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Chap 7. Scheduling: Introduction

= Scheduling
v Multiple actors want to use (limited) resources at a time
v Make order to select actors who can use the resources
s Process Scheduling

v Actor: process, Resource: processor (CPU)
v Select a process who run on a processor (or processors)
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/.1 Workload assumption

s Workload

v The amount of work to be done (dictionary)

v How much resources are required by a set of processes with the
consideration of their characteristics (in computer science)

s A simple assumption about processes (also called as job in
the scheduling research area)
v Each job runs for the same amount of time
v All jobs arrives at the same time
v Once started, each job runs to completion
v All jobs only use the CPU (no I/O)
v The run-time of each job is known in advance

v c.f.) unrealistic, but we will relax them as we go
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7.2 Scheduling Metrics

s Metrics
v Something that we use to measure (e.g. performance, reliability, ...)

s Metrics for scheduling

v Turnaround time
-

| —_ . - .
Tturnaround completion arrival

v Response time

. Tresponse = Tfirstrun -

v Fairness

" E-g-)TcompIetion
v Throughput

= E.g.) number of completed processes / 1 hour
v Deadline

T

arrival

of P1 vs. that of P2

" Eg) Tturnaround < Tdeadline

<+ \What do you think first when we choose a restaurant for lunch? (among above)

@ \What does the owner of the restaurant think first?
—5 J. Choi, DKU



7.3 FIFO (First In, First Out)

= FIFO

v Schedule a process that arrives first (a.k.a FCFS (First Come First
Serve))

v Example

= 1) three processes: A, B, C, 2) run-time: 10 seconds, 3) arrival time: Os
(tie-break rule: alphabet in this example)

P B O

] T T T T T
o 20 40 S0 80 100 120
Time

Figure 7. 1: FIFO Simple Example

= What is the average turnaround time?

v Another example
= 1) three processes: A, B, C, 2) run-time: 100s for A, 10s for B and C

B L&
o 20 40 a0 80 100 120

Time

Figure 7.2: Why FIFO Is WNWot That Great

= Now, what is the average turnaround time?
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7.3 FIFO (First In, First Out)

= FIFO

v Pros)
= 1) Clearly simple, 2) Easy to implement
v Cons)
* 1) May cause a long waiting time (known as convoy effect)

The Convoy Effect, visualized

_ shorter jobs
a & e

(Source: http://web.cs.ucla.edu/classes/fall14/cs111/scribe/7alindex.html)

<+ How can we overcome this long waiting?

I J. Choi, DKU
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7.4 SJF (Shortest Job First)

s SJF

v Give a higher priority to the shortest job (a.k.a Shortest Process Next
(SPN))
» “ten-items-or-less” in a grocery store
v Revisit the previous example again
= 1) three processes: A, B, C, 2) run-time: 100s for A, 10s for B and C

(o] 20 40 S0 80 100 120
Time

—

Figure 7.3: SJF Simple Example

= What is the average turnaround time?
v Pros)
* Proved as an optimal algorithm
v Cons)
= What if B and C arrive a little bit late than A? (e.g. assume 10, not 0)

[B.C arrive]

I ) B L

20 40 (s1e] 80 100 120

I rime J. Choi, DKU
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7.5 STCF (Shortest Time-to-Completion First)

s STCF
v Similar to SJF, but preemptive version (a.k.a Shortest Remaining-
Time next (SRT)) -

v 1) Non-preemptive scheduling -
= Run a job to completion m

v 2) Preemptive scheduling o
= Can stop a job (even though it is not completed yet) to run another job
= All modern schedulers are preemptive
= Require the context switch

v Example

= 1) three processes: A, B, C, 2) run-time: 100s for A, 10s for B and C, 3)
arrival time: Os for A, 10s for B and C.

[B.C arrive] [B.C arrive]

o 20 40 60 80 100 120 0 20 40 60 80 100 120
Time Time

- el Sl e o Figure 7.4: SJF With Late Arrivals From B and C
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/.6 Response time

= [urnaround time
v A good metric for a batching system

s Response time

v More important for an interactive system?

= User would sit at a terminal, working something interactively (e.g. move
a mouse, type in a letter, visit a site, and so on)

s Revisit the example with SJF (also FIFO)

v 1) three processes: A, B, C, 2) run-time: 5 seconds, 3) arrival time:
Os (tie-break rule: alphabet in this example)

FaX B C

O 5 1IO ‘FI5 2IO 2I5 3ICI
Time
Figure 7.6: SJTF A gain (Bad for Response Time)

v What is the average turnaround time?
v How about the average response time?

< Imagine that you move a mouse and wait for a 5s.

I J. Choi, DKU
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7.7 RR (Round-robin)

= RR

v Instead of running a job to completion, it runs a job for a time slice
(sometimes called a scheduling quantum) and switch to the next job
in the run queue

v Repeatedly switch jobs until jobs are finished

v Example
= 1) three processes: A, B, C, 2) run-time: 5s, 3) arrival time: Os (same to
the previous slide)
* RR with time slice = 1s (different here: non-preemptive in the previous
slide)
= What is the average response time?
= What is the average turnaround time?

ABCABCABCABCABC A B
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time Time
Figure 7.7: Round Robin (Good for Response Time) Figure 7.6: SJF Again (Bad for Response Time)

o \What if the time slice is set as 500ms or 100ms or 10ms. Discuss tradeoffJ
11
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7.7 RR (Round-robin)

m [radeoff of time slice (time quantum)
v Small: good responsiveness, high context switch overhead
v Large: low context switch overhead, bad responsiveness

v We need to balance the tradeoff
= Good response time with reasonable overhead
= E.g. time slice: 10ms (or 100ms), context switch overhead: 1ms

TIP: AMORTIZATION (C AN REDUCE COSTS

The general technigque of amortization is commonly used in systems
when there is a fixed cost to some operation. By incurring that cost less
often (i.e., by performing the operation fewer times), the total cost to the
system is reduced. For example, if the time slice is set to 10 ms, and the
context-switch cost is 1 ms, roughly 109 of time is spent context switch-—
ing and is thus wasted. If we want to agrmortize this cost, we can increase
the time slice, e.g., to 100 mms. In this case, less than 19 of timme is spent
context switching, and thus the cost of time-slicing has been amortized.

m [radeoff between response time and turnaround time
v Traditional issue in computer science: interactivity vs performance
v You can not have your cake and eat it too.

o Question, “explain which process you prefer to schedule when there are two
processes, browser and backup apps” = Considerations: 1) interactive or batch,
2) fairness, 3) importance, 4) real-time, ...

I J. Choi, DKU
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7.8 Incorporating 1/O

s Most of applications do |/Os

v Example

* Two jobs A and B, both need 50ms of CPU time
* Aruns for 10 ms and then issue an I/O request (it takes 10 ms)

v What to do while performing I/Os?

= Busy waiting: Figure 7.8 ™
= Blocked: Figure 7.9 N i
v How to implement the Figure 7.9 -

0 20 40 60 80 100 120 140
Time

Figure 7.8: Poor Use of Resources

B ABABAB A B
CPU

TDU 120 140

ﬂnm

Figure 7.9: Overlap Allows Better Use of Resources

J. Choi, DKU
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@@ﬁin Quiz for 3M-Week 2nd-esson
TIME]

s Quiz

v 1. Discuss what do you consider first when you choose a restaurant
for lunch? (including not only your personal preference but also
metrics in Page 5)?

v 2. What are the average turnaround time and average response time
of the workload in Figure 7.6 and Figure 7.7 (in Page 11) when we
assume that the context switch overhead is 100ms instead of Oms?

v Due: until 6 PM Friday of this week (19, March)

A B C ABCABCABCABCABC
I | T T T I I | | I | | T T |
05 10 K% A B X 0 5 10 15 2 2% 3
Time Time
Figure 7.6: S]F Again (Bad for Response Time) Figure 7.7: Round Robin (Good for Response Time)
S J. Choi, DKU
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8. MLFQ

s Existing scheduling policies

v FIFO (6 page), SJF (8 page), STCF(9 page): good for turnaround
time, terrible for response time

v RR (11 page): vice versa
s How to optimize the turnaround time while minimizing
response time?

v MLFQ (Multi-Level Feedback Queue)
» By F. Corbato (Turing Award Winner)
= Approach: Learn from the past to predict the future

TiP: LEARN FROM HISTORY

The multi-level feedback queue is an excellent example of a system that
learns from the past to predict the future. Such approachea are com-
mon in operating systems (and many other places in Computer Science,
including hardware branch predictors and caching algorithms). Such
approaches work when jobs have phases of behavior and are thus pre-
dictable; of course, one must be caretul with such techniques, as they can
easily be wrong and drive a system to make worse decisions than they
would have with no knowledge at all.

I J. Choi, DKU
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8.1 MLFQ: Basic Rules

MLFQ

v Consist of multiple queues
v Each queue is assigned a different priority level

v Ajob that is ready to run is on a single queue (running or blocked
jobs are out of the queues)

v A job with higher priority (a job on a higher queue) is chosen to run
next (RR among jobs in the same queue)
e Rule 1: If Priority(A) > Priority(B), A runs (B doesn't).
e Rule 2: If Priority(A) = Priority(B), A & B run in RR.

Highest Priority

J. Choi, DKU



8.2 Attempt #1: How to Change Priority

s How to assign a priority to each process?

o Rule 3: When a job enters the system, it is placed at the highest
priority (the topmost queue).
e Rule 4a: If a job uses up an entire time slice while running, its pri-
ority is reduced (ie., it moves down one queue).
o Rule 4b: If ajob gives up the CPU before the time slice is up, it stays
at the same pI‘iDI‘il‘y level. __Give up before spending its whole time slice

v Not fixed, change the priority of a job based on its observed behavior
(feedback)

» Use CPU intensively =» Next lower-level queue =» Low priority
» Recently do I/Os = same queue => relative High priority
= Batch (low priority) vs. Interactive (high priority)

I J. Choi, DKU
17



8.2 Attempt #1: How to Change Priority

s Examples

v Example 1: A Single Long-Running Job = Fig. 8.2
= Assumption: Three queues (Q2, Q1, Q0), one job, 10ms time slice

v Example 2: A long and a new arrived Job = Fig. 8.3

» Just arrived job = MLFQ presumes the job is a short job =» Give high priority
Really a short job: run quickly and complete (approximates SJF)
If not: move down the queues, proving itself as a long-running

v Example 3: What about I/O? = Fig. 8.4
» Assumption: two jobs, A: long-running job, B: short-intensive job

= MLFQ keep a process at the same queue if it gives up CPU before using up its
time slice (rule 4b)

Prefer I/O intensive job for good response time

Qi Qi I Q1 I
- a0 * IR
0 50 100 150 200 0 50 100 150 200
Figure 8.2: Long-running Job Over Time Figure 8.3: Along Came An Interactive Job Figure 8.4: A Mixed I/O-intensive and CPU-intensive Workload
[ J. Choi, DKU
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8.2 Attempt #1: How to Change Priority

Problem with our current MLFQ

v Pros of the current version
= Share CPU fairly among long-running jobs
= Allow short-running or I/O intensive jobs to run quickly

v Issues

= Starvation

If there are “too many” interactive jobs, long-running jobs will never receive
any CPU time (they starve)

= User can trick the scheduler (game the scheduler)

Just before the time slice over, issue an I/O request =» remain in the same
queue unfairly

= A program may change its behavior

CPU-intensive at the first phase = interactive at the later phase (e.g. service
user request after long initialization)

I J. Choi, DKU
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8.3 Attempt #2: The Priority Boost

s New rule for avoid starvation
v One approach: periodic boosting

e Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

v Example

» Three jobs, two interactive jobs and one long-running job
* Priority boost every 50 ms

Q2 Qz

m. ||| | — m_
a1 @t & & & %

a foet 8 a

e w—-mw - -
QO Qo |

_ AR ] 111 111

8] 50 100 150 200 8} 50 10

0 150 200
Figure 8.5: Without (Left) and With (Right) Priority Boost

J. Choi, DKU
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8.4 Attempt #3: Better Accounting

s How to prevent gaming of MLFQ scheduler?

v Change the rule 4a and 4b = instead of forgetting how much of a
time slice a job used at a given queue, keep track it. Once a job has
used its allotment, it is demoted to the next queue

e Rule 4: Once a job uses up its time allotment at a given level (re-
gardless of how many times it has given up the CPU), its priority is
reduted (i.e., it moves down one queue).

Q1 Q1

. { M ﬂ M ﬂ M ﬂ JI JIJI l

¥ S0 100 150 200 100 150 200

Figure 8.6: Without (Left) and With (Right) Gaming Tolerance

I J. Choi, DKU
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8.5 Tuning MLFQ and Other Issues

s Parameters

v Issues
» How many queues?
» How big should the time slice be per queue? Same or Different?
» How often do the priority boost?

v Many MLFQ variants with diverse parameter settings

» Different time slice per queue: shorter for higher priority queue and vice
versa (10, 20 and 40ms in Fig. 8.7 = can reduce context switch overhead)

» Solaris case: Table based
» BSD, Linux: Decay based (mathematical)
» Support user advice (e.g. nice system call)

global scheduling
priority order
time return
highest Lz farst time quantum from
- tabeapt the it priority quantum expired sleep

Q2 = 0 200 0 50
I 5 200 (0} 50
“““““““““““““““““““ realtime (RT) threads 10 160 (0] 51
5 160 5 51

Q1
i 20 120 10 52
99 25 120 15 52
B [ 30 80 20 53

system (SYS) threads

35 80 25 54

Qo
&0 40 40 30 55

59

___________________ . fair share (F55) threads 45 40 35 56
0 50 100 150 200 e SUeEE 0 St 50 40 40 58
timeshare (TS) threads 55 40 45 58
Figure 8.7: Lower Priority, Longer Quanta — G interactive (IA) threads (s = o a5 P

Figure 6.24 olaris sch ling. . .
ource: A. Silberschatz, “Operating system Concept” .
—§ P "4 § J). Choi, DKU
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8.6 MLFQ: Summary

= Name analysis
v Multi-level: multiple queues

v Feedback: based on history (track job’s behavior over time and treat
them accordingly)

s Final rules

Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

Rule 2: If Priority(A) = Priority(B), A & B run in RR.

Rule 3: When a job enters the system, it is placed at the highest
priority (the topmost queue).

Rule 4: Once a job uses up its time allotment at a given level (re-
gardless of how many times it has given up the CPU), its priority is
reduced (i.e., it moves down one queue).

Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

s Features

v Try to good both for short-term interactive jobs and long-term batch
jobs

23
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8.6 Scheduling Comparison

s Workload: 5 processes (jobs)

Process
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. Summary

8.6 MLFQ

:.4)

s Example: RR (time quantum = 1), RR (time quantum
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8.6 MLFQ: Summary

1,2,4,8, ...)

s Example: MLFQ (time quantum = 1), MLFQ (time quantum

e R e S -
—— e —— -—
_— = = —— -
—— s |

—— -

IIIIII IIIII;I.
L e o --
_H.lll IIIIIIIIIIII

Fecdback

iF 1
Fecdback
>

g = 2t
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|r@@@|

Quiz for 4th-Week 1st-Lesson

TIME
s Quiz

v 1. What is the HRRN (Highest Response Ratio Next) policy shown in

Page 247 Compare it with the SJF policy.

v 2. Under MLFQ and the workload in Page 24, compare the average
response time and the number of context switch when the time
quantum is 1 and 2'.

v Due: until 6 PM Friday of this week (26", March)

Process Arrival Time Service Time

A 0 3

B 2 [§]

i 4 4

[ 0 5

E = 2
0 5 10 15 20
e e R S S o e e e e e N S
Feedhback G I.:I':I:|j : : i i i i :I—I l I'—I i :l:i :':%
q=1 fall ! 1 i I [ 1 1 ] 1 1
] : : | | i I D :
HEE:IEFFIZ‘...E a8
AT .:: I ! i i | i : i il i : | i E i i
q = [ S ] ] ] 1 1
D | . ] L i _|:'
E — Lo

Average waiting time : (164 14+ 20+19+2)/5=71/5=142

Process Arrival Time Burst Time
" 4 5
P2 3 6
p3 2 7 Context switching : 10 times
P4 0 9
PS5 1 2 *Timeshce=3
Total 29
arrival
{ | | | |
¢ : : ! \wgltlpg; : | 1 ; | '
I ‘ | [ ’ 1 | !
|| i o —— :
[ | | | | | ™ |
| | | !
o || .
AERIN [ | ’
P4 ————1— t f ;
“ dERYE [ - Gf | b
| | | |
s [ L | |
I | | 1 | | | .| g o |
3 5 8 11 14 17 20 23 25 2829

Round Robin Scheduling

‘Source: httﬁs://steadx-bennx.medium.com/pintos-1 -3-cpu-scheduIing-7d8592?%fr]2eb "
. ol,
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Chap 9. Scheduling: Proportional Share

s Proportional Share (fair share)

v Concept: instead of turnaround time or response time, it tries to
guarantee that each job obtain a certain percentage of CPU time
(especially important for Cloud system)

v Scheduling algorithms: Lottery, Stride, ...

Example: 3 VMs A, B, Cwith 3 : 2: 1 share ratio

2
B 3
6

4

(o> [F%

D DO |~

6
6
6

8

(o) B [e)

8

9
6

28
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9 9 12
12 12 12
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9.1 Basic Concept: Tickets Represent Your Share

s Lottery scheduling
v Made by Waldspurger and Weihl
v Schedule a job who wins the lottery

v Ajob that has more tickets has more chance to win

= Ticket: represent the share of a resource

= Two jobs, A has 75% tickets while B has 25% tickets =» win probability
with 75% and 25% = 75% of CPU is expected to be used by A

v Example
= Total tickets: 0~99, A: 0~74, B: 75~99

Here is an example output of a lottery scheduler’s winning tickets:

632 85 70 39 76 17 29 41 36 3% 10 929 68 B3 63 62 43 0 49 459

Here is the resulting schedule:

A A A A A A A A A A A A A A A A

B B B B

= 80% for A, 20% for B in this example (since it is based on probability).
But, the longer it runs, the more likely it achieves the desired share

I J. Choi, DKU
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9.2 Ticket Mechanisms

= Tlicket currency
v Allow users to allocate tickets among their own jobs with correct
global value
v Example
= Two users, A: 100 tickets, B: 100 tickets

= A has two jobs. A gives them each 500 tickets
= B has only one job. B gives it 10 tickets

» How many tickets are given into three jobs with a global viewpoint?

User A —-> 500 (A"s currency) to Al -> 50 (global currency)
—> 500 (A's currency) to A2 -> 50 (global currency)
User B —> 10 (B's currency) to Bl -> 100 (global currency)

s licket transfer

v A job temporarily hands off its tickets to another job
v Especially useful in a client/server environment

= Ticket inflation
v Temporarily raise or lower the # of tickets (in a cooperative env.)

J. Choi, DKU
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9.3 Implementation

s Benefit of Lottery scheduling
v Simplicity
= All it needs are 1) random(), 2) counter and 3) ticket at each job

Joh:A Job:B Job:C

v Example head = 1400 — Tixs0 > Tix2s0 > NULL
= Three job (see figure)
= Assume that we pick the number 300 =» schedule C

£ F counter: used to track if we

int counter = 0;

S/ winner: use some call to a random number generator to

P get a value, between 0 and the total # of tickets
int winner = getrandom(0, totaltickets);

f/ current: use this to walk through the list of Jjobs

node t *current = head;

/Y loop until the sum of ticket walues is > the winner
while {(current) ({

counter = counter 4+ current—>tickets;

if (counter > winner)

break; // found the winner

current = current—>next;
]
FF Tourrent’ is the winner: schedule jit...

Figure 9.1: Lottery Scheduling Decision Code
31
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9.4 An Example & 9.5 How to Assign Tickets?

s Unfairness analysis

v Assumption: two jobs, same ticket, same run time (e.g. 10ms * N)
v U=C1/C2

= C1: Completion time of the earlier finished job
= C2: Completion time of the later finished job

» |Implication (assume that N = 1)
. C1=10, C2=20 = U = 0.5 (worst fairness)
. C1=20, C2=20 = U =1 (best fairness, ideal)
Long running = Fig. 9.2

= How to assign tickets?

v Money = Cloud computing
v Priority =» Soft RT system

Unfairness (Average)

A
0.2
0.0 T T 1
1 10 100 1000
Job Length
Figure 9.2: Lottery Fairness Study
I J. Choi, DKU
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9.6 Why Not Deterministic?

Lottery scheduling

v Not deterministic (rely on random number generator = see 29 page)

Stride scheduling

v A deterministic fair-share scheduler
= Key concept: Stride = Inverse in proportion to the # of tickets
» How to Schedule
. Schedule a job who has the smallest pass value
Increment the pass value by its stride
v Example
= Three jobs: A, B, C, Tickets: 100, 50, 250
= Stride: 100, 200 and 40 (divide 10000 by ticket)

Pass({A) Pass(B) Pass(C) Who Runs?
(stride=100) (stride=200) (stride=40)

(8] 8] ) A
100 0 0 B
100 200 0 C
100 200 40 C
100 200 fall] i
100 200 120 A
200 200 120 C
200 200 160 [
200 200 200 s

Figure 9.3: Stride Scheduling: A Trace
33
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Chap. 10 Multiprocessor Scheduling (Advanced)

s Multiprocessor and Multicore
v Multiprocessor: a system with multiple processors
v Multicore: a chip (socket, processor) with multiple cores

v Modern computer equips with multiple processors with multicore
(with hyperthread) = Manycore

s For utilizing multicore effectively

v Typical programs: serial program (use only one CPU) = make
parallel program (e.g. using threads, Map/Reduce, ...)

v Need a scheduler that can handle multiple CPUs = load balancing

el T ASIDE: ADVANCED CHAPTERS
z:," | iTU' |. |rﬁ:':':1" {:PTII Advanced chapters rtlaquirelmateri.allfrorln a broadl swath (?f the book to
truly understand, while logically fitting into a section that is earlier than
("1 Cache J|[ L1 cache J|f [ £t cache Jfi[ L1 Cache | said set of prerequisite materials. For example, this chapter on multipro-
L2 Cache [[| L2 Cache ||[ [l 12 Cache [ L2 Cache cessor scheduling makes much more sense if you've first read the middle
I piece on concurrency; however, it logically fits into the part of the book
on virtualization (generally) and CPU scheduling (specifically). Thus, it
oD Koy is recommended such chapters be covered out of order; in this case, after

—{ Systen By : the second piece of the book.
[ |
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10.1 Background: Multiprocessor Architecture

s CPU cache (L1, L2, LLC)

v Small, fast memory that generally hold copies of popular data
(based on temporal and spatial locality)
= Temporal locality: when a data is accessed, it is likely to be accessed
again in the near future (e.g. stack, for loop, ...)
» Spatial locality: when a data is accessed, it is likely to access data
near as well (e.g. array, sequential execution, ...)
v Benefit

= Cache hit: make a program run fast by reducing access to the
relatively slow main memory

» Delayed write: modified data are kept in cache, not writing immediately
into memory so that it possibly merges consecutive writes into a single
memory access

GPU
Cache

Memory

I  Figure 10.1: Single {3:51;U With Cache J. Choi, DKU



10.2 Synchronization & 10.3 Cache affinity

s Issues on Multiprocessor
v Cache affinity

= \WWhen a process runs, it is often advantageous to run it on the same
CPU where the process ran previously

= Since the CPU might build up a state in the cache (and TLB) for the

process
Cache Aftinity and My lbiGre Cache &ffinty .S‘d\eolulcv\a
cove Mulkitheaded @rocestord ‘ -
MDU.EI‘C ve V; veA - G)( - @ Wl .tm\q-\“ﬂe_
213 ; T de sl
LI

https://www.youtube.com/watch?v=fSUqT4WpPdM

J. Choi, DKU
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10.4 Single-Queue Scheduling

x SQMS (Single Queue Multiprocessor Scheduling)

v Use the framework for single processor scheduling
v Pros: simplicity
v Cons: cache affinity (5 jobs and 4 CPUs example, need to some

complex mechanism to support cache affinity to obtain the below
right figure), scalability (especially due to lock for shared queue)

Queuwe— A — B — C — D — E —nULL

CPU 1 A

CPU 3 n C

:  .
" n
T

.. (repeat) ...
.. (repeat) ...
... (repeat) ...

.. (repeat) ...

(without affinity consideration)

CPUO
CPU 1
CPU 2

i D D D D

37

O Dok

C

C

10

.. (repeat) ...
.. (repeat) ...
.. (repeat) ...

... (repeat) ...

(with affinity consideration)

J. Choi, DKU



10.5 Multi-Queue Scheduling

s MQMS (Multi-Queue Multiprocessor Scheduling)

v Multiple queues, Jobs assigned a queue, Each queue is associated
with a CPU (or a set of CPUs)

v Pros: cache affinity, less lock contention

Qu— A — C Ql—» B — D

CPUO A A|C|IC A|IA|CIC A|IACIC| ..

v Cons: need to consider load balancing (migration, work stealing)

Q— A Qt—= B — D 00— A= B =D

CPUO |A|A|A|A[A[AJA[A[AAA|A GPUO

m - TErmTmE

J. Choi, DKU
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10.6 Linux Multiprocessor Schedulers (Optional)

s [hree different schedulers

v O(1) scheduler

» Multi-queue, similar to MLFQ (schedule higher priority, priority are
changed dynamically)

v CFS (Complete Fair Share Scheduler)

» Multi-queue, similar to stride scheduling (deterministic proportional
share scheduling)

v BF Scheduler
» Single-queue, proportional share with more complicate scheme

schedule()._
.

. Ty
schad_find_first_set() MNodes represe

sched_entity(s)
indexed by their
wirtual runtinme

rd
(bit O pricrity 0 |

i il 7 (priority 7)

1 E lists of all runnabia

tasks, by priority

: HEEENEEEEEE
140-bit priority array | Py _
" bit 139 (priority 139) A [nic] (ML
s
. virtual runtime
run the first process in the fist—— list D:U:““r?:ﬁ"e_:_asks " Mot rised of (o1 Least need of CEL
J. Choi, DKU
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Chap 11. Summary Dialogue on CPU virtualization

= What we have learned

v Mechanism: Context switch, Timer interrupt, Handler
v Policy: FCFS, SJF, RR, MLFQ, Lottery, Stride, Multiprocessor, ...

s How to select a CPU-scheduling algorithm for a particular
system?
v Analytic models: deterministic evaluation
v Queueing models: mathematical evaluation
v Simulation: programming a model. executing it with real traces.
v Implementation: materialize as a real system

< [ab 1: Implement a scheduling simulator

— What to do? Program the scheduling policies in Page 24. (See Labl in
https://github.com/DKU-EmbeddedSystem-Lab/2021 DKU_QS)

— How to submit? 1) report (3~5 pages for description & outputs) =» upload e-
learning campus, 2) Source code & report = email to TA (ghwls03s@gmail.com)

— Requirement: 1) At least two execution outputs (one workload same as 24 pages
and different workloads), 2) Environment: wsl or ubuntu on virtual box (See Lab.
0 in https://github.com/DKU-EmbeddedSystem-Lab/2021 _DKU_QOS)

— Due: until Friday of the next week (6PM. April 2n9),

— Bonus: Lottery scheduler
I 0 J. Choi, DKU
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p@@ Quiz for 4th-Week 2M9-Lesson

Ve

s Quiz

v 1. We need to consider two things for multiprocessor scheduling.
One is ( ) that tries to distribute jobs evenly among CPUs and the
other is ( ) that tries to run a job on the same CPU where the

process ran previously.

v 2. Discuss how does the stride policy schedule 3 VMs whose tickets
are 1, 3, 5, respectively?

v Due: until 6 PM Friday of this week (26!, March)

Example: 3 VMs A, B, Cwith 3 : 2 : 1 share ratio

A 2 4 6 8 10 10
B 3 3 6 6 6 9 9 9 12
C 6 6 8 6 B 68 12 12 12

J. Choi, DKU
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Appendix 1: 7.9 No More Oracle

s How to predict the length of a job (run time)?
v By user specification
v By prediction (approximation)

» The CPU time length will be similar in length to the previous ones
(characteristics of program behavior) = exponential moving average

where > 7,,, =predicted value for the next CPU burst

> ¢, = actual length of n” CPU burst
>a,0<a<l
» Validation with o =0.5 and 1,=10 (o determines the weight of each

history)

12

|

————

T, 10

8

—

(S}
a
2

CPU burst (f)

"guess" (T;)

10

1]

8

a

(]

S

[S3

4

5

13

=}

13

11

13

1.2

‘Source: A. SilberschatzI “Oﬁerating system Concept”)
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Appendix 1: Real time scheduling

= Task model: T, (E, D, P,, A)

v E;: execution time, D;: Deadline

v P;: period if periodic task, A;: arrival time
s Scheduling algorithm

v EDF (Earliest Deadline First)
= Executes a job with the earliest deadline

v RM (Rate Monotonic)
= A task with a shorter period has a higher priority (D,= P, in general)

| Task | Execution Time | Period | Priority |
T1 1 4 Hich
T2 2 G Mediuam
T3 -3 12 IL.ow

Preempted Preempted

— Task 3 completes

Task 3 -

Task 2 I

Task 1 [ o Whatif T1 (2,4)7
| | 1 1 1 1 | Time

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 1: A scheduling problem from [1]
Figure 1: “Critical instant™ analysis, also from [1]

(Source: https://www.eecs.umich.edu/courses/eecs473/Labs/Lab3F17.pdf)

I J. Choi, DKU
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Appendix 3: 10.1 Multiprocessor Architecture

s CPU cache is much complicated in Multiprocessor

v Cache coherence: maintain coherence among caches

= A program running on CPU1 reads data from address A
CPU1 fetches the data and keep it its cache (assume its value is D)
The program modifies D into D’. CPU1 applies the delayed write
OS decides to schedule the program into CPU2 (due to load balancing)
The program re-read the value from address A.
The value is the old one(D), not the correct one (D’) = incoherent

v Bus snooping: one of mechanisms for supporting coherence
= Monitoring cache, Invalidate or update if data is modified

CPU CPU

Cache Cache
I I Bus

Memory

Figure 10.2: Two CPUs With Caches Sharing Memory

J. Choi, DKU
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Appendix 3: 10.2 Don’t Forget Synchronization

s Another issues

v Mutual exclusion on shared data

» |Imagine if programs on two CPUs enter the List_Pop() routine at the
same time

» The first program executes line 9 while the second one executing line
8. What is the right content in the value (or head) variable?

» May cause invalid pointer, double free, same value return, ...
v Synchronization such as locking is required for correctness

1 typedef struct _ Node t |
2 T value;
3 struct _ Node t snext;
4 ] Node t;
5
6 int List Popl) |
7 Node t +tmp = head; // remember old head ...
B int wvalue = head->value; 4 ... and its value
9 head = head->next; // advance head to next pointer
10 free (tmp); // free old head
n return value; // return value at head
12 ]
Figure 10.3: Simple List Delete Code
I J. Choi, DKU
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