DANKDOK UNMIVERSITY

Lecture Note 4. Concurrency:
Thread and Lock

March 23, 2021

Jongmoo Choi

Dept. of software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)
[J. Choi, DKU

Contents

From Chap 25~29 of the OSTEP
Chap 25. A Dialogue on Concurrency

Chap 26. Concurrency: An Introduction
v Heart of problem: un-controlled schedule
v Race condition, Mutual exclusion, Atomicity, ...

Chap 27. Interlude: Thread API

v Thread vs. Process
v Thread manipulation: creation, completion, mutex

Chap 28. Locks
v Evaluation method
v Building method: Four atomic operations
v Spin vs. Sleep

Chap 29. Locked Data Structure

v list, queue, hash, ...

Chap. 25 A Dialogue on Concurrency

Student: Umm... OK. So what is concurrency, oh wonderful professor?
Professor: Well, imagine we have a peach —
Student: (interrupting) Peaches again! What is it with you and peaches?

Professor: Ever read T.S. Eliot? The Love Song of |. Alfred Prufrock, “Do I dare
to eat a peach”, and all that fun stuff?

Student: Oh yes! In English class in high school. Great stuff! I really liked the
part where —

Professor: (interrupting) This has nothing to do with that — I just like peaches.

Anyhot, rmagine there are a lof of peaches on a fable, and a ol of people who
wish to eat them. Let's say we dm’ it this way: cﬂmh eater ﬁraf tdenﬂﬁe:, a peach

Student: Hmmm... seems like you might see a peach that somebody else also
sees._If they get there first, when you reach out, no peach for you!

Professor: Exactly! So what should we do about it?

Student: Well, probably develop a better way of going about this. Maybe form a
line, and when you get to the front, grab a peach and get on with if.

Professor: Good! But what's wrong with your approach?
Student: Sheesh, do I have to do all the work?

Professor: Yes.

Student: OK, let me think. Well, we used to have many people grabbing for
peaches all at once, which is faster. But in my way, we just go one at a time,
which is correct, but guite a bit slower. The best kind of approach would be fast

and correct, probably.

< Shared data, Race condition, Atomicity, Performance , Fine/Coarse-grained locking, ...

I J. Choi, DKU
3

Chap. 26 Concurrency: An Introduction

s Sofar

v CPU virtualization
= Goal: Enable multiple programs to be executed (conceptually) in parallel

» How to: Make an illusion that we have virtual CPUs as many as the # of
processes

v Memory virtualization
» Goal: Share physical memory among processes in an isolated manner
» How to: Create an illusion that each process has a private, large address space
(virtual memory)

s From now on

v Multi-threaded program
» Thread: flow of control
» Process: one flow of control + resources (address space, files)

= Multi-threaded program (or process): multiple flow of controls + resources
(address space, files)

Multiple threads share address space
cf.) Multiple Processes do not share their address space

v Concurrency
» Shared data = race condition =» may generate wrong results
= Concurrency: enforce to access shared data in a synchronized way

I J. Choi, DKU

26.1 Why Use Threads?

s [hread definition

v Computing resources for a program

» CPU: registers (context), scheduling entity

» Address space: code, data, heap and stack

» Files: non-volatile data and I/O devices
v Process model

= Use all resources exclusively

» fork(): create all resources = better isolation, worse sharing, slow creation
v Thread model

» Share resources among threads: code, data, heap and files

= Exclusively resources used by a thread: CPU abstraction and stack

» pthread_create(): create exclusive resources only =» fast creation, better
sharing, worse isolation

| code || data || files | | code || data || files |

| stack | |registers| |registers| |registers|

| stack || stack || stack |

thread —— ; é ; §<—— thread

single-threaded process multithreaded process

(Source: A. Silberschatz, “Operating system Concept”) J. Choi, DKU

26.1 Why Use Threads?

s Benefit of Thread

v Fast creation
* Process: heavyweight, Thread: lightweight

v Parallelism

= Example: sort 100,000 items
Single thread =» scan all for sorting
Multithread: divide and conquer (Google’s MapReduce Model)

v Can overlap processing with waiting (e.g. I/O waiting)

= Example: web server
Single thread: receive, processing, response
Multiple thread: receive thread, processing thread x n, response thread

v Data sharing

(2) create new
(1) request thread to service
the request

- [corver | (T ————
client server thread

(3) resume listening
for additional
client requests

<+ Make SW (e.g. browser, web server): either using multiple processes or multiple threads?

Wan utilize CPUs), but different sharing semagtncg}<U

6

26.1 Why Use Threads?

Thread management
v Several stacks in an address space

» Stack: called as thread local storage since each thread has its own stack

v Scheduling entity
= State and transition
Thread state: Ready, Run, Wait, ... (like process)
» Each thread has its own scheduling priority
= Context switch at the thread level

= = TCB (Thread Control Block)
for thread-specific information management

OB oOKB
Program Gode wlﬂ?mcﬁsﬁnﬁg%xqie Program Code
1KB 1KB
tha F) | ¢
Heap contﬁiggs:%gj?ngcmdagam Heap
nar ta structu
2KB R it D 2Ke
w (free)
(free)
Stachk {(2)
lf_:l grm\r}? upw ard) (free)
the stachk s LEE:= 1] 8
15KB contains Ioc.alﬂgarialﬂes 15KB
Iy nt=s 1§ i 1
Stack Nl e Stack (1)
16KB 16KB

Figure 26.1: Single-Threaded And Multi-Threaded Address Spaces
7

J. Choi, DKU

26.2 An Example: Thread Creation

= [hread API

v pthread_create(): similar to fork(), thread exits when the passed
function reach the end.

v pthread_join(): similar to wait(), for synchronization

finclude <stdio.h>

i

2 finclude <assert.h>

3 #include <pthread.h>

4

5 void smythread(void =arg) |

f printf("%$s\n", {(char *)}) arg);

7 return NULL;

s)

9

10 ink

11 main({int arge, char xargv[])] {

12 pthread t pl, p2;

13 10k e

14 printf ("main: begin\n™);

15 ro = pthread create{&pl, NULL, mythread, "A"); assert{rc = 0});
16 rc = pthread create{&p2, NULL, myvthread, "B"); assert (rc = 0};
17 // join waits for the threads to finish

18 ro = pthread_ Tjoin(pl, NULL); assert(rc == 0);
19 rc = pthread_ Fdoin(p2, NULL); asserti{rc == 0);
20 printf {("main: endin™)};
21 return 0O;
22

Figure 26.2: Simple Thread Creation Code (t0.c)

I J. Choi, DKU
8

26.2 An Example: Thread Creation

= lhread trace

v Threads: main, thread1, thread?2

v Scheduling order: depend on the whims of scheduler
= Main = create t1 = create t2 = wait = run t1 = run t2 = main: Fig. 3
= Main = create t1 = run t1 =» create {2 = run t2 = wait = main: Fig. 4
= Main = create t1 =» create t2 = run t2 = run t1 =» wait = main: Fig. 5

main Thread1 Thread2 main Thread1 Thread2 main Thread1 Thread?2
starts running starts running starts running
prints “ main: begin” prints “main: begin” prints “main: begin”
creates Thread 1 exvates Thmearl] creates Thread 1
3 runs creates Thread 2

cmgtes Thread 2 prints “A” s
waits for T1 returns prints “B”

runs creates Thread 2 returns

priﬂtﬁ A s -~ waits for T1

returns prints “B —
waits for T2 | returns prints “A”

P wri:frfriri;}amdi ttely: T1 is done -
. T CLUTIS CL; 5 ; e f
'P]_']nts B e I: '{‘2 { u waits tﬂl’l TE . :
- WalB It ke , returns immediately; T2 is done
el 5 gl returns immediately; T2 is done etk i and®
prints “main: end prints “ main: end” ; :
; : Figure 26.5: Thread Trace (3
Figure 26.3: Thread Trace (1) Figure 26.4: Thread Trace (2) BE)
[J. Choi, DKU

26.3 Why It Gets Worse: Shared Data

s Shared data example (see Figure 2.5in LN 1)

Ll R I T O R S]

19

KRR R
[=

CHENRNES

o
[

ey le]

| |

#Finclude <stdio.h>
#incluode <ptrhreasd. . h>
#finclude "mythreads.h"™
static wvolatile int counter = 0Oj;
Ay
S mythread()
£
S Bimply adds 1 to counter repeatedly, in a loop
SO Mo, this is nmot how you woxald add 10, 000,
LS oa coanter, baot it shows the problem nicely.
Ty
woia o=
mythread (void =arg)
i

printf{"%Ss: beginhn"™, fchar «) arg)lis

it &7

Ffor (i = Q§Ff 4 = dedig 43F+)]

counter = counter + 1
printf{("%s: done\xn™, (char <) arg)irF

returm NIOLL.g

P
A main ()
LA
S Just Iauvnches two
S5 o and then wait=s fo
A
it
main{int argoc, chax
{
pthread t+ pi1, p2
printf{"main: be

Pthread create{spl,
Ethread create(spZ,

P

Pthread Jjoin
Pthread_joirx
printf{"mai

Join

L=

(1.,
ez,

i fua s

-B-%-1

raetuarma O

threads
r thaem

cargwi(])

v

gin
MIJLL,
M1,

= for the threads

MULLI) ;
MNULL)

dona with both

{counter =

(pthread create)

el]

(pthread Join)

=d) o™,
mythread,
mythread,

Finiah

[countaer =

Ccounter) §

Edy o™,

countarc)

Figure 26.6: Sharing Data: Uh Oh (t1.c)

Choi, DKU

26.3 Why It Gets Worse: Shared Data

s Results of the shared data example

prompt>
prompt>
main: be
A: begin
BE: begin
A: done
B: done
main: do

gcc —o main main.c —Wall —pthread
./main
gin (counter

0)

ne with both (counter 20000000)

prompt> ./main

prompt> ./main

main: begin (counter = 0) main: begin (counter = 0)
A: beqgin A: Dbegin
B: begin B: begin
L done A: done
B: done B: done
main: done with both (counter = 19345221) main: done with both (counter = 19221041)
v Different results (not deterministic)
v Big question? Why does this happen?
I J. Choi, DKU

11

26.4 The Heart of Problem: Uncontrolled Scheduling

= High level viewpoint CPU DRAM
19 for (i = 0; 1i < leT; i++) {
20 counter = counter + 1;
21 } .
s CPU level viewpoint eax
100 mov 0x804%lc, %eax : : (0x8049a1c)
105 add $0x1, %eax v I
108 mov___ %eax, 0xB04%lc ! }

s Scheduling viewpoint

(after instruction)

0s Thread 1 Thread 2 PC “eeax counter
before critical section 100 4] 50
mov x8049alc, Theax 105 50 50
add $0x1, %eax 108 51 50
interrupt
save T1's state
restore T2 s state 100 0 50
mov Ox8049alc, Yeeax 105 50 50
add $0x1, Yeeax 108 51 50
mov Yeeax, 0x8049a31c 113 51 51
interrupt
saove T2's state
restore T1's state 108 51 51
mov %eeax, 0x804%9alc 113 51 51

Figure 26.7: The Problem: Up Close and Personal

<+ The counter value increases only 1, even though two additions are performed

<~ Some students show their caEabiIig while using pthread_mutex_lock() in the 1st rjjogwheyvg%.
. ol,

12

26.4 The Heart of Problem: Uncontrolled Scheduling

s Reason
v Two threads access shared data at the same time =» race condition

v Uncontrolled scheduling = Results are different at each execution
depending on scheduling order

= Solution
v Controlled scheduling: Do all or nothing (indivisible) =» atomicity

v The code that can result in the race condition = critical section
» Code ranging from 100 to 108 in the example of the previous slide
v Allow only one thread in the critical section =» mutual exclusion

Aspiring

nnnnnnnnnn
S

Cromwell

TTTTTT

National Park “Manapouri 2l
H il

(One-lane Tunnel to Milford Sound in New Zealand)

I J. Choi, DKU
13

26.6 One More Problem: Waiting for Another

s [wo issues related to concurrency
v Mutual exclusion: only one thread can enter a critical section

v Synchronization: one thread must wait for another to complete some

action before it continues

ASIDE: KEy CONCURRENCY TERMS
CRITICAL SECTION, RACE CONDITION,
INDETERMINATE, MUTUAL EXCLUSION
These four terms are so central to concurrent code that we thought it
worth while to call them out explicitly. See some of Dijkstra’s early work
[D65,D68] for more details.

e A critical section is a piece of code that accesses a shared resource,
usually a variable or data structure.

e A race condition arises if multiple threads of execution enter the
critical section at roughly the same time; both attempt to update
the shared data structure, leading to a surprising (and perhaps un-
desirable) outcome.

e An indeterminate program consists of one or more race conditions;
the output of the program varies from run to run, depending on
which threads ran when. The outcome is thus not deterministic,
something we usually expect from computer systems.

e To avoid these problems, threads should use some kind of mutual
exclusion primitives; doing so guarantees that only a single thread
ever enters a critical section, thus avoiding races, and resulting in
deterministic program outputs.

I
14

J. Choi, DKU

Chap. 27 Interlude: Thread API

s [hread classification

v User-level thread

» Thread managements are done by user-level threads library including user-
level scheduler

v Kernel-level thread
» Thread managements are supported by the Kernel (Most operating systems)
v Three representative libraries: pthread, Windows thread, Java thread

» |n this class, we focus on the pthread in Linux which is implemented using
clone() system call with sharing options (pthread based on kernel thread)

task 1 task 2 task 3

user-level thread

| . lightweight process

kernel thread 2 2222 2

. . e :
- = i R TR
e ST e

-

-

I J. Choi, DKU

27.1 Thread Creation

s [hread creation API

finclude <pthread.h=>
int
pthread create | pthread t =«
const pthread attr t =
wvoid =
void =

thread,
attr,

{*start_routine) {(voidx*),

arg);

v Arguments: 1) thread structure to interact with this thread, 2) attribute of
the thread such as priority and stack size, in most case it is NULL (use
default), 3) function pointer for start routine, 4) arguments

s Example

1 #include <pthread. h>
=
3 twvpedef struct _ mvarg t {
% int agri
5 int b;
6 } myvarg t;
B void smythread(void *arg)
o my3arg t *m = (myarg_t =*=)} arg;
10 printf{("sd &dwn", m—>a, m—>b) 7
11 returmn MULI.;
12 |
13
14 it
15 main{(int argc, char =argwvi[]}
16 pthread t©t pr;
17 int rcs
15
19 myarg t args
) args.a = 10;
21 args.b = 20;
. rc = pthread create (&p. NULL,, mythread, Eargs) i
- | }
Figure 27.1: Creating a Thread

16

J. Choi, DKU

27.2 Thread Completion

s Wait for completion

int pthread join(pthread t thread, void ++value ptr);

v Arguments: 1) thread structure, which is initialized by the thread
creation routine, 2) a pointer to the return value (NULL means “don’t

care”)
s Example

L B B T

Ll

Finclude <stdic.h>

#include <pthread. h>
finclude <assert.h>
finclude <stdlib.h>

typedef struct myarg__t |
int aj
int Iy

Y myarg t©i

typedef struct myret_t |
int x5
int w;

} myret_t;

void «mythread(void =arg) 4

myarg t «m = ({(myarg t =) arg;

printf ("4 Fd\n", m—>a, m—>=b};
myret t #1r = Malloc{si=zeof (myret_t})
r—=x = 17

r—>% = 27

return (void *) 15

main{int argc, char wargwv[]1) {

I F

args.a =
args.b = 20;
Pthread create (&p, NULL, mythread, Eargs)y

Pthread Hoin (p. (void ==} &m);
printf ("returned %d Sd\n", m—>=x, m—=¥);

retiurn

]
k1]

Figure 2|?/-2: Waiting for Thread Completion

J. Choi, DKU

27.2 Thread Completion

s Be careful: do not return a pointer allocated on the stack

v Modified version of Figure 27.2

m—>b) ;

// ALLOCATED ON STACK: BAD!

1 void smythread(void =xarg) {

2 myarg t +m = (myarg_t *) arg;
3 printf{"=d sd\n", m—>a,

4 myret E 1;

5 r.x = 1;

6 r.y = 2;

7 return (void *) &r;

8

» Variable r is allocated on the stack of mythread

* Note that when a thread returns, stack is automatically deallocated

choijm@choijm-VirtualBox: ~f2017_05S

chol jm@chol jm—VirtualBox :7/2017_05%
ichoi jm@chol jm=VirtualBox :7/2017_05%
imythread: 10 20

return values 102
f:hDijm@chDijm—virtuaanx:”KZGi?_DS$

2T 2

ichol jm@chol jm—VirtualBox ™/ 2017 _05% gcc —o 27.2_ext 27.2_ext.c —-lpthread

i2T7.2 ext.c: In fFunction

127.2_ext.c:21:2: warning:
return (void %) Br:

iDhDijm@chDijm—VirtualBDx:”KZOi?_DSS

chol jm@chol jm—VirtualBox ™/ 2017_05% ./ 27.2_ext

mythread: 10 20

ireturn values O 0O

!chDiim@chniim—Virtuaanx:”KZOi?_D5$

mythread”® :

function returns address of local wvariable [-Wreturn—-local-addr]

J. Choi, DKU

27.3 Locks / 27.4 Condition Variables

s Concurrency mechanisms

v Mutual exclusion APl (mutex_***): for mutual
= API

exclusion

int pthread mutex lock (pthread mutex €t «mutex)} ;
int pthread mutex unlock {pthread mutex T +mutex);
= Example
pthread mutex t lock;
EEn
int r¢ = pthread mutex init (slock, NUJI.I.) 2
assert {ro == 0} ; Y always check success!
Thread 1 Thread 2
pthread mutex_lock{&lock); pthread mutex_lock (&lock);
¥ =x+1; // or whatever your critical section 1s x=x+1; // or whatever your critical section 15
pthread_mutex_uniock (&lock); pthread mutex_uniock(&lock);

1) Lock free =» entering CS. 2) Lock already hold = not return from the call

v Condition Variables: for synchronization

int pthread cond_wait (pthread cond t

= API

«cond, pthread mutex t +~mutex);

= Example

| mutex lock(&lock);
eady == 0)

ead cond_wait (&cond,

mutex unlock(&lock);

i &
r

&lock);

ol

Guarantee that some part (e.g. initialization) wi

I
19

int pthread cond signal (pthread cond t *cond);
Thread 1 Thread 2
pthread mutex t lock = PTHREAD MUTEX_ INITIALIZER; Pthread mutex lock (&lock};
pthread cond t cond = PTHREAD CCND INITIALIZER; ready = 1;

Pthread cond signal (&cond);
Pthread mutex unlock({glock);

Il execute before others (service)
J. Choi, DKU

‘QUIZ)

Quiz for 5th-Week 1st-Lesson

TIME]
s Quiz

v 1. Discuss the differences between fork() and pthread_create() using

the term of computing resources (CPU, address space, file).

(1 1] [T 1}

v 2. Explain the "shared resource”, “race condition“, “atomicity”, “critical
section” and “mutual exclusion® using the program in Figure 26.6.

v Due:

T
ENFNBUNECOENIN U NE

o

et}

until 6 PM Friday of this week (2", April)

I azcle =prthread L o1
Fimoc luadds bl o 15 % =4 e ods =)
Sstoat 3 o olat i ia Tt coumnmtexr = =]
o~ my L Erre=md)
o~
M F SEimp iy adds= 1 to Ccomnter raepeatedloay . iTe = 1o
o~ | o e} = Fn = 5 = i oo T ot o ne E oo =i O, OO, s =
o = — e = =gtk = = £ = shows=s tThae erolbhlam = T Bt = B I Y
e
= i |
mythramd S} = | = {= g
: Print £ ("Ss=s kbeogdinnthuea™ (=i = = o)

Foxr (5 2 — O AR =7 e

ORI rr e — ot e
=p =g S o ("= Ao e ™ C=Ex=ma 1 =ITCED F
et aa =

=y = { = orar = = A ™ LI T e T)
| o | | my tthraead = - |
e (| == FITTT.T- mytthraead e =
o T er = @ = Foo i e Thrae=ad=s L=l = Firri=slkr
FILTE-T-
FILFE-T-%»
A raes wer &t B It CCoirrrdte = =i o™ PR SE ol == T

Figuaimse 2606 Sharimg, T ata: Tih «Oh (t1.ch

20

Chap. 28 Locks

Locks
v Basic idea
v How to Evaluate?

Realization
v 1) Controlling interrupt

v 2) SW approach
v 3) HW approach: using atomic operations

» Test-and-Set, Compare-and-Swap, Load-Linked and Store-Conditional,

Fetch-and-Add, ...
Building and Evaluating spin locks
Sleeping instead of Spinning: using Queues
Different OS, Different Support

21

J. Choi, DKU

28.1 Locks: Basic Idea / 28.2 Pthread Locks

s Critical section example

balance = balance + 1;

v Other critical sections are possible such as adding a node to a linked
list, hash update or more complex updates to shared data structures

s Mutual exclusion using lock
v Using lock/unlock before/after critical section (generic description)

1 lock t mutex; // some globally;—*" et et B I
- mutex = 0; /* 0: free, 1: owned */
3 lock (&mutex) ;
4 balance = balance + 1; T1 T T
5 unlock (&mutex) ;
lock v lock . lock(&mutex) y
= Guarantee that only one thread ~ '°c®mutex) 7 lock(Bmutex) :
v Real example: pthread
unlock(&mutex)Y v
» pthread _mutex_lock()
= pthread_mutex_unlock()
unlock(&mutex)y :
v v unlock(&muteJ
I J. Choi, DKU

22

28.3 Building A Lock / 28.4 Evaluating Locks

= How to build the lock()/unlock() APIs?
v Collaboration between HW and OS supports

s How to evaluate a lock()/unlock()? =» Three properties
v 1) Correctness: Does it guarantee mutual exclusion?
v 2) Fairness: Does any thread starve (or being treated unfairly)?

v 3) Performance: Overhead added by uﬂng the lock

| ' n n n

= One issue: lock size '. H.’
v Three shared variables = how many Ig
v Coarse-grained lock
» Prefer to big critical section with smaller number of locks (e.g. one)
* Pros) simple, Cons) parallelism
v Fine-grained lock
= Prefer to small critical section with larger number of locks (e.g. three)
» Pros) parallelism, Cons) simple

I J. Choi, DKU

23

28.5 Controlling Interrupts

s How to build the lock()/unlock() APIs?

v First solution: Disable interrupt
* No interrupt = No context switch =» No intervention in critical section

1 void lock () {
2 DisableInterrupts|();

ﬁoid unlocki{) {
EnableInterrupts();

LE LI~ R

* Pros)
Simplicity (earliest used solution)
= Cons)
Disable interrupt for a long period =» might lead to lost interrupt

Abuse or misuse = monopolize, endless loop (no handling mechanism only
reboot)

Work only on a single processor (Not work on multiprocessors) = Can
tackle the race condition due to the context switch, not due to the concurrent
execution

=>» used inside the OS (or trusty world)

I J. Choi, DKU
24

28.6 Test-and-Set (Atomic Exchange)

= How to build the lock()/unlock() APIs?

v Second solution: S\W-only approach

L= T~ < R~ N - T o N T 75 5 B

typedef struct _ lock t { int flag; } lock t;

vold init (lock t «~mutex) |
// 0 —> lock is available, 1 —> held
mutex—->flag = 0;

}

void lock(lock t *mutex) |

while (mutex->flag == 1) // TEST the flag
; // spin—wait (do nothing)
mutex—>flag = 1; // now SET it!

void unlocki{lock £ +mutex) {
mutex—>flag = 0;
i

Figure 28.1: First Attempt: A Simple Flag

e [s it correct?

25

J. Choi, DKU

28.6 Test-and-Set (Atomic Exchange)

s How to build the lock()/unlock() APIs?

v Problems of the SW-only approach

= Correctness: fail to provide the mutual exclusion
Both thread can enter the critical section
Test and Set are done separately (not indivisible)

Thread 1 Thread 2
call 1ock ()

while (flag == 1)

interrupt: switch to Thread 2

call 1ock ()

while (flag == 1)

flag = 1;

interrupt: switch to Thread 1
flag =1; // set flag to 1 (too!)

Figure 28.2: Trace: No Mutual Exclusion

= Performance

Spinning (Spin-waiting): endlessly check the value of flag
CPU is busy, but doing useless work

I J. Choi, DKU

26

28.6 Test-and-Set (Atomic Exchange)

s How to build the lock()/unlock() APIs?

v There are many S\W-only approaches: Such as Dekker’s algorithm,
Peterson’s algorithm, ...

ASIDE: DEKKER'S AND PETERSON'S ALCORITHMS

In the 1960"s, Dijkstra posed the concurrency problem to his friends, and
one of them, a mathematician named Theodorus Jozef Dekker, came up
writh a solution [[D68]. Unlike the solutions we discuss here, which use
special hardware instructions and even OS support, Dekker’s algorithm
uses just loads and stores (assuming they are atomic with respect to each
other, which was true on early hardware).

Dekker’'s approach was later refined by Peterson [P81]. Once again, just
loads and stores are used, and the idea is to ensure that two threads never
enter a critical section at the same time. Here is Peterson’s algorithm (for
two threads); see if yvou can understand the code. What are the £f1ag and
turn variables used for?

ITntE ETaglElz

drits i rary

wresdoel Samaca) {
FlaglO] = f£lagll] = Dz A I ——thread wants to grab Ilock
tarn = Of S whose Tturna? {icChread 0 o 17)

}

woid ool () {
Flagliself] = 15 A sl F thread ID of callsas:
tarn — 1 — =salfr LX make Gt other thread” s tuarn
wrhile {({(flagll—s=1%¥] = 1) - {curm — 1 — se1 F))

wvoild anlock () {
Fflagisel f] = 0Oz ALY sdmply undo yvounr dnternt
1

* Pros) SW solution

= Cons) 1) not easy to understand, 2) Inefficient (a little HW support can
provide the same capability efficiently), 3) incorrect in modern systems

that use the relaxed memory consistency model =» not used any more

I J. Choi, DKU
27

28.7 Building A Working Spin Lock

s How to build the lock()/unlock() APIs?

v Third solution: Using HW atomic operations

» Test-and-Set instruction (a.k.a atomic exchange) in this section

fetch old wvalue at old ptr

'new’ Iinto old pLr
the old walue

1 int TestAndSet (int +*old ptr, int new) ({
2 int old = xold ptr; //

3 *»old ptr = new; // store

4 return old; [/ return

5 }

= All (both test the old value and set a new value) are performed atomically

» Instruction in real systems: xchg in Intel, Idstub in SPARC

v Implement lock using the Test-and-Set instruction

L& lock—>flag = i
¥ }

1 typedef struct _ lock t {

2 int flag;

3 b keck T

4

5 voild init(lock t +=lock) |

6 S 0 indicates that lock is awvailable, 1 that it is held
7 lock—>flag = 0©;

8

9

{1 void lock(lock t +lock) |

11 while (TestAndSet(&lock->flag, 1) == 1)
17 ;7 /4 spin—wait (do nothing)

13

14

15 void unlock{lock t xlack) |

Figure 28.3: A Simple Spin Lock Using Test-and-set

—

J. Choi, DKU

28.8 Evaluating Spin Locks

s How to build the lock()/unlock() APIs?

v Third solution: Using HW atomic operations

v Evaluating of the Third solution

= Correctness

Does it provide mutual exclusion? = yes

Guarantee that only one thread enters the critical section
= Fairness

Can it guarantee that a waiting thread will enter the critical section? =
unfortunately no.

E.g.) 10 higher priority threads and one low priority thread =» the latter
one may spin forever, leading to starvation

» Performance
In the single CPU case: Overhead can be quite painful: waste CPU
cycles (until a context switch occurs!)

In the multiple CPUs case

Spin locks work relatively well when the critical section is short =» do not waste
another CPU cycles that much

Usually spin lock is employed for the short critical section situation

I J. Choi, DKU
29

28.9/10 Compare&Swap/Load-Linked&Store-Conditional

s Another atomic operation (example of the third solution)

v Compare-and-Swap instruction

= Compare the value specified by ptr with the expected one. If matched, set
the new value Then, return the previous value. All are done atomically

llllllllllll dSwap {3t o =t ol o¥E 3 i = oo poesao it e i, = o e Ty) {
= st (ac?lhal _— i = e
= s (acicuaal =—=— ‘3XE%&:tEﬂj}
= St = Tie=wW g
= et uarn actuaual
L= ¥
Figure 285.4: Compare—and-swwap

= How to use Lock o1 Toor (Ioek © #I55KT 1

while {CompareAndSNap(& ock—>flag, 0, 1) == 1)
; // spin

L T VR

}

v Load-Linked and Store-Conditional supported by MIPS, ARM,
. Prevent between load and store.

Fint Loadi.dnked (int e B
= retuarn >t 5
=
a
= int StoreCondition=l (int >ptr, At walue)
L= i [s8] T has upeEdated R = = = since the Loadl.inked to thhis address)
- ot — A lile g
8 reftaarr s o success !
B } else
LOr rre=etuaxrm o s P Failed te update
1
Figure 28.5: Load-linked And Store—conditional
1 woid lock {(lock + »~lock) i
™ e while (1) i
OW O uSe OC <] while (Loadl,. inked{&slock—>=flag) —_—— 1)
4 H Y O spimnm untbil itErs =Zero
5 i e (StoreConditional (&lock—=flag, 1) == 1)
& return; s i £ get it—to—1 was a sSsuccess:T all dones
7 S S otherwiser: try it all over again

}

wroid unlock (Lock * 1 ool) {

10
11
12 lock—>flag = 07
13 }
Figure 28.6: Using LIL/SC To Build A Lock

A\ AV}

28.11 Fetch-and-Add

s Final atomic operation
v Fetch-and-Add

1 int FetchhimdhAdd {int =ptr) {
2 int old = =pLr;

3 »pErr = ald -+ 17

4 return old;

5 }

= Atomically increment a value while returning the old value

v Lock APls
1 Cypedef sSstruct lock T {
> o CicketL;
= dmt CTuUurmng
4 } S o L
s
= wWodld d1ock: dnit {(lock © x> 1 aoack) i
v lock—>=tickel - Oz
=3 1lock—>tu1uirn — {5 B
o }
10
11 woid lTlock {locle +«— # 1 o=l) 4
1= dmt myiturn — Fetchanddhdd (selock——ticket) 7
1= while (lock—>=tiuirmn = myLCurmn)
14 ; A spin
15 ¥
16
Bl wold unilock (loclk & =1 ock) 1
1= lock——turn — lock—-Tturn -+ 1 7
1 }
Figure 28.7: Ticket Locks

= Ticket lock: 1) wish to acquire lock = call fetchandadd() with lock-
>ticket, 2) if (myturn == lock->turn) enter the CS, 3) unlock = add turn

» Ensure progress for all threads (once a thread gets a ticket, it will be

scheduled before other threads that have the tickets issued later)

31

J. Choi, DKU

28.12 Too Much Spinning: What Now?

s Lock mechanisms
v Spin lock
» Busy waiting (endless check while using CPU)
= Simple but inefficient (especially for the long critical section)

» E.g.) N threads, RR scheduling, 1 thread acquires locks during the
period of 1.5 time slice =» N -1 time slices are wasted

v Sleep lock

* Preempt and enter into the waiting (block) state, wakeup when the lock
Is released.

= 1) Can utilize CPUs for more useful work, but 2) context switch for sleep
is expensive (especially for the short critical section)

= Need OS supports

admitted

interrupt exit terminated

scheduler dispatch

IO or event completion I/0O or event wait

waiting

I J. Choi, DKU
32

28.14 Using Queues: Sleeping instead of Spinning

n Sleep

v Better than spin since it gives a chance to schedule the thread that holds
the lock (A lot of mutexes are implemented using sleep lock)

s Issues

v Where to sleep? = Using queue

v How to wake up = OS supports
» E.g) Solaris supports park() to sleep and unpark() to wakeup a thread
» Flag for lock variable, Guard for mutual exclusion of the flag, Queue for sleep

IR TRV ST R R VR

21

WHKHRNNNMNRNENEF
[<Y e M R O

Wowww|
Mo

Wl
(]

twpedef =struct ITock £
it Flags
int guardz
agueae b fe =

3 Tock t;

e il ITock init (lock + e TR) i
m—>f 1l ag = O3
m—>guar«d = OF
guueune dndit (m—>ag) 7
wvoid lock (lock + T} i
while (TestAndSet (em—>guaxrd, E _—— i 0)
= A acguire guard lock by spinning
i £ (m—=>=flag == oy
m—>Flag — 1; A lock is acguired
m—>guard = Oz

i} =1 =

gquietie add (m—>>ax, gettbtid ()) F

m—>guard = O
park {}) s
1
weoid unlock (Lock £ 2T) {
whi 1e (TestAndSet (am—>guard, i | = .
H SrSacguire guard lock by spinning
ifF (gueuse empitw (M—>og))
m—>Flag — 0O; T et go of 1loclk g o OoTe . wants = 2 oA
=elsas
unppark (gueus remowe (m—>=ax) F 7 s hoeld lock {for next thread!)

m—>guard = O

Figure 28.9: Lock With OQueues, Test-and-set, Yield, And Wakeup I ChOl, DKU
33

|’@@@| Quiz for 5th-Week 2Md-Lesson
TIME]
I QUiZ

v 1. Explain the correctness of the lock mechanism shown in Figure
28.1 (if it is incorrect, explain why).

v 2. Discuss the tradeoff between the coarse-grained lock and fine-
grained lock.

v Due: until 6 PM Friday of this week (2"9, April)

1 typedef struct _ leck t { int flag; |} lock t; .
: Lock granularity
3 void init (lock t smutex) | : . ; .
\ 1] 0 > lock.ds avatlsbis, 1 -5 heid Coarse-grained: Fewer locks, i.e., more objects per lock
5 mutex->flag = 0; — Example: One lock for entire data structure (e.g., array)
6 — Example: One lock for all bank accounts
8 void lock(lock t *mutex) | W T
9 while (mutex->flag == 1) [/ TEST the flag
0 i ”2_.5131“"'_““ docmathing) . Fine-grained: More locks, i.e., fewer objects per lock
:i WAl b A BoMSET 3L — Example: One lock per data element (e.g., array index)
l:L — Example: One lock per bank account
14 void unlock(lock_t smutex) f{ 6 6
15 mutex->flag = 0; 6' 5' !6’ 3
6 .
Figure 28.1: First Attempt: A Simple Flag “Coarse-grained vs. fine-grained” is really a continuum

‘Source: httﬁs:/lsIideplayer.com/slidel4167835/)
J. Choi, DKU

34

Chap. 29 Lock-based Concurrent Data Structure

s How to use locks in data structure?
v Concurrent Counters
v Concurrent Linked lists
v Concurrent Queues
v Concurrent Hash Tables
v

s Data structure vs Concurrent data structure
v Thread safe (support mutual exclusion)
v Two Issues: 1) Correctness and 2) Performance

CRrRUX: HOwW TO ADD LOCKS TO DATA STRUCTURES
When given a particular data structure, how should we add locks to
it, in order to make it work correctly? Further, how do we add locks such
that the data structure yields high performance, enabling many threads
to access the structure at once, i.e., concurrently?

I J. Choi, DKU
35

29.1 Concurrent Counters

s A Counter without locks: Figure 29.1

v

s A Counter with locks: Figure 29.2

v

<

Incorrect under race condition

Mutual exclusion using locks

Correct? How about performance?

= e = == ~1 L= L=y] e L (= —

= = I - S - M s

typedef struct _ counter t {

int value;
} counter t;

void init (counter t +#c) |
c-»value = (;

|

vold increment (counter t #c) |
c-»valuetst;

|

void decrement (counter t #c)
c->value--;

|

int get (counter t +c) {
return c->value;
J
Figure 29.1: A Counter Without Locks

36

=y
[T - e - LY R U

e Ry
[

16
17
18
19
20
21
22
23
24
25
26
27

28

typedef struct _ counter t {
int value;
pthread mutex t lock;

} counter t;

void init (counter_t =*c) {
c—>»value = 0;
Pthread mutex init (&c—

}

void increment (counter t *c) |
Pthread mutex lock (&c—>1lock);
c—>value++;
Pthread mutex unlock(&c->lock);

}

void decrement (counter t +c) |
Pthread mutex lock (&c->lock);
c—>value——;

Pthread mutex unlock (&c->lock);

int get (counter_t xc) {
Pthread mutex lock(&c—->lock);
int rc = c—>value;
Pthread mutex_unlock (&c—>lock);
return rc;

>lock, NULL);

Figure 29.2: A Counter With Locks

T OTTO T, TN

29.1 Concurrent Counters

s Traditional vs. Sloppy

v Figure 29.3: total elapsed time when a thread (ranging one to four)
updates the counter one million times

v Precise (previous slide): poor scalable
v Sloppy counter: Quite higher performance (a.k.a Scalable counter or
Approximate counter)

= A single global counter + Several local counters (usually one per CPU
core) = e.g. 4 core system: 1 global and 4 local counters

» Lock for each counter for concurrency

» Update local counter =» periodically update global counter (sloppiness, 5
in figure 29.4) =» Less contention =» Scalable

15 . Time Ll LQ Lf; L.-; G
& Siotby 0 0 0 0 0 0
B 104 1 0 0 1 1 0
- 2 1 0 2 1 o
8 30 2 0 3 1 |0
E 5- 4 3 0 3 2 0
5 4 1 3 3 0
0 » o " o 6| 5=0 1 3 4 5 (from L1)
b 2 hreads 4 7 0 2 4 50 | 10(from Ly)

Figure 29.4: Tracing the Sloppy Counters ; pku

] Figure 29.3: Performance of Traditional vs. Sloppy Counters ,
S/

29.1 Concurrent Counters

s Implementation of Sloppy Counter

R = (R R O

NQHHHr“JHHHHH
= Rl I R

BABREBR

g8

31

B B

EREBEEEYR

k

tvpedef struct ___ _counter_t {
Int glokbal; Y global count
rthread mutex t glock:; LY global laock
It local (NUMCPUS] ; Al Iocal icount (per cpu)
pthread mutex_t llock [NMUMCPUS] ; Y - .. and locks
dave threshold; /Y update freguency
} counter t;
S Adnit: record threshold, init locks, init walues
!l of all local counts and glcocbal count
wvoid init (counter_t *xc, int threshold) {
c—>threshold = threshold;
c—>global = 0;

pthread mutex__init(&c—>glock, NULL) ;
T i
fFor (i = 0; i < NUMCPUS; i++) {
c—>locall[i] = 0;
pthread mutex init(&sgc—>1llock[i]l, NULL) ;

L

A/ update: usuallwy, “Just grab local lock and update local amocunt

v once local count has risen by "threshold’, grab glocbkbal
v lock and transfer local walues to it
wvoid update (counter_t *c, int threadID, int amt) i
int cpu = threadID % NUMCPUS;
pthread mutex lock(&c—>1lock [cpul]) ;
c—>local[cpu] += amt; Y assumes amt > 0
if (c—>locallcpul] >= c—>threshold) { S transfer to gldobal
pthread mutex Jlock{sc—>glock) ;
c—>global += c—>local [cpul];
pthread mutex unlock (&c—>glock) ;
c—>local [cpul]l] = 0;

}
pthread mutex_ _unlock (&c—>l1lock[cpul])

=

;

/Y get: just return global amount (which may not be perfect)
int get (counter_t xc) {
pthread mutex_ lock(&c—>glock) ;

int val = c—>global;
pthread mutex unlock (&c—>glock) ;
return val; // only approximate!

} o
Figure 29.5: Sloppyv Cc:jignter Implementation 10i, DKU

29.2 Concurrent Linked Lists

= Implementation k
v How to enhance scalability? lock range a) Before e
v Single return path in lookup(): less bug "at

! sk DZS%C fode shrusenas | 1 void List InJ_t(l e iy I
2 typedelf struct noae_ T 1 = Ll

T = == 3 L->h = NUL
3 int kewy; E Xt? ne
4 struct _ node t =next; 3 pthr < key ‘ll'f key 'DCﬂr N »
3 } node_t; 4 } node3 node2 node]_ NULL
&
7 // basic list {one used per list) ’ b) After Insert (a" done)
. 1-:‘.'1“-:-:“:-* Strot p 5 6 void List_Insert {list_t =*L, int key)
@ = rode t e e U 7 // synchronization Iaigtneeded
10 pthread mutex_t lock; 8 node_t *new = malla’eofmode_t));
11 Poldst_w; 9 if (new == NULL) ({
1z " H

10 error [Ehﬂa.ld}
13 wvoid List Tmit(list t L) { P ¢ :
14 L->head NULL; 11 R 5
15 pthread mutex init (&L->lock, NUOLI.); 12 : ey
%} 13 node4keynode3
17
o int Tist Foserbfiber i 4k ot kel 1 u c) After insert (switched while inserting)
= o oS DSSE ==l — TE Sy 3 15 // SJust lock critical section
1% pthread mutex lock (&L->lock) ; -]
20 node_t »new = malloc(sizecof (node t)): 16 pthread_mutex_lock (&L->lock) ;
21 if (new NULL) { 17 new->next = L->head;
>z perror ("malloc™) ; 18 L->head = new;
23 t ad_mute 1lock {aL->1oc = y .
p_jri_:_ —mf }_.(—t”— 7 - el 19 pthread_mutex_unlock (&L->1lock) ;
24 return —=1; /S fail
25 b 20 }
26 new=>key = keay; 21
7 new-—>next = L->head; 2 int List_Lookup(list_t =L, int key) {
28 L->head = TewW; 23 int rv = -1:
2 pthread mutex unlock L-—>1lock]) = & = i
% return 0; // succes 24 pthread_mutex_lock (&L->lock) ;
3 } 25 node_t »curr = L->head;
32) -) 26 while (curr) {
33 int List Lockup(list t L, int key) { a7 if (curr—>key == key) {
E ¥ pthread mutex lock(&L=>lock); aa - = 5
as node_ t »xcurr = L->head; 28 rv = 0;
36 while (curr) A 29 break;
a7 if (curr—->key = key) { 30 }
3 pthread mutex unlock (&L->lock) ; 31 curr = curr->next;
kil return ; // success 55 }
40 } :
a1 curr curr->next s 33 pthread_mutex_unlock (&L->1lock);
a2 I 34 return rv; // now both success and failfpre
43 pthread mutex unlock{sL->lock) ; 35 H
44 return =1; S/
45 }
Figure 29.7: Concurrent Linked List I Figure 29.8: Concurrent Linked List: Rewritten

39

29.2 Concurrent Queues

= Implementation

v How to enhance scalability? Multiple locks

LB < | I

bﬁmuwuuuuwumwwMNMNBHMM»—-»—-»—-»—-»—-»—-»—-»—-»—-.—-
= QWY NO U RN =00 0E NS0k HOW RN W e WN = DY

42

i

46

typedef struct node__t {
int value;
struct node_ i ~next

} mode__t;

typedef struct gueuse__ Tt {

node_ t ~head;
node__ T *tail;
rthread mutesx headlLock;
rpthread mutesx t+ taillock;

} ueue it ;

wvoid Queue_Tnit (gueue_t *qg) {
node_t «=tmp = malloc{sizeof (node_t))} ;
tmp—>next = NULL;
g—>head = g—>tail = tmp;

pthread mutex_init (&g—>headlLock, NULL)
pthread mutex_ init (&g—>taillLock, NULL)

AT

wvoid Queue_Engueue (guelue__t *d, int walue) i
node_ »tmp = malloc(sizeof (node_t));
assert (tmp I'= WULL}) ;
tmp—>wvalue = walue;
tmp—>next = NIILIL;

rthread mutex lock (&g—>taill.ock) ;
g—>tail-—->next = tmp;

g—>tail = Ltmp;

rthread mutex_ unlock (&g—>taill.ock) ;

ITNIC Daeue_ DPDegueude (gueue__L *4g, 1L =w=wvalue) T
pthread mutex Jock (&g—>headlLock) ;
node_t «tmp = g—>head;
node €t w-newHead = tmp—>next;

if (newHead == NULL) {
Prthread mutex unlock (ag—>headLock) ;

return —1; J/ gueue was empty
1
=wvalue = newHead—>wvalue;
g—>head = newHead;

prthread muautex unlock (&g—rheadlock) ;
frees{(tmp) o

return 0O;

Figure 29.9: Michael and Scott Concurrent Queue

40

J. Choi, DKU

29.2 Concurrent Hash Table

keys buckets entries

- x| Lisasmith | 521-8976 |
002 [x

¢ | JohnSmith | 521-1234 |

= Implementation

fdefine BUCKETS (101)

A

1
2 [x| sandra Dee | 521-9655 |
3 typedef struct __hash_t {
1 list_t lists[BUCKETS]; : x| TedBaker | 4184165 |
5 } hash_t; s
" g\{xl Sam Doe | 521-5030 |
7 void Hash_TInit (hash_t *H) {
8 int 3;
9 for (i = 0; i < BUCEKETS; i++) { -
10 List_TInit (&H->1lists[i]); = Snpte Cimouromt Lt
11 1
12} B 10+
13 2
14 int Hash_Insert (hash_t +=H, int key) { EE-
15 int bucket = key % BUCKETS; =
16 return List_Insert (&H->lists[bucket]
17 } i s 1- * i i
i o 10 20 30 40
Insarts (Thowsands)
19 int Hash_Lookup(hash_t #H, int key) |{ Figure 29.11: Scaling Hash Tables
20 int bucket = key % BUCKETS;
21 return List_lLookup (&H->1ists[bucket], Ih?é?ﬁusing concurrent hash vs
22 }

list with a single lock
(Fine-grained vs course-grained lock)
Figure 29.10: A Concurrent Hash Table

I J. Choi, DKU
41

29.5 Summary

s Concurrency terms
v Shared data, race condition, mutual exclusion
v Lock before/after critical section

s Lock implementation

v HW + OS cooperation
= HW: atomic operations
» OS: queue management
v Spin lock and Sleep lock: Rule of thumb
= Short critical section = spin lock
» Long critical section =» sleep lock
» How about hybrid? =» Two-phase locks (spin at first, then sleep)

s Concurrent data structure

TIP: AVOID PREMATURE OPTIMIZATION (KNUTH'S LAW)

When building a concurrent data structure, start with the most basic ap-
roach, which is to add a single big lock to provide synchronized acoess.
y doing so, you are likely to build a correct lock; if you then find that it

suffers from performance problems, you can refine it, thus only making

it fast if n.r:m:i be. ;l.,_.., Knul.E famously stated, “Premature optimization is
the root of all evil.”

Many operating systems utilized a single lock when first transitioning e
b mulhprncessar&. including Sun 05 and Linux. In the latter, this lock e
even had a name, the big kernel lock (BKL). For many yvears, this sim-
ple approach was a good one, but when multi-CFPU :.vstem.a became the
norm, only allowing a single active thread in the kernel at a time became
a perﬁ:rmﬂ_ru:e bottleneck. Thus, it was finally time to add the optimiza-
tion of improved concurrency to these systems. Within Linux, the more
straightforward approach was taken: replace one lock with many. Within
Sun, a more radical decigion was madet build a brand new pperating sys-
tem, known as Solaris, that incorporates concurrency more fundamen-
tally from day one. Read the Linux and Solaris kernel books for more
. information about these fascinating systems [BCOS, MM,
42

DONALD ("DON") ERVIN KNUTH ﬂp

United States — 1974

For his major contributions to the analysis of algorithms and the design of
programming languages, and in particular for his contributions to the "art
of computer programming” through his well-known books in a continuous
series by this title.

v wnws, DKU

Lab 2: Concurrent Data Structure

s What to do?

v Make a concurrent queue used by producers and consumers
» See Lab2 document at https://github.com/DKU-EmbeddedSystem-Lab/2021_DKU_OS)
= Refer to Figure 29.9 Concurrent Queue

v Requirements

= Three comparisons: 1) with/without locks, 2) fine-grained/coarse grained lock, 3)
Performance under different number of threads

= Reports: 1) Definition, 2) Design/Implementation, 3) Evaluation (including three
comparisons and more), 4) Discussion (observation, new finding, ...)

= Submit: 1) Report = e-learning campus (pdf), 2) report and source codes = TA (with
the name of “lab2_sync_32XXXXXX.tar")

= Environment: Linux (on virtual box or wsl or bare metal)
= Deadline: 6 PM, 16" April (Friday)
v Suggestion
» |f a concurrent queue is rather complex, making a sloppy counter is okay

= Three comparisons: 1) with/without locks (Figure 29.1 vs 29.2), 2) fined-grained/coarse
grained lock (Figure 29.2 vs 29.5) 3) Performance under different number of threads

< e Z0h e (

Mol ME Bet gou HECHE BN 52 2Y)

Operating System

I gy
- OS Lab2 sync - == :
2021. s =
Dankook University
Hojin Shin

QUIZ Quiz for 6"-Week 1st-Lesson

|TIvE)

s Quiz
v 1. Discuss two differences between Figure 29.7 (Concurrent Linked
List) and 29.8 (Concurrent Linked List: rewritten)

v 2. Why the sloppy counter learned in Figure 29.5 is also called the

approximate counter?
v Due: until 6 PM Friday of this week (9%, April)

/b

How can three people paint three walls? No problem if the walls are of equal size and the workers are of equal skills, but quite
problematic when synchronization among them is required.

(Source: https://perso.telecom-paristech.fr/kuznetso/projects/Concur/concur/)

J. Choi, DKU

44

