DANKDOK UNMIVERSITY

Lecture Note 2: Processes

March 7, 2021
Jongmoo Choi

Dept. of software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)
[ J. Choi, DKU



Contents

From Chap 3~6 of the OSTEP
Chap 3. A Dialogue on Virtualization

Chap 4. The abstraction: The Process
v Process, Process API, Process States and Data Structure

Chap 5. Interlude: Process API

v System calls: fork(), wait(), exec(), kill() , ...

Chap 6. Mechanism: Limited Direct Execution
v Basic Technique: Limited Direct Execution
v Switch between Modes
v Switch between Processes

J. Choi, DKU



Chap 3. A Dialogue on Virtualization

s Virtualization

Student: But what is virtualization, oh noble professor?

Professor: Imagine we have a peach.

Student: A peach? (incredulous)

Professor: Yes, a peach. Let us call that the physical peach. But we have many
eaters who would like to eat this peach. What we would like to present to each
eater is their own peach, so that they can be happy. We call the peach we give

[ > create many of these virtual peaches out of
the one physical peach. And the important thing: in this illusion, it looks to each
eater like they have a physical peach, but in reality they don’t.

Student: So you are sharing the peach, but you don't even know it?
Professor: Right! Exactly.
Student: But there’s only one peach.

. Professor: Yes. And...?

Student: Well, if I was sharing a peach with somebody else, I think I would
notice.

Professor: Al yes! Good point. But that is the thing with many eaters; most
of the time they are napping or doing something else, and thus, you can snatch
that peach away and give it to someone else for a while. And thus we create the
illusion of many virtual peaches, one peach for each person!

Student: Sounds like a bad campaign slogan. You are talking about computers,
right Professor?

Professor: Ah, young grasshopper, you wish to have a more concrete example.
Good idea! Let us take the most basic of resources, the CPU. Assume there is one

physical CPUI in a system (though now there are often two or four or more). What
e V7t ualization does is take that single CPU and make it look like many virtual | | hoi DKU

CPLUIs to the applications running on the gystem. Thus, while each application



Chap 4. The Abstraction: The Process

s Process definition

v A running program, scheduling entity
= c.f.) program: a lifeless thing, sit on the disk and waiting to spring into
action
= Run on memory and CPU
v There exist multiple processes (e.g. browser, editor, player, and so on)
» Each process has its own memory (address space), virtual CPU, state, ...

Figure 1.4 CPU

Hardware organization Register file
of a typical system. I( :
CPU: Central PC | ud
PC
Processing Unit, ALU: 56 ] Process gtaSk
System bus Memory b

Arithmetic/Logic Unit, PC:
Program Counter, USB:
Universal Serial Bus.

I

~ | Main
| memory

Disk as ngtwork adapters
controller

rogram
(3 hello executable
w stored ¢n disk

(Source: computer systems: a programmer perspective)

I
4

Bus interface

Graphics
adapter

usB
controller

Mouse Keyboard Display

J. Choi, DKU



Chap 4. The Abstraction: The Process

s How to virtualize CPU? Time sharing on multiple processes

v Mechanism

= context switch: an ability to stop running one program and start running
another on a given CPU

v Policy

= scheduling policy: based on historical information or workload knowledge
or performance metric.

< Time sharing vs. Space sharing

I J. Choi, DKU
5



4.1 Process

s Process structure

v Need resources to run:

'max
= CPU stack
Registers such as PC, SP, .. l
= Memory (address space)
Text: program codes
Data: global variables t
Stack: local variables, parameters, ... R
Heap: allocated dynamically data
» /O information
Opened files (including devices) & rext
v Cf) program (Source: A. Silberschatz, “Operating system Concept”)

» Passive entity

= A file containing instructions stored on disk (executable file or binary)

= Execute a program twice = result in creating two processes (from one
program) =» text is equivalent while others (data, stack) vary (1-to-n)

I J. Choi, DKU



4.2 Process API

s Basic APIs for a process

e Create: An operating system must include some method to cre-
ate new processes. When you type a command into the shell, or
double-click on an application icon, the OS is invoked to create a
new process to run the program you have indicated.

e Destroy: As there is an interface for process creation, systems also
provide an interface to destroy processes forcefully. Of course, many
processes will run and just exit by themselves when complete; when
they don’t, however, the user may wish to kill them, and thus an in-
terface to halt a runaway process is quite useful.

e Wait: Sometimes it is useful to wait for a process to stop running;
thus some kind of waiting interface is often provided.

e Miscellaneous Control: Other than killing or waiting for a process,
there are sometimes other controls that are possible. For example,
most operating systems provide some kind of method to suspend a
process (stop it from running for a while) and then resume it (con-
tinue it running).

e Status: There are usually interfaces to get some status information
about a process as well, such as how long it has run for, or what
state it is in.

< Refer to chapter 5 in OSTEP

I J. Choi, DKU
7



4.3 Process Creation: A Little More Detall

= How to start a program

v Load

» Bring code and static data into the address space
= Based on executable format (e.g. ELF, PE, BSD, ...)
» Eagerly vs. Lazily (paging, swapping)

v Dynamic allocation 2 S b
= Stack
= |nitialize parameters (argc, argv)
» Heap if necessary P”‘

v Initialization

= file descriptors (0, 1, 2)

= |/O or signal related structure :
v Jump to the entry point: main() o

Takes on-disk program
and reads it into the
address space of process

Figure 4.1: Loading: From Program To Process

I J. Choi, DKU



4.4 Process States

s State and transition

admitted timeout exit terminated

I/O or event completion I/O or event wait

(Source: A. Silberschatz, “Operating system Concept”)

v State
» new(created, embryo), ready, running, waiting(blocked), terminated (zombie)
v Transition

» admitted, dispatch (schedule), timeout (preemptive, descheduled), wait
(sleep, I/O initiate), wakeup (I/0O done), exit

» suspend and resume: to Disk (swap) or to RAM

I J. Choi, DKU
9



4.4 Process States

s Example

v Used resources: CPU only = Figure 4.3

v Used resources: CPU and I/O = Figure 4.4
» Note: I/O usually takes quite longer than CPU

Time Process; Process; Notes Time Processy Process; Notes
1 Running ~ Ready 1 Running  Ready
2 Running  Ready - Running  Ready
3 Runlmg Rii dy 3 Running Reau:i.ly Processq i_t.'liﬁﬂtES [/O
. 4 Blocked  Running Processg is blocked,
4 Running  Ready  Processp now done .
: ; 5 Blocked  Running so Process; runs
- - Rmmfng 6 Blocked  Running
6 - Running 7 Ready Running I/O done
7 - Running 8 Ready Running Process; now done
8 - Running  Process; now done 9 Running -
10 Running - Processy now done

Figure 4.3: Tracing Process State: CPU Only

Figure 4.4: Tracing Process State: CPU and I/O

< At the end of time 6 in Figure 4.4, OS can decide to 1) continue running the
process1 or 2) switch back to process 0. Which one is better? Discuss tradeoff.

10

J. Choi, DKU



4.5 Data Structure

s PCB (Process Control Block)

v Information associated with each process
* Process state

= Process ID (pid) process state
» Program counter, CPU registers process number
Used during context switch
. Architecture dependent program counter
» CPU scheduling information
» Memory-management information registers
= Opened files

I/O status information

memory limi
Accounting information emory fimits

list of open files

v Managed in the kernel's data segment

(Source: A. Silberschatz, “Operating system Concept”)

I J. Choi, DKU

11



4.5 Data Structure

s Implementation example

v OS is a program, implementing a process using data structure (e.g.
struct proc and struct context)

v All “proc” structures are manipulated using a list

S the registers xvie will

SsSawvwe

and restore

Sy to stop and subsecuently restart a process
stract context i

int eipr;

int esp;

int ekbx;

imt =ocxx;

int edx;

imt esig

ant ediy

Tt ebpi
y s
S the ddfferent states a process can be in
enum proc _state { UNUSED, EMBEREY O, SLEFRPING,

RUMMABLE , RUNMNING, ZO0OMBIE 1}

S Ehe inFformation w6 tracks about each process
AY dncluding its register context and state

struct proc |
char xmemg;
uint s=;7
char =kstack;
cnum proc state state;

imt pids;

struct proc
wvoid wchan;
At killdled;
stEruckt E
struct
st ruact
struct

=parent;

ile
dinode w=ocwd;
context context;

trapframe =Ltif;

~oFfFile [NOFILET] ;

Figure 4.5:

YA BStart of process memory

ALY Bize of process memory

S Bottom of kernel stack

S feor this process

S Process sState

A4 Process ID

S Parent process

Sy IFf mon—=zero, slececping on chan
S I E nmnon—mero, have been killed
Y Open Files

A4 Current directory

LS BSwitch here to run process

L Trap Erame Tor the

Y current imterrnapt

The xv6 Proc Structure

=

. Choi, DKU



4.5 Data Structure (Optional)

s PCB in real OS (task structure in Linux)

sched h - include/linux/schedh X~ @ Jongmoo Choi's Home Page X | +

o X

fim fask_stnct

-, . . ' . ; Vm_area_struct
& o C & elixirbootlincom/linux/latest/source/include/linux/sched.h QA v B = Q : mm_struct
[ inux / include / linux / sched.h Search dentifizr C\

Strch{wake,q,node next:
AR ask struct
#ifdef CONFIC_THREAD_ INFO_ IN_"4SK
/x
I vead [5fa())
* qust be the
1258 Si’ruct thread_info thread_info
s fendif
V3.5.6 J+ =1 uprunadle, O ruprable, >0 stepsed: %/
V555 volatile long 3etes
v5.54
V5,53 2
v5.5.2
¥554 N
55 randomized_struct_fields_start
v5.5c7
v3.5-1ch vaid *stack:
v5.5-7¢5 refcount _t
V5.51ct /* Bor task flags (BF+), ¢
B51c3 Jnsignez int
v5‘5 - ansignes int ptrace:
.)TCL
s tifdef CONFIG_SHP
szruct |list_node wake_entry
int zn_cpu: f
¥ifdef CONFIE_THREAD. INFOLIN_ 783K page directory
PR PO x/
dnsignes int pL
fendif
ansignes int wakee_f| as;
Jnsignez long wakee_f| a_decay_ts!
aruct task_struct *lest_yakze:
S
ih4 * ECE /5 (ni1/ally 58l 48 e last 0 Oy & 135K
linux % v5.5.9 powered by Elixir1.0
<https://elixir.bootlin.com/linux/latest/source/include/linux/sched.h > (SOUI'CG- 2lsA = —r?_n_)
I J. Choi, DKU

13



Chap 5. Interlude: Process API

s Comments for Interlude by Remzi

ASIDE: INTERLUDES
Interludes will cover more practical aspects of systems, including a par-
ticular focus on operating system APIs and how to use them. If you don't

like practical things, vou could skip these interludes. But you should like
practical things, because, well, they are generally useful in real life; com-

panies, for example, don’t usually hire you for your non-practical skills.

I J. Choi, DKU

14



5.1 fork() system call

i fOI’k()

v Create a new process: parent, child
v Return two values: one for parent and the other for child
v Non-determinism: not decide which one run first.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4

5 int

6 main(int argec, char »argvl([])

7 {

8 printf{"hello world (pid:%d)\n", (int) getpid());

g int re = forkl();

10 if (re < 0) { // fork failed; exit

11 fprintf (stderr, "fork failed\n"};

12 exit (1) ;

13 } else if (rc == 0) { // child (new process)

14 printf ("hello, I am child (pid:%d)\n", (int) getpid());
15 } else { // parent goes down this path (main)
16 printf ("hello, I am parent of %d (pid:%d)\n",

17 i, (EnE) ‘gebpad());

18 }

19 return 0;

20 }

Figure 5.1: Calling fork () (pl.c)

I J. Choi, DKU
15



5.2 wait() system call

i wait()
v Block a calling process until one of its children finishes
v Now, deterministic =» synchronization

1 #include <stdio.h>

2 $include <stdlib.h>

3 tinclude <unistd.h>

4 #include <sys/wait.h>

5

[ int

7 main{int arge, char xargvl|])

8 {

9 printf ("helloc world (pid:%d}\n", (int) getpid());

10 int re = fork();

11 if (rc < 0) { // fork failed; exit

12 fprintf (stderr, "fork failed\n");

13 exit(1l):

14 } else if (re == 0) { // child (new process)

15 printf ("helle, I am child (pid:3d)i\n", {(int) getpid());
16 } else { // parent goes down this path (main)
17 int we = wait (NULL) ;

18 printf ("hello, I am parent of %d (wc:%d) (pid:=%d)\n",
19 rc, wc, ({(int) getpid());

20 j:

21 return 0;

22 }

Figure 5.2: Calling fork () And wait () (p2.c)

[ J. tnoi, DKU
16



5.3 exec() system call

s exec()

v Load and overwrite code and static data, re-initialize stack and heap,
and execute it (never return) =» refer to 8 page

v 6 variations: execl, execlp, execle, execv, execvp, execve

1 #Fincluode <stdioc.h>

z $include <stdlib.h>

3 #include <unistd.h:>

4 #Finclude <string.h>

5 #include <sys/wait.h>

&

i int

= main{(int argc, char wargwvli]l)

9 1

10 printf({("helloc world {(pid:Sd)’xn", (Iint) getpid{)):

11 int rc¢ = fark();

12 if (rec < Q) { S fork failed; exit

13 fprintf (stderr, "fork Failed\n™) ;

14 exit (1)y;

15 } else if (rc == 09) { 7/ echild (new process)

16 printf {("hello, I am child (pid:=Zd)\n", (int) getpid{)):;
17 char »mvargs[3];

18 myargs[0] = strdup ("wc™); s/ program: el ™ ot (word count)
19 myargs[1l] = strdup("p3.c"); S/ argument: file to count
20 myargs [2] = NULL; S marks end of array

21 execvp (myargs[01, myvargs):; LS ruans word count

72 printf {("this shouldn’t print ocakt™) ;

23 } else { LY parent goes down this path (main)
24 int wo = wait (NULL) ;

25 printf ("hello;, T am parent of Sd (woc:rSd) (pid:=5d) \n",
26 roe, wWo, { it ) getpidd() )

27 T

el return 0;

Figure 5.3: Calling fork (), wait (), And exec () (p3.c)

o Comments from Remzi: Do it on a Linux system. “Type in the code and run it is better for understanding”

I J. Choi, DKU
17



5.4 Why? Motivating the API (optional)

s Why separate fork() from exec()?
v Modular approach of UNIX (especially for shell)

1 #include <stdio.h> parent resumes
2 #include <stdlib.h>

3 #include <unistd.h>

4 #include <string.h>

5 #include <fcntl.h>

I3 #include <sys/wait.h>

i

8 int child @

Q main{int argc, char ~argvi])

10 {

11 int re = Tork () :

12 af {re < Q) ¢ S4 fork failed; =xit

13 fprintf {stderr, "fork failed\n™);

14 exit (1)

15 ¥ else if (rec == 0) { // child: redirect standard output to a f£ile
16 close (STDOUT_FILENG) ;

17 open{"./pd.output™, O CREAT|OC WRONLY |OC_ TRUNC, S _TIRWXL);
18

19 S now exec “"wo.o ..o

20 char »myargs[3];

21 myargs[0] = strdup(™"wc"™); £/ program: "we" (word count)
22 myargs[1l] = strdup{"pd.c"}; // arcument: file to count

23 myargs[2] = NULL; /S marks end of array

24 execvp (myargs[0], myargs); /4 runs word count

25 P =lse | // parent goes down this path {(main})

26 int we = wait (NULL) ;

27 }

25 return 0;

29 +

Figure 5.4: All Of The Above With Redirection (p4. c)

I J. Choi, DKU
18



5.5 Other parts of the API

s Other APIs
v getpid(): get process id
v Kill(): send a signal to a process
v signal(): register a signal catch function
v scheduling related
v

s Command and tool
v ps, top, per, ...
v read the man pages for commands and tools

ASIDE: RTFM — REAaD THE MAN PAGES
Many times in this book, when referring to a particular system call or
library call, we’ll tell you to read the manual pages, or man pages for
short. Man pages are the original form of documentation that exist on
UNIX systems; realize that they were created before the thing called the
web existed.
Spending some time reading man pages is a key step in the growth of
a systems programmer; there are tons of useful tidbits hidden in those
pages. Some particularly useful pages to read are the man pages for
whichever shell you are using (e.g., tcsh, or bash), and certainly for any
system calls your program makes (in order to see what return values and
error conditions exist).
Finally, reading the man pages can save you some embarrassment. When
yvou ask colleagues about some intricacy of fork (), they may simply
reply: "RTFM.” This is your colleagues” way of gently urging you to Read
The Man pages. The F in RTFM just adds a little color to the phrase...

I J. Choi, DKU
19



|’@@@|

Quiz for 2d-Week 2"9-Lesson

TIME
s Quiz

v 1. OS makes use of a (

) mechanismand a( ) policy to

virtualize CPU (for time sharing on multiple processes)

v 2. Discuss the state of the parent and child process in the below
program just after line 10, 15 and 18, respectively.

v Due: until 6 PM Friday of this week (12, March)

admitted

10 or event completion

intermupt exit . terminated

scheduler dispatch 0

0

#include <stdio.h>
#include <stdlib.h>
#$include <unistd.h>
#include <sys/wait.h>

int

main (int arge, char xargv[])

{

printf ("helle world (pid:%d)\n", (int) getpid());
int rc = fork();

1f: (ro < Q) o // fork failed; exit

fprintf (stderr, "fork failed\n");

exit (1)
} else if (re == 0) { // child (new process)

printf("helle, I am child (pid:%d)\n", (int) getpid());
} else { // parent goes down this path (main)

int we = wait (NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, we, (int) getpid());
}

return 0;

Figure 5.2: Calling fork () And wait () (p2.c)

J. Choi, DKU



Chap 6. Mechanism: Limited Direct Execution

= [ime sharing

v Key technique for virtualizing CPU

v Issues

= Performance: how to minimize the virtualization overhead?
= Control: how to run processes while retaining control over the CPU?

Usor 3

User 2

[ser

Usar 4

::HJ
R

Actve Link

Usar 8

User 6 |

(Source: Google image. Users can be replaced with programs or processes)

21

J. Choi, DKU



6.1 Basic Technique: Limited Direct Execution

s Performance-oriented = Direct execution
v Run the program directly on the CPU
v Efficient but not controllable

OSs Program

Create entry for process list
Allocate memory for program
Load program into memory
Set up stack with arge/argv

- see 8 RARRIENE ing

Run main()
Execute return from main

Free memory of process
Eemove from process list

Figure 6.1: Direct Execution Protocol (Without Limits)

o Control is particularly important to OS. Without control, a process
could run forever, monopolizing resources.

I J. Choi, DKU
22



6.2 Problem #1: Restricted Operation

s Control mechanism 1: Restrict operations
v Operations that should run indirectly (in a privileged mode)

= Gain more system resources such as CPU and memory
» [ssue an I/O request directly to a disk

v Through a well defined APIs (system call)
= E.g.) fork(), nice(), malloc(), open(), read(), write(), ...

s Mechanism: User mode vs. Kernel mode
v User mode: do privileged operation =» cause exception and killed
v Kernel mode: do privileged operation = allowed
v Mode switch: using trap instruction, two stacks (user and kernel stack)

Uuser process

iSource: A. Silberschatz, “Operating system Concept”)

execute system call

23

user mode
user process executing 3 calls system call return from system call (mide alE=1)
\ /
1 7
\ 4
kernel trap return
eme made bit= 0 mode bit = 1
kernel mode
(mode hit=0)

J. Choi, DKU



6.2 Problem #1: Restricted Operation

divide_by_zero()

page_fault()

segment_fault()

. 0

How to handle trap in OS? 1

v Using trap table (a.k.a interrupt vector table) 2
v Trap table consists of a set of trap handlers 80

system_call()

= Trap (interrupt) handler: a routine that deals with a trap in OS

trap table

» system call handler, div_by zero handler, segment fault handler, page fault

handler, and hardware interrupt hander (disk, KBD, timer, ...)
= |nitialized at boot time

v E.g.: System call processing

» System call (e.g. fork()) =» trap =» save context and switch stack =» jump to

the trap handler = eventually in kernel mode

= Return from system call =» switch stack and restore context = jump to the

next instruction of the system call = user mode

OS5 @ run Hardware Program
(kermel mode) (user mode)

Call system call
trap into OS5
save regs to kernel stack
move to kemel mode
jump to trap handler
Handle trap
Do work of syscall
return-from-trap
restore regs from kernel stack
move to user mode
jump to PC after trap

24

J. Choi, DKU



6.2 Problem #1: Restricted Operation

OS @ boot
(kermel mode)

(Boot)

Process.
create :

Trap

Process:

destroy:

(syscallg)

initialize trap table

remember address of. .
syscall handler

(kermel mode)

(user mode)

Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argwv

Fill kernel stack with reg /PC
return-from-trap

restore regs from kernel stack
move to user mode
jump to main

Handle trap
Do work of syscall
return-from-trap

save regs to kermel stack
move to kermnel mode
jump to trap handler

restore regs from kernel stack
move to user mode

trap into OS5

.......................................................................................................................................................................... PR FESH IR AT

Free memory of process
Remowve from process list

trap (viaexit ())

Figure 6.2: Limited Direct Execution Protocol

25

J. Choi, DKU



6.2 Problem #1: Restricted Operation (optional)

s System call Implementation: Linux case study

user task

main()

}

fork();

/

libc.a

{

fork()

H\Ic.)vl $2, %eax

0x0

0x80

;’:debug()

nmi()

Trap Table
VT, IDT)

'_g;li:vide_error()

int $0x80

.""s,_ystem_call() ,

ENTRY(system_call) /* arch/i386/kernel/entry.S */

SAVE_ALL

call *SYMBOL_NAM E(sys_calI_table)(,%ea){,”l)x

ret_from_sys_call (schedule, signal, bh_active,

nested interrupt handling)

Sys_call_table

sys_exit() ]

Y

sys_fork()/

sys_fork()

sys_read ()

[* archli386/kernellproge"’sﬂs.c */

sys write ()

I* kernel/fork.c */

(Source: 2SS4 HE R4, 68)

.- Ngﬁﬁ: Thii mﬁghﬁniim ii a Iiﬁlﬁ different in 64bit CPU, but the concept is the same
J. Choi, DKU

26



6.3 Problem #2: Switching between Processes

Control mechanism 2: Context switch with Timer interrupt
v Time sharing: Process A = Process B = Process A = ....

v By the way, how can OS regain control of the CPU so that it can
switch between processes?

Two approach

v A cooperative approach: exploiting system calls

» Processes use a system call = control transfer to OS =» do scheduling
(and switching)

= A process causes exception (e.g. page fault or divide by zero ) =
transfer control to OS

= A process that seldom uses a system call = invoke an yield() system
call explicitly

= No method for a process that does an infinite loop
v A Non-cooperative approach: using timer interrupt

I J. Choi, DKU

27



6.3 Problem #2: Switching between Processes

s A Non-cooperative approach: using timer interrupt

v Interrupt: a mechanism that a device notify an event to OS

» Interrupt happens =» current running process is halted = a related
interrupt hander is invoked via interrupt table = transfer control to OS

v Timer interrupt (like a heart in human)

= A timer device raises an interrupt every milliseconds (programmable) =
a timer interrupt handler = do scheduling (and switching) if necessary

v Context switch
= Context: information of a process needed when it is re-scheduled later
=» hardware registers

= Context save and restore

E.g. 1) Process A = Process B: save the context of the process A and
restore the context of process B. 2) later Process B = Process A: save the
context of the process B and restore the saved context of process A

. Where to save: proc structure in general

I J. Choi, DKU
28



6.3 Problem #2: Switching between Processes

s Context switch: global view

OS @ boot
(kermel mode)

initialire trap table
Initialize
(Boot) !

start interrupt timer

remember addresses of...
syscall handler
timer handler

start timer
interrupt CPU in X ms

0OS @ run
(kernel mode)

Program
{user mode)

(timer)

timer interrupt
save regs{A) to k-stack(A)
move to kermnel mode

eeeeene Haﬂd']:E'ﬂlEtl‘—ﬂP ...............................................................................................................................................................................................

i all switeh () routine

and CcntextrSMl:itE z=(B) from proc-struct(B}
i switch to k-stack(B)

move to user mode
jump to B's PC

Figure 6.3: Limited Direct Execution Protocol (Timer Interrupt)

29

J. Choi, DKU



6.3 Problem #2: Switching between Processes

s Context switch

v Memorize the last state of a process when it is preempted
» Context save (state save): storing CPU registers into PCB (in memory)
» Context restore (state restore): loading PCB into CPU registers

v Context-switch time is overhead (the system does no useful work
while switching) =» utilizing hardware support (hyper-threading)

process P,

operating system process P,

interrupt or system call

executing @
T | save state into PCB, |
idle
|re|oad state from PCB1|
-idle interrupt or system call executing
| save state into PCB;, |
idle
p |reload state from PCBol
executing l[‘x

(Source: A. Silberschatz, “Operating system Concept”)
I

30

J. Choi, DKU



6.3 Problem #2: Switching between Processes

s Context switch: pseudo code

1 # volid switchi{struct context =x0ld, struct context =new);
] =

3 # Save current register context in old

4 # and then load register context from new.

5 .globl switch

& swtch:

7 # Save old registers

8 movl 4 ({%esp), %eax ¥ put old ptr into eax

g ropl 0{%eax) # save the old IP

10 movl %esp, £ (%eax) # and stack

11 movl Tebx, B (Zeax) # and other registers

12 movl Secx, 12 (%eax)

13 movl %edx, 16 (%eax)

14 mowvl %esi, 20 (%eax)

15 movl %edi, 24 (%eax)

16 movl Sebp, ZB(%eax)

17

18 # Load new registers

19 movl 4 (%esp), %eax F put new ptr into eax

20 movl 28 (%eax), %=bp # restore other registers
21 movl 24 (%eax), %Fedi

27 mowvl 20 (Seax), Sesi

2 movl 16 (%eax), %Sedx

24 movl 12 (%Seax), %Secx

25 movl B(Feax), Sebx

26 movl 4 (%eax), %esp # stack is switched here
27 pushl 0 (Feax) # return addr put in place
28 ret # finally return into new ctxt

Figure 6.4: The xv6 Context Switch Code

I
31

J. Choi, DKU



6.4 Worried about concurrency?

m Some issues

v What happens when you are handling one interrupt and another one
occurs?

v What happen when, during a system call, a timer interrupt occurs?

s Some solutions

Disable interrupt (note: disable interrupt too long is dangerous)
Priority

Locking mechanism

=» actually Concurrency issue

<N N X

I J. Choi, DKU

32



Summary

s Process (Chapter 4)
v Process definition
v Process state
v Process management (PCB, struct proc, struct task)

s Process manipulation (Chapter 5)
v fork(), wait(), exec(), kill() , ...

s Mechanism (Chapter 6)
v Limited Direct Execution: 1) Mode switch, 2) Context switch
v Performance: system call = 4 us, context switch = 6 us on P6 CPU

<@ Suggestion:
— Check the questions in Chap. 5 (homework) and 6 (measurement
homework)
— Exercise them on a Linux server

& RAu—¥T

I J. Choi, DKU

33



Appendix

m Answers for questions commonly asked by students

Mot ettt b prompt> ./mem &; ./mem &
#include <stdlib.h> [1] 24113
#include "common.h" [2] 24114
int (24113) address pointed to by p: 0x200000
main (int argc, char w=argv([]) (24114) address pointed to by p: 0x200000
‘ int *p = malloc (sizeof (int)); S/ al (24L13) we L
assert (p != NULL); ’ (24114) P: 1
printf('j(%g).dair):idri.)ss pointed to by p: %p\n", i . (;4%1;; jo g
getpi B i = (24 %
;EiTeo'(r) { fras (24113) §= 3
Spin (1) ; ) (24114) p: 3
STintiim(zd) p: sd\an etpi ~p) ; a (24113) p: 4 .
) | TEmTECGE m AEnt, meteia . ey S (24114) p: 4 (Source: Chapter 2 in O$TEF
’ Figure 2.3: A Program That Accesses Memory (mem. c) Figure 2.4: Running The Memory Program Multiple Times
v Q1: same address in the two processes?
v Q2:whynot1=2>2=2>3=24=> ...
v Key concept: Program =» CPU using Compiler and OS
inta, b;
o stack y 772
{ b |
intc, d data a 100 a
- b
} ] text main 0 oS
Compiler . oS
inta, b stack c (loading)
d 772 a
{maln() b 240 (schedule)
I e — B | s
intc,d L S datal  C 00 | ey
, data a 100
text main

Brogram Binary (virtual address) 34

DRAM (physical address)

J. Choi, DKU
CPU



QUIZ) Quiz for 3r9-Week 1st-Lesson

TIE
s Quiz
v 1. Discuss how many mode switch and context switch happen in the

below left figure.
v 2. What is the AS (Architectural State) in Intel’'s Hyperthreading

Technology?
v Due: until 6 PM Friday of this week (19, March)
X g Blocked [ Ready | o B Without Intel® HT Technology
Zl Ready = Apecy Thread 0
Swap Swap stap | ‘swap

1 With Intef HT Technology

v |

Running Running »| Running | ' Running - | Running -
Sys.call T Sys.call T 3 s Architectural
\ State 0

interrupt Interrupt Interrupt )
Time-slice Thread 1 / Architectural
: — ) State 1
X runs but trie put a message (from Z) which isnt there

X runs a full ime-slice this time

Z runs and oultputs a message (unblocking X)

(Source: https://xerxes.cs.manchester.ac.uk/comp251/kb/Context_Switching and
https://lwww.dasher.com/will-hyper-threading-improve-processing-performance/)

I J. Choi, DKU
35



