References

<X X X X < X

J. Choi, DKU

Chap 1. A Dialog on the Book

s OSTEP

v QOperating Systems: Three Easy Pieces

v Homage to the Feynman’s famous “Six Easy Pieces on Physics”
» OS is about half as hard as Physics: from Six to Three Pieces

SIX EASY
PICCES

RICHARD P
FEYNMAN

Introduction by Paul Davies
Author of The Mind of God

CONTENTS

Publishers Note vii
Introduction by Paul Davies ix
Special Preface xix

Feynman'’ Preface xxv

onEe: Atoms in Motion 1
Introduction 1
Matter is made of atoms 4
Aromic processes 10
Chemical reactions 15

TwO: Basic Physics 23

Introduction 23
Physics before 1920 27
Quanrum physics 33
Nuclei and particles 38

THREE: The Relation of Physics to Other Sciences 47

Introduction 47

Chemistry 48

Biology 49

Astronomy 59

Geology 61

Psychology 63

How did it ger that way? 64

3

Vi

Contents

rour: Conservation of Energy 69

What is energy? 69
Gravitational potential energy 72
Kinetic energy 80

Other forms of energy 81

FIve: The Theory of Gravitation 89

Planetary motions 89
Kepler's laws 90
Development of dynamics 92
Newton’s law of gravitation 94
Universal gravitation 98
Cavendish’s experiment 104
What is gravity? 107

Gravity and relativity 112

six: Quantum Behavior 115

Atomic mechanics 115

An experiment with bullets 117

An experiment with waves 120

An experiment with clectrons 122

The interference of electron waves 124
Warching the electrons 127

First principles of quantum mechanics 133
The uncertainty principle 136

Index 139

ource: https://www.amazon.com/Six-Easy-Pieces-Essentials-Explained/dp/0465025277)

_BMG

DANNODOK UNIVERSITY

J. Choi, DKU

Chap 1. A Dialog on the Book

a OSTEP

v What are Three Pieces: Virtualization, Concurrency, Persistence
Intro
Preface

1 &a'_ngLe

2 Introduction de

(Source: http://pages.cs.wisc.edu/~remzi/OSTEP/)
Lot I J. Choi, DKU

Chap 1. A Dialog on the Book

s OSTEP
v What to study?

Professor: They are the three key ideas we’re going to learn about: virtualiza-
tion, concurrency, and persistence. In learning about these ideas, we’ll learn
all about how an operating system works, including how it decides what prograr
torun next on a CPLUI, how it handles miemory overload in a virtual memniory sys-
tem, how virtual machine monitors work, how to manacge information on disks,
and even a little about how to build a distributed system that works when parts
have failed. That sort of stuff.

Student: I have no idea what you're talking about, really.

Professor: Good! That means you are in the right class.

v How to study?

Student: I have another qutestion: what’s the best way to learn this stuff?

Professor: Excellent query! Well, each person needs to figure this out on their
own, of course, but here is what I would do: go to class, to hear the professor
introduce the material. Then, at the end of every week, read these notes, to help
the ideas sink into your head a bit better. Of course, some time later (hint: before
the exam!), read the notes again to firm up your knowledge. Of course, your pro-
fessor will no doubt assign some homeworks and projects, so you should do those;
in particular, doing projects where you write real code to solve real problems is
the best way to put the ideas within these notes into action. As Confucius said...

Student: Oh, I know! I hear and 1 forget. I see and I remember. I do and I
understand.” Or something like that.

DM e J. Choi, DKU

DANKOOK UNIVERSITY 5

Chap 2. Introduction to Operating Systems

s 2.1 Virtualizing CPU

s 2.2 Virtualizing Memory
s 2.3 Concurrency

s 2.4 Persistence

s 2.5 Design Goals

s 2.6 Some history

s 2.7 Summary

s References

J. Choi, DKU

Introduction

s Layered structure of a computer system

user

A

Luser

A

user

Lser

k i

compiler

assembler

text editor

system and application programs

operating system

database
system

computer hardware

(Source: A. Silberschatz, “Operating system Concept”)

DM e——

DANNODOK UNIVERSITY

/

J. Choi, DKU

Introduction

= What happens when a program runs?
v 1. Simple view about running a program

CPU
System
[pc | | mar | Bus
| IR | | MBR |
/O Module
v
: PC -
Bullers IR =
MAR =
MBR =
O AR =
1/0 BR =

Figure 1.1 Computer Components:

Main Memory
v
¥
¥

Tt rue tion
Inst ruction
I ruction
¥
¥
¥
Dhata
Data
Dhats
Data

LA

¥

¥
¥ ni2

ni

Program counter

Instruction register

Memory aiddress register
Memory buffer register
Inputfoutput add ress register
Inputfoutput huffer register

Top-Level View

(Source: W. Stalling, “Operating Systems: Internals and Design Principles”)

D43 sss———

DANKODK UNIVERSITY 8

J. Choi, DKU

Introduction

= What happens when a program runs?

v Details: execute instructions
= Fetch and Execute

Fetoh St o Memory CPU Registers Memory CPU Registers
‘etch Stage Execule Stage x
30001 940 1p0/PC |300[1 940 301|pC
| 3()}594[1 ACl 30115 9 4 1 0003AC
Nex e 2941 19 4 0/IR|302{2 9 4] 194 0]IR
40|00 0 3 94010 0 0 3
<Instruction cycle> 241 [RNAENES an
Step | Step 2
0 3 4 15 .
Speode | s Memory CPU Reglsters Memory CPU Reglsters
30011 940 30 4
(a) Instruction format 3015 9 4 1—\-’ 0o 4
302{2 9 4 1 59 4
L]
[|
0 1 15
. 9400 D O 3
[S | Magnitude a4l|l0 00 2
(b) Integer format Step 3
Program Counter (PC) = Address of instruction SLeluory AU Begtice etk LEU Renicn
Instruction Register (IR) = Instruction being executed 30001 940 30 zi PC 30001940 30 3|1jc
Accumulator (AC) = Temporary storage 30115 94 1 000 SACI301|59 41 D00 S|AC
302(2 94 1—»{29 4 1|IR[302{2 941 294 1R
(c) Internal CPU registers T T
1 L
“40ip 00 3 940i0 0D 0 3
0001 = Load AC from Memory 94110 0 0 2 941|100 O 5
0010 = Store AC to Memory
0101 = Add to AC from Memory Slep 5 Slep 6

(d) Partial list of opcodes
<Hypothetical machine>

» (Source: W. Stalling, “Operating Systems: Internals and Design Principles”)
DY s J. Choi, DKU

DANKODK UNIVERSITY 9

<Run example>

Introduction

= What happens when a program runs?
v 2. Alot of stuff for running a program
» |oading, memory management, scheduling, context switching, 1/0

processing, file management, IPC, ...
» Qperating system: 1) make it easy to run programs, 2) operate a system

correctly and efficiently

Figure 1.4 CPU
Hardware organization = -
fil
of a typical system. Register file
CPU: Central :
PC
Processing Unit, ALU: -

Arithmetic/Logic Unit, PC: System bus Memory bus

Program Counter, USB:
Universal Serial Bus.

| 1o |
bridge

Bus interface

1/0 bus .
; Expansion slots for

- : other devices such
Graphics Disk as network adapters

adapter controller
Fy

Mouse Keyboard Display hello executable
@ stored on disk

(Source: computer systems: a programmer perspective)

M_
10

DANNODOK UNIVERSITY

usB
controller

J. Choi, DKU

Introduction

s Definition of operating system

v Resource manager
» Physical resources: CPU (core), DRAM, Disk, Flash, KBD, Network
= Virtual resources: Process, Thread, Virtual memory, Page, File,
Directory, Driver, Protocol, Access control, Security, ...

v Virtualization (Abstraction)
» Transform a physical resource into a more general, powerful, and easy-

to-use virtual form

-cl!l{iij'IIIllllllllllllllllllllllll
11

DANKODK UNIVERSITY

The System Call Interface
Pmnes.s Me mu—nr Filesystems Networking
I I I "“ I Hemmred
euwbaretenrs
muhitasking Sl FISROVEE"™ devicdaceess Commectivity JS00RS
File system Character i Network
i .HJ:I;— . Plemory types devices subsystem
B%?ﬁem manager = ./] e are
| Block devices Wdrivers B T
s g | | g | 3
. L [| 1 11 1 _- 3 -_ Haraiwar
cPU Memory Disks & CDs Consoles, MHetwork
elc. interfaces
[} rsatewss smoismsmtes as mook
. . . . y
(Source: Linux Device Driver, O’Reilly)

J. Choi, DKU

Introduction

s System call

v Interfaces (APIs) provided by OS

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Windows

CreateProcess ()
ExitProcess ()
WaitForSingleObject ()

CreateFile()
ReadFile (D
WriteFile ()
CloseHandle (D

SetConsocleMode ()
ReadConsole ()
WriteConsole()

GetCurrentProcessID{()
SetTimer ()
Sleep()

CreatePipe ()
CreateFileMapping ()
MapViewOfFile ()

SetFileSecurity ()
InitlializeSecurityDescriptor ()
SetSecurityDescriptorGroup ()

(Source: A. Silberschatz, “Operating system Concept”)

DM ssss———

DANKODK UNIVERSITY

12

Unix

fork()
exit()
wait ()

open ()
read ()
writel)
close ()

ioctl ()
read{)
write()

getpid ()
alarm)
sleep (D

pipe O
shmget ()
mmap ()

chmod ()
umask)
chown ()

J. Choi, DKU

Introduction

s System call
v Standard (e.g.. POSIX, Win32, ...)
v Mode switch (user mode, kernel mode)

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is Liser appﬁcatiOn

available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read open ()
on the command line. A description of this API appears below:
user
mode
ssize t read(int fd, void *buf, size t count) System call interface

l | | |] kernel
return function parameters mode A
value name

#include <unistd.h>

A program that uses the read () function must include the unistd.h header
file, as this file defines the ssize t and size t data types (among other ¢ open ()
things). The parameters passed to read () are as follows: '

i .
® int fd—the file descriptor to be read |mp|ememat|0ﬂ

: : : » of open()
® vyoid *buf —a buffer where the data will be read into

system call
® size t count—the maximum number of bytes to be read into the '
buffer s #
] L}
On a successful read, the number of bytes read is returned. A return value of '
0 indicates end of file. If an error occurs, read () returns —1. retum

(Source: A. Silberschatz, “Operating system Concept”)

MY e J. Choi, DKU

DANKOOK UNIVERSITY 1 3

2.1 Virtualizing CPU

= A program for the discussion of virtualizing CPU
v call Spin (busy waiting and return when it has run for a second)
v print out a string passed in on the command line

-
=T = = BN Y ~ S 61 [N < S Sy (5 IS

—
=]

[e e
=] o @A o= W

[T ey
= @ oo

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#$#include <assert.h>
#$#include "common.h"

int
main(int argc, char xargvl[])

{

it (argc !'= 2) {
Eprintf (stderr, "“usage: cpu <string>\n");
exit (1) ;

}

char *str = argv([l];

while (1) |
Spin(L);

printf {"S=sAn", gtr);
}

return 0;

Figure 2.1: Simple Example: Code That Loops and Prints (cpu. c)

DM ss———

DANNODOK UNIVERSITY

14

J. Choi, DKU

2.1 Virtualizing CPU

s Execute the CPU program

prompt> oo —0 Cpu opu.o —Wall
prompt> ./cpu "A"™
A

A
it 2
prompt>

s Execute the program in parallel

pPESmpLL> ./7¢pud A & ../J¢pua B & .J/Sopu C & ./S¢pu D &
[1T 7353
2] 7354
[3] 7355
[4] 7356

* Process, Scheduling, ...

CPQoOEPQOE Y

Figure 2.2: Running Many Programs At Once

MY e J. Choi, DKU
nnnnnnnnnnn 15

2.1 Virtualizing CPU

m Issues for Virtualizing CPU

v

< X X X X < X

How to run a new program? =» process

How to make a new process? =» fork()

How to stop a process? = exit()

How to execute a new process? = exec()

How to block a process? = sleep(), pause(), lock(), ...
How to select a process to run next? =» scheduling
How to run multiple processes? =» context switch

How to manage multiple cores (CPUs)? = multi-processor
scheduling, cache affinity, load balancing

How to communicate among processes? = |IPC (Inter-Process
Communication), socket

How to notify an event to a process? = signal (e.g. *C)

< [llusion: A process has its own CPU even though there are less CPUs than processes

M I J. Choi, DKU

DANKODK UNIVERSITY

16

@@'@ Quiz for 1st-Week 2nd-Lesson
TIME]
i QUiZ

v 1. Operating system is defined as a resource manager. What kinds of
resources are managed by operating system? Discuss physical and
virtual resources separately.

v 2. What is the role of “&” in the below example? (I do this experiment
using wsl(windows subsystem for Linux) in my laptop.)

v Due: until 6 PM Friday of this week (51, March)

&) choljm@DESKTOP-7SHOTWH: ~/05_exam — || >
cho i i mMBDESKTOP—=7SHOTYH! ~/ 05 _exam$ |s -~
ooooooo

Hinclude <stdic.h>
Hinclude <stdlib.h>
Hinclude <swsstime . h> laj
Hinclude <assert . h> :
Hinclude "common . h'

int maingint arac. char *argw[]12

if Cargc !'= 23 {

printfi{''Usage! cpu <string>#n'l:
: exit{1):
char =str = aragwl[1]1: i
while €13 4 —
printf("EsWn", strl;
SpinCl12:

return 0O;

i

chai i mBDESKTOP—7SHOTYH: ~/05_exam$ gcc —o cpu cpu.c

choi i mBDESKTOP—7SHOTYH: =/ 05 _=xam®

choi i mBDESK TOP=FSHOTYH: —/ 05 _exam$. Fcpu A

A

N

4

e

choi i mBDESKTOP—7EHOTYH: =/ 05 _sexam$. Fcpu A & Scpu B & .Acpu © &

[1] 4459

[2] 44B0 3

2

[3] 44961

choi i mIDESK TORP=7SHOTYH: —05_exam$ B

C

4

E

l‘rC -

4'!—-ﬁ==ﬁfaenﬂt%a—as=@-§1}§@€ﬁ. . DKU

2.2 Virtualizing Memory

= Memory
v Can be considered as an array of bytes

= Another program example
v Allocate a portion of memory and access it

B - L B

[T I R B)
L < = . T o T =

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include "common.h"
BloagH
main(int argc, char =xargv([])
{
int *xp = malloc(sizeof (int));
assert (p != NULL);
printf (" (%d) address pointed to by p: %$p\n",
getpid (), p);
*p = 07
while (1) {
Spin(l) ;

}

*p = *xp + 1;
printf (" (%d)

return 0;

}

p: %d\n", getpid(), =*p);

Figure 2.3: A Program That Accesses Memory (mem. c)

4

//
L]

£k

al

a2
a3

ad

D43 ss———

DANNODOK UNIVERSITY

18

J. Choi, DKU

2.2 Virtualizing Memory

s Execute the Mem program

(2134)
(2134)
(2134)
(2134)
(2134)
(2134)
o

prompt>

. /mem
address pointed to by p:

P -
j &R
P:
P:
P-:

U s N

0x200000

s Execute the program in parallel

L1} 24113
LZ21] 24114

(241135 o
(Z4114)
(24314
A e
= o
(24114)
(24311 3)
¢ZAH 5 Ay

- - -

TTWTUTOOT

prompt> ./ /mem &;

b WWNNEF

. Smem &

(24113) address pointed to by p
(241 14) address pointed to by p

Figure 2.4: Running The Memory Program Multiple Times

0200000
O=xZ2Z00000

DANNODOK UNIVERSITY

<+ Same address but independent

4JE!%E?7.lIIIIIIIIIIIIIIIIIIIIIIIIIII
19

J. Choi, DKU

2.2 Virtualizing Memory

s Issues for Virtualizing Memory

v

AN N N N Y N NN

How to manage the address space of a process? = text, data, stack,
heap, ...

How to allocate memory to a process? =» malloc(), calloc(), brk(), ...
How to deallocate memory from a process? = free()

How to manage free space? =» buddy, slab, ...

How to protect memory among processes? =» virtual memory

How to implement virtual memory? = page, segment

How to reduce the overhead of virtual memory? = TLB

How to share memory among processes? =» shared memory

How to exploit memory to hide the storage latency? = page cache,
buffer cache, ...

How to manage NUMA? =» local/remote memory

< Tllusion: A process has its own unlimited and independent memory even though
several processes are sharing limited memory in reality

M I J. Choi, DKU

DANKODK UNIVERSITY

20

2.3 Concurrency

s Background: how to create a new scheduling entity?
v Two programming model: process (task) and thread

v Key difference: data sharing

// fork example (Refer to the Chapter 5 in OSTEP)
// by J. Choi (choijm@dku.edu)

#include <stdio.h>

#include <stdlib.h>

inta =10;

void *func()

{

at++;
printf("pid = %d\n", getpid());
}

int main()
{
int pid;
if ((pid = fork()) == 0) { //need exception handle
func();
exit(0);
}
wait();
printf("a = %d by pid = %d\n", a, getpid());
1

// thread example (Refer to the Chapter 27 in OSTEP)
// by J. Choi (choijm@dku.edu)

#include <stdio.h>

#include <stdlib.h>

inta =10;

void *func()

{
at+;
printf("pid = %d\n", getpid());
}
int main()
{

pthread_t p_thread;

if ((pthread_create(&p_thread, NULL, func, (void *)NULL))
<0){

exit(0);

}

pthread_join(p_thread, (void *)NULL);

printf("a = %d by pid = %d\n", a, getpid());
}

ming lecture note)

2.3 Concurrency

s Concurrency

v Problems arise when working on many things simultaneously on the

same data
s A program for discussing concurrency

1 #include <stdio.h>
= #include <stdlib.h>
3 ##include "common .hR™
4
5 wvwolatile int counter = G;
o Eals loops;
s
=3 wold =worker (wvoid warqg) i
=] Tt d3p
10 for {3 =- O3 i < Toops; b T o 1
i1 counter++;
12 }
1= retiarm RNULI.;
14 ¥
15
16 imt
p main (int argc, char wargw[1)
is8 4
19 i largc =+ 23 {
20 fprintf (stdexrxr, "usage: threads <wvalue>Z\n") ;
=21 exat X)) &
2z ¥
23 loops = atoi(argw [11) 7
b 7. pthread +© pil, PpP2-F
25 printfF ("Tnitial walus = TAMNTE™ 5 counter) ;
25
P Pthread create(&pl, PMIIT.T., worksr, MNUOLLI.) ;
26 Pthread create(spZ, NULL, workexr, MULL) ;
29 Pthread —SJoin(pl, PILFLLO.Y
30 Pthread —Join(pZ, NUOLL) ;
31 printf ("Final walus = z2dAMND:"™ , counter) ;
32 retuarn 07
33 }
Figure 2.5: A Multi-threaded Program (chreads. <)

D43 e

DANKOOK UNIVERSITY 2 2

J. Choi, DKU

2.3 Concurrency

s Execute the multi-thread program

prompt> gcc —o thread thread.c —-Wall —pthread
prompt> ./thread 1000

Initial value : 0

Final wvalue : 2000

Initial wvalue : 0
Final wvalue

Initial wvalue : 0
Final walue

prompt> ./thread 100000

143012
prompt> ./thread 100000

137298

J/ huh??

// what the??

v Programing model

» thread model: share data section (a.k.a data segment)
= process model: independent, need explicit IPC for sharing
v Reason for the odd results for the large loop

= Lack of atomicity, scheduling effect, ... = need concurrency control

DM ess——

DANKODK UNIVERSITY

23

J. Choi, DKU

2.3 Concurrency

s Issues for Concurrency

v

D D N NN

AN N N RN

How to support concurrency correctly? = lock(), semaphore()

How to implement atomicity in hardware? = test_and_set(), swap()
What is the semaphore?

What is the monitor?

How to solve the traditional concurrent problems such as producer-
consumer, readers-writers and dining philosophers?

What is a deadlock?

How to deal with the deadlock?
How to handle the timing bug?
What is the asynchronous 1/Os?

< Jllusion: Multiple processes run in a cooperative manner on shared resources even
though they actually race with each other on the resources

M I J. Choi, DKU

DANKODK UNIVERSITY

24

2.4 Persistence

s Background: DRAM vs. Disk

VS

v Capacity, Speed, Cost, ...
v Access granularity: Byte vs. Sector
v Durability: Volatile vs. Non-volatile

Inboard Memory

ok
Magnetic Disk
Optical Disk

Source: Google |
DM eesssss— e ooodie Image)) shoi DKU

nnnnnnnnnnn 25

Outboard Storage

Off-line Storage

2.4 Persistence

s Persistence
v Users want to maintain data permanently (durability)

v DRAM is volatile, requiring write data into storage (disk, SSD)
explicitly

s A program for discussing persistence
v Use the notion of a file (not handle disk directly)

#include <stdio.h>

1

2 #include <unistd.h>

3 $include <assert.h>

4 $#include <fentl. h>

5 #include <sys/types.h>

B

7 int

8 main(int arge, char +argvl[])

9 {

10 int fd = open("/tmp/file", O _WRONLY | O_CREAT | O_TRUNC, S_IRWXU);
11 assert{fd > -1);

12 int rec = write(fd, "helloc world\n", 13);
13 assert (rc == 13);

14 close (£d);

15 return 0;

Figure 2.6: A Program That Does I/O (io.c)

-—/—I!'l—“i.' I J. Choi, DKU
°°°°°°°°°°°°°°°° 26

2.4 Persistence

m Issues for Persistence

v

v
v
v

<

<

AN NN

How to access a file? = open(), read(), write(), ...
How to manage a file? = inode, FAT, ...
How to manipulate a directory?

How to design a file system? = UFS, LFS, Ext2/3/4, FAT, F2FS,
NFS, AFS, ...

How to find a data in a disk?

How to improve performance in a file system? =» cache, delayed
write, ...

How to handle a fault in a file system? =» journaling, copy-on-write
What is a role of a disk device driver?

What are the internals of a disk and SSD?

What is the RAID?

< Jllusion: Data is always maintained in a reliable non-volatile area while it is often kept
in a volatile DRAM (for performance reason) and storage is broken from time to time.

M I J. Choi, DKU

DANKODK UNIVERSIT

2.5 Design Goals

s Abstraction

v Focusing on relevant issues only while hiding details
» E.g. Car, File system, Make a program without thinking of logic gates

v “Abstraction is fundamental to everything we do in computer science”
by Remzi

s Performance

v Minimize the overhead of the OS (both time and space)
s Protection

v Isolate processes from one another

v Access control, security, ...
= Reliability

v Fault-tolerant

s Others

v Depend on the area where OS is employed
v Real time, Energy-efficiency, Mobility, Load balancing, Autonomous,

M I J. Choi, DKU

2.5 Design Goals

s Separation of Policy and Mechanism
v Policy: Which (or What) to do?
» e.g.) Which process should run next?

v Mechanism: How to do?
» e.g.) Multiple processes are managed by a scheduling queue or RB-tree

People
shouldn't drive I zﬁg
that fast in my
neighborhood! | H '

That’s a policy

That's a different
type of mechanism

(Source: Security Principles and Policies CS 236 On-Line MS Program Networks and
Systems Security, Peter Reiher, Spring, 2008)

DM e J. Choi, DKU
nnnnnnnnnnn 29

2.6 Some History

s Early Operating Systems: Just libraries
v Commonly-used functions such as low-level 1/Os (e.g. MS-DOS)

v Batch processing
» a number of jobs were set up and then run all together (Not interactive)

s Beyond Libraries: Protection
v Require OS to be treated differently than user applications

v Separation user/kernel mode, system call

v Use trap (special instruction, SW interrupt) to go into the kernel mode
» Transfer control to a pre-specific trap handler (system_call handler)

) UISEr process
Least privileged ser moqe
user process executing = calls system call return from system call ateent =
\ /
1 J
! 7
kel trap returm
ost privilege: moda hit=0 mode bit = 1
Hiost priviieged kemel mode
execite system cal (mode bit=0)
e (Source: Google Image) (Source: A. Silberschatz, “Operating system Concept”)
M I J. Choi, DKU

DANKODK UNIVERSITY 30

2.6 Some History

= The Era of Multiprogramming (c.f. multitasking)

v Definition: OS load a number of applications into memory and switch
them rapidly

v Reason: Advanced hardware = Want to utilize machine resources
better = Multiple users share a system (workstation, minicomputer)
=>» multiprogramming (and multitasking)

v Especially important due to the slow I/O devices = while doing I/O,
switch CPU to another process = enhancing CPU utilization

v Memory protection and concurrency become quite important = UNIX

process D Word E-mail st Antivirus
Processor Browser
free memory = = o =
process C = > < 2
pE=rpnetey Operating System
process B l

(Source: Google Image)
M I o J. Choi, DKU

2.6 Some History

= The Era of Multiprogramming (c.f. multitasking)

v UNIX

» By Ken Thompson and Dennis Ritche (Bell Labs), Influenced by Multics

» C language based, excellent features such as shell, pipe, inode, small,
everything is a file, ...

» Influence OSes such as BSD, SUNOS, AlX, HPUX, Nextstep and Linux

1m6s (Unnamed F OF 7 opersting systerr)

*+ J. Choi, DKU

DANKOOK UNIVERSITY (Source: VRipedia)

2.6 Some History

s The Modern Era
v PC
= MS Windows, Mac OS X, Linux, ...
v Smartphone
= Android, iOS, Windows Mobile,
v loT
= What is the next?

DIY

Google Brillo OS

Operating System for [nternet of Things

Windows 10

- =

b Uountu Core on Ehe nternet of Things

Pl) nunty Core delvers bulet-pronfsecurty, reliable upaates anthe

B cromots bty Pmmem rfnget

_,DD 0

watch05

115, bringina the develap s e

Gellces and

Hﬂmmmmm

b e ﬂf vi!u.
§ Jﬂmu
i

ARMmbed el Dm@»

Tha Concapt of 10T (Interat of Things;
@

The Contiki
Operating System

@

J. Choi, DKU

2.7 Summary

s OS

v Resource manager (Efficiency)

v Make systems easy to use (Convenience)
s Cover in this book

v Virtualization, Concurrency, Persistence
= Not being covered

v Network, Security, Graphics
v There are several excellent courses for them

X+

G B arvasdaniookackcourses/190!Tfedternal tocls3 at 0 »@:

= RINAOEWI22E) 2TRH W) 228

ClassMix

* Homework 1: summarize the chap 2 of the OSTEP
— Requirement: 1) personal, 2) up to 6 pages for summary, 3) 1 page for the
goal you want to study
— Due: until 6 PM, 19t March (Friday)
— Bonus: Snapshot of the results of example programs in a Linux system
(ubuntu on virtual box or wsl or Linux server)

o Any questions? Feel free to put your questions at “& 2| Hl Al &1

M I J. Choi, DKU
“““““““““““““““ 34

Quiz for 2Md-Week 1st-Lesson

v 1. What are the differences between disks and DRAM? (at least 3
differences). These differences lead operating system to manage
them differently (memory object vs. file)

v 2. Discuss differences between interrupt and trap which was
discussed in page 30.
v Due: until 6 PM Friday of this week (12", March)

INTERRLTPT

raised from a user A signal to the processor
program that indicaves the emitied by hardware
operating system o performm indicating an event than
o sonmee Ffunctiomnalicy needs immediate attention

immediately

Grenerated by an instructios Generated by hardware

the user program

Invokes OS functionality - Triggers the processor to
it transfers the control 1o cxecute the cormesponding
the trap handler interrupt handler routine

Avsynchronous and can Oocur
at the execution of any
1 NS LPOC Lion

Synchronous and can arrive
after the execution of any
instruction

Aldlso called a software Adso called a hardwanre
intermupt

interrup

e IPET LA A oo

J. Choi, DKU

Appendix

s OS structure in General

user and other system programs

GUI] batch |commandllne

user Interfaces

system calls

resource
allocation

lle] file
operations systems

program

execution communication

accounting

protection
and
security

error
detection

services

operating system

hardware

(Source: Operating System Concepts)

The System Call Interface

|
S e e 2

Process “emnqr Filesystems Metworking i
I I mnlr.l I Kemel
subreretenrs
Co Virtual Fil madl_ i Tiys & i Featu
muiitasking memary TheWFS — devied mecess Commectivity L iiilns ey
| File system Character | Network
| Arch- Memory I ypes devices I subsystem
Caode __[f'__'?__ astastatatastas = e
I’ Block dewices | i_ IF drivers R
1 1
| = = [| T s g s
3 3 (i |—L i
E = Hardwa
S TR | EiEf=mg e
CPU Memory Digks & CDs Consoles. HNetwork
etc. interfaces
s as

DG

DANNODOK UNIVERSITY

(Source: Linux Device Driver)

36

(Source: https://lwww.cs.rutgers.edu/~pxk/416/notes/03-concepts.html)

Process

User progs.

User

mode < B

Drivers

Microkemel handles interrupts,
processes, scheduling, IPC

S0

(Source: Modern Operating System)

J. Choi, DKU

