DANKDOK UNMIVERSITY

Lecture Note 5. Concurrency:
Semaphore and Deadlock

April 2, 2021
Jongmoo Choi

Dept. of software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)
[J. Choi, DKU

Contents

From Chap 30~32 of the OSTEP

Chap 30. Condition Variables

Chap 31. Semaphores

Chap 32. Common Concurrency Problems

J. Choi, DKU

Chap. 30 Condition Variables

s Locks
v Mainly focusing on mutual exclusion

= Condition variables

v Focusing on synchronization (not only mutual exclusion but also
ordering)

v Specifically, used for checking whether a condition is true
= E.g.: 1) whether a child has completed. 2) whether a buffer is filled

void »child(void =»arg) {
peintE ("child\a");
// XXX how to indicate we are done?
return NULL;

int main{int argc, char *argv[]) {
printf ("parent: begin\n");
pthread_t c;
Pthread_ create (&c, NULL, child, NULL); // create child
// XXX how to wait for child?
printf ("parent: end\n");
return 0;

o = A ¥ | R T R

i
oo Y =

o
w2

—
= W
—_

Figure 30.1: A Parent Waiting For Its Child

I J. Choi, DKU
3

Chap. 30 Condition Variables

s Feasible solution 1: busy waiting with a variable

volatile int done = 0;

1

2

3 void xchild(wvoid =arg) {
4 printf ("child\n");

5 done = 1;

f return NULL;

7 b

8

9 int main(int argc, char =argv[]) {
10 printf ("parent: begin\n");

11 pthread _t c;

12 Pthread_create(&c, NULL, child, NULL); // create child
13 while {(done == ()

14 ; 1 spin

15 printf ("parent: end\n");

16 return 0;

Figure 30.2: Parent Waiting For Child: Spin-based Approach

v Generally work, but inefficient (waste CPU time), sometimes
incorrect on multiple children case

I J. Choi, DKU
4

30.1 Definition and Routines

s Feasible solution 2: condition variable
v An explicit queue that threads can put themselves on when some
state of execution (i.e., some condition) is not as desired

v Some other thread, when it changes state, can then wake one (or
more) of those waiting threads and thus allow them to continue.

v pthread APls

pthread_cond_wait (pthread_cond_t +c, pthread_mutex_t +m);
pthread_cond_signal (pthread_cond_t xc);

| Task #1 I | Task #2 | | Task #n |

murtex

I wlkie wile

Condition Variable

Predicate

Condition(s) P —— [Task |=| Task [-| Task

Waiting
Tasks
TRUE

i i, DKU

30.1 Definition and Routines

s Feasible solution 2: condition variable
v Condition variable example

13

int done = Q;
rthread mutex_t m
pLhread cond ©t o

PTHREAD MUTEX TNITIAT.TZAER;
PTHREAD COND_TNITIATLTZFEFR;

void thr exit () i
Pthread mutex lock (&m) ;
done = 1;

Pthread cond_signal {(&c) 7
Pthread mutex unlock (&m) ;

}

void +~child(veid w~arg) {
printf{"childNn®);
thr exit () ;
rectcurn NULL;

1

void thr join|{) i
Piihread mutex lock (&m) ;
while {done == 0)
Pthread cond wait (&c, &m) ;
Pthread mutex_ unlock (&m) ;

int main{int argec, char =argwvi([]) {
pPrintf {("parent: begin’\n") ;
pthread__t p;
Pthread create (&, MUILI., chii i d,; MEIT.T.)Y
thiy Jexdir () ;
printf ("parent: end\n") ;
retcurn O;

Figure 30.3: Parent Waiting For Child: Use A Condition Variable

v Note: 1) wait(): unlock/lock implicitly, 2) while instead of if in join()

6

J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

s The famous Producer/Consumer problem (also known as
bounded buffer problem)

v Scenario
* Producers generate data items and place them in a buffer
= Consumers grab the items from the buffer and consume them
= e.g. DB server, streaming server, pipe, cache, ...
v Issue
= Mutual exclusion
= Empty case: no data
= Full case: no available buffer

Data Buffer 9

° x| | || | | [.Y
o
'xxﬁﬁ____ﬂ;?f MH%H___###,J

Producer Threads Consumer Threads

J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

s Basic structure: without considering sharing
v Shared buffer: put(), get() interfaces
= Assumption: space for only one item (single buffer) =» relax later
v Producer/Consumer: producer(), consumer()

o e FEFEfe=xr
imt Coirmte = L B & irmmitzal 1wy, =mps ity

count
wodadad otk ('t o wal s) I
asssertT [(Ccount == O3] ;
ookt = 1z
x e Ffer = =1 e
imt o=t) i buffer
asssr T [(counts == g L
ook = L
re=turmnm buffex;z
Figure 306 The Put Adond Get Rowatimnes (w10
woild +=producer (voild «Sropl |
2 imt iz
int loops = {zmt } S Tog;
Fox (i = &; 1 = loopss i++) q
Pt (1] ;
r\. I
"
i woild =oconRsumesr (vioid warcyl] |
whilse {1} q
imt tmp = g=t) F§
12 prriontE i ™" E 2\ o™ . Tt} 3
1 F
14
Figure 3L.7: Producec/Consumer Threads (v1)
I J. Choi, DKU

8

30.2 Producer/Consumer (Bounded Buffer) Problem

= Solution 1: Now consider sharing

i & e e e

P E N EEHE SR Y

v Mutual exclusion: mutex
v QOrdering: condition variable

int loops; /) mast initialize somewhsre. . o
o b Corid g
mutex_ t muatbtesx;

wolid =producer {woid wacoop} |

int 33
for (i = 0 i < loops; 4i++) |
Prhreasd mutex Ilock {&Emutex)
1 f Jfoount == 1)
Pthread cond wait (Econd, &Smutex) ;
pat (i) ;

Pohread cond szgoasl {&cond) ;
Pcthread mutex unlock (Emutex) ;

!

woid s=consumsr {vold saaTogp) |

imkt a3j
For (i = 07 i = loops; i++})F |
Pothread mutex lock{&smaotex) ;
3 F [count ==)}
Pthread cond wait (Econd, &mutex) ;
int tmp = get {}

Pochread cond signal {&Econd) ;
Pthread mutex unlock (Emutex) ;
printf {" 3™, tmpl;

b

P
F
."'.I'.
P
F
.-".-"

£
vy
£
iy

g

1

[

=4
=4
[
=h

Figure 30L5: Producer/Consumer: Single CV And If Statement

o [s it correct?

9

count

buffer

J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

16 void wconsumer (void earg) | 4 void #producer (void #arg) {
s Solution 1 (cont’) iy mEnlieenl L,) mi-oniamet
d Sk g — . iF L o 4 fi gt
v Wakeup C1,butrunC2 - oo 00 e
2 Pthread_mutes_unlock (Emutex); 1/ o i Ptaread cond_signal(scond); /] p
z; | printf("4d\n", tmp); ::] Pthread_mutex_unlock (&mutex); /] pt
[% State P State Ty State Count Comment
cl Running Ready Ready 0
c2 Running Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get
Sleep Ready pl Running 0
Sleep Ready p2 Running 0
Sleep Ready p4 Running 1 Buffer now full
Ready Ready p5 Running 1 T.; awoken
Ready Ready p6 Running 1
Ready Ready pl Running 1
Ready Ready p2 Running 1
Ready Ready p3 Sleep 1 Buffer full; sleep
Ready cl Running Sleep 1 Te2 sneaks in ...
Ready c2 Running Sleep 1
Ready c4 Running Sleep 0 ... and grabs data
Ready c5 Running Ready 0 T, awoken
Ready cb Running Ready 0
cd Running Ready Ready 0 Oh oh! No data

Figure 30.9: Thread Trace: Broken Solution (v1)

I J. Choi, DKU
10

30.2 Producer/Consumer (Bounded Buffer) Problem

= Solution 2
v while instead of if

int loops;

1

-1 —cond__t CionicE ;

3 mutex_t mutex;

4

E— woid =producer {vwoid ~axzg) |

" imt i

-4 Eor (i = 07 4d < loops: I+5+)

. Prothread mutex lock {fimaotex) ; L =
a while {count == 1} S5 p2
Lo Fthread cond wait (G&cond, &mutex); /7, p3
i1 put (1) ; CA A =T
£z Pochread cond signal {&cond) A = 1=
L3 Prhread muotex unlock (&Emutex) £S5 pe
L4 b

L5 ’

L&

LT woilid =consumer {(voild sargl {

L8 int g

s For (i = D i = loops; I++})
264 Prhread mutex lock {smutex) ; S5l
Ay while {count == 0O} S5 e
a3 PEhread cond wait (Econd, Esmuteaesx)z JJS =3
EE! int tmp = g=t{) A o
el Fohread cond signal {Econd] § d4=5
a% Pohread mutex unlock (&Emutex) ; LA =
= printE {("Ed "™, tompl
E k
zn i

Figure 30.10: ProducerfConsumer: Single CV And While

<+ Now, is it correct?
—11 J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

s Solution 2 (cont’)

16
17
18
19
20

void *consumer (void #*arg) {

int i;

for (L = 0; i < loops; i++) {
Pthread _mutex_lock (¢mutex);

while (cournt == 0)

4 void sproducer (void arg) {

5 int i;

b for (i = 0; 1 < loops; i++) {
// cl 7 Pthread_mutex_lock (kmutex);

8

// c2 while (count == 1)

2 Pthread_cond_wait (kcond, &mutex); // c3 9 Pthread_cond_wait (kcond, &mutex);
. 2 int tmp = get(); /] ¢4 10 put (i); ,
v Signal to P, butwake up C2 @ sosoien, o i i
% printf("$d\n", tmp); B
2% }
i State Teo State Ty State Count Comment
cl Running Ready Ready 0
c2 Running Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get
Sleep cl Running Ready 0
Sleep c2 Running Ready 0
Sleep c3 Sleep Ready 0 Nothing to get
Sleep Sleep pl Running 0
Sleep Sleep P2 Running 0
Sleep Sleep p4 Running 1 Buffer now full
Ready Sleep p5 Running 1 T.1 awoken
Ready Sleep po6 Running 1
Ready Sleep pl Running 1
Ready Sleep p2 Running 1
Ready Sleep p3 Sleep 1 Must sleep (full)
c2 Running Sleep Sleep 1 Recheck condition
c4 Running Sleep Sleep 0 T.1 grabs data
c5 Running Ready Sleep 0 Oops! Woke T..o
cb Running Ready Sleep 0
cl Running Ready Sleep 0
c2 Running Ready Sleep 0
a3 Sleep Ready Sleep 0 Nothing to get
Sleep c2 Running Sleep 0
Sleep c3 Sleep Sleep 0 Everyone asleep...

Figure 1. 11: Thread Trace: Broken Solwuation {(«2)

12

/1 pl
/{ p2
/! p3
/! pd
// p&
/! pé

30.2 Producer/Consumer (Bounded Buffer) Problem

s Solution 3 (final)

v Two condition variables
= Indicate explicitly which thread | want to send my signal.

1 cond_t empty, £iill;

2 mutex_ t mutex;

3

4 void w«producer (void w=arg) |{

5 Tt 4 3

&6 for (i = 0; i1 < loeps; is++) {

i Pthread mutex_lock (&mutesx) ;

8 while {(count == 1)

=] Pthread cond wait (&dempty, &mutex) ;
10 puat (i) ;

11 Pthread_cond_signal{safill);
12 Pthread mutex unlock (&mutex) ;
13 }

14 }

15

16 void xconsumer (void =arg) {

17 S 0 3 e

18 for (i = 0; i < loops; i++) {

19 Pthread mutex_ lock (&mutex) ;
20 while (count == 0)

21 Pthread_ _cond_wait(&fill, &mutex);
22 int tmp = get () ;

23 Pthread cond_ signal (&demptvy) ;
24 Pthread_mutex_ unlock (&mutex) ;
25 printf ("EFd\n™, tmg);

26 }

27 }

P&gur&jﬂlll:Iﬁmuiucenﬂ:nnsumnET:TEMﬂIETV&&AIHI‘HTﬂIE

I J. Choi, DKU
13

30.2 Producer/Consumer (Bounded Buffer) Problem

fill_ptr

s Multiple buffers cases: final solution

1 imt buffer [MAoX] ;
2 int £ill ptr = 0;z
3 inmt use_ ptx = Oz
4 imt count = 0Oz
5
6 woid put {(int wvalue) { 6
rd buffexr[£ill_ptr] = =waluse;
8 Fill ptr — (£ill ptr + 1) % MAX; 1
=l cowunt++;
1O }
11
e it get () { 8 9
13 int tmp = bufferlluse_ _ptr];
14 uss ptr = (use_ptr + 1) S MAaM; USQJ“r
IS5 cowunt ——a_;
16 returmn btme;
17 }

Figure 30.13: The Correct Put And Get Routines
1 cond__t empty, AL F
2 muitbtex T mutex;
3
4 wvoid +producer (void w~arg) {
5 int 4i;
[5 o (i = 0; i < loops;i d4++) {
7 Prthread mutex lock (&Emutex) ; A =
8 while {(count == MAX) L P2
o Pthread cond wait (&empioy., Emutesx) ; LS O p3
10 52 s e gl IS - P =
11 Pthread cond signal {(&fill) ; PV A ==
12 Pthread maotex unlock (&mutex) ; LS O pe
13 ¥
14 }
15
16 wvoid wconsumer (voaid =arg) {
17 i o e
18 o (i = ©0Oj; i = loops;g a++) {
15 Pthread mutex lock{&smutex) ; FAY A = i
20 while ({(count == 0) PV A =
21 Pthread cond wait (&fill, Emutex) ; A a3
22 inmt tmp = gt () f A A o -
23 Pthread cond signal {(&emptyw) ; P A
24 Pthread muatex unlock (&mutex) ; A =t
25 printE ("®&dN\n™, tme) ;
26 L

¥ .
I - FiEL:Ir-E FION 14 T he Correct Fmﬂ.}fcerfi:nnsmer E?rnn:hmnizalinﬂ oi, DKU

@@@ Quiz for 6t"-Week 2M9-Lesson

TIME

s Quiz
v 1. Explain the three issues that we need to consider for the
producer/consumer problem.
v 2. Discuss whether the below program is correct or not? If incorrect,
describe why?

v Due: until 6 PM Friday of this week (9%, April)

3 rak 1loops; A mast imnitialize somewheEre . . .
cond__t o ruclp
muttex__t mutex;

wold =producer {wvwoid wa-g)k i
= = 3wl P

o i = O3 i < loopsg o oy o o | i
Pohread mutex lock (E&Emutex]) 7 A el
3 i fCcowunt == N } & -
Pehread cond wait (Ecornd, EmiTt e) 7 L0 =3
Pt (k7 P S =T]
5 Pirhreasd ocond szgnsl {&cond) S =5
Pohread mutesx unlock (E&mutc=sx) § b . =] =

£ woild soconsumer {(voild ssT@-oglk I
s 3 ¢ i B
£ o = [0O; E <= loops; i44) i

b Pohresd mrtesx lock {&muabex) ; b e =
> 3 i fCcowunt == [} & =2
=3 Pehread cond wailt (Ecord, cmirtexx) 7 F A R = |
a3 int tmp = gt i) PR =]
24 Pthread cond signal {Scond) g . =5
= Pohread muatesx unlock (&E&Emut=x) § A A~]
T princE {"%d o™, Emr) ;

=]

Figure 30.5: ProducernConsumer: Single OV And If Statement

I J. Choi, DKU
15

Chap 31. Semaphores

s Semaphore

v Well-known structure for concurrency control
= Can be used as both a lock and a condition variable
» Binary semaphore, Counting semaphore

= Can be employed by various concurrency problems including
1) producer/consumer, 2) reader/writer and 3) dining philosophers

v Invented by the famous Edsger Dijkstra

The bouncer represents a semaphore,
These people represent waiting threads. He won't allow threads to proceed
They aren't running on any CPU core. until instructed to do so. wait

signal

Have a nice day, ma'am.

(Source: http://preshing.com/20150316/semaphores-are-surprisingly-versatile/)
J. Choi, DKU

16

31.1 Semaphores: A Definition

s Semaphore definition

v An object with an integer value manipulated by three routines

sem_init(semaphore, p_shared, initial_value)
sem_wait(): also called as P(), down() ...

Decrease the value of the semaphore (S). Then, either return right away
(when S >= 0) or cause the caller to suspend execution waiting for a

subsequent post (when S < 0)
sem_post(): also called as V(), up(), sem_signal() ...

Increment the value of the semaphore and then, if there is a thread waiting

to be woken, wakes one of them up
Others: sem_trywait(), sem_timewait(), sem_destroy()

#include <semaphore.h>
sem_t s;
gefi. AnNnititEs: O 1):

Figure 31.1: Initializing A Semaphore

OO NO Ok QN

int sem wait (sem_t =*=s) {
decrement the wvalue of semaphore s by one
wait if walue of semaphore s is negative

int sem post (sem_t =*s) {
increment the wvalue of semaphore s by one
if there are one or more threads waiting, wake one

Figure 31.2: Semaphore: Definitions Of Wait And Post

J. Choi, DKU

31.2 Binary Semaphores (Locks)

s Using a semaphore as a lock

U W N

* Note that the value of the semaphore, when negative, is equal to the

sem_t m;
sem_init (&m, O,

sem_wait (&m) ;
// eritical section here
sem_post (&m) ;

X); // initialize semaphore to X;

Figure 31.3: A Binary Semaphore (That Is, A Lock)

v Running example
= Can support the mutual exclusion

number of waiting threads

Value Thread O State Thread 1 State

] Running Ready
1 call sem_wait () Running Ready
0] sem_wait () returns Running Ready
(8] (crit sect : begin) Running Ready
o Interrupt; Switch—T1 Ready Running
(@] Ready call sem_wait () Running
-1 Ready decrement sem Running
=1 Ready (sem<{0) —+F+sleep Sleeping
-1 Running Switch—>TO Sleeping
=1 {exrit smoct:s end) Running Sleeping
-1 call sem_post () Running Sleeping
(@] increment sem Running Sleeping
O wake (T1) Running Ready
o sem_post () returns Running Ready
o Interrupt; Switch—T1 Ready Running
(0] Ready sem_wait () returns Running
o Ready (Tt) Running
o Ready call sem_post () Running
al Ready sem_post () returns Running

IO

Figure 31.5: Thread Trace: Two Threads Using A Semaphore

what should X be?

oi, DKU

31.3 Semaphores for Ordering

s Using a semaphore as a conditional variable
v Initial semaphore value: 0 (note: it is initialized as 1 for mutex)

1 sem_t s;

2

3 void =

4 ehild(wveid »arg) 1

5 pEIntE (Pehilda\ai™) ;

6 sem_post (&s); // signal here: child is done
7 return NULL;

8 }

9

10 int

11 main (int arge, char +argwl[]l) |

il
N

sem_init (&s, 0, X); // what should X be?
printf ("parent: begin\n");

pthread_t c;

Pthread create (&c, NULL, child, NULL);
sem_wait (&s); // wait here for child
printf ("parernt: end\n") ;

return 0;

U
OO0 N Oy U e W
——t

Figure 31.6: A Parent Waiting For Its Child

<+ Compare semaphore (this page) with condition variable (page 6) = No “"Done” variable

I J. Choi, DKU
19

31.4 Producer/Consumer (Bounded Buffer) Problem

W
i}

W
IS
w

s Using a semaphore for the producer/consumer problem
v mutex: binary semaphore, full/lempty: counting semaphore

1 At b fF fFfer LVMIAX] 2

2 int £ii1i1 = Q=

= int use = 07

2

5 woid jput (inmtc ~value) {

Iy buffex» [E3i 11] = ~walue; v I.dmne FEFI1
rd £i131 = CEI T T = dy s MAX; v I.ine EF2
8 ¥

t=]

10 4 me gt () i

11 e o Ty et —mpe = huffer [uaase1] 2 v T.7 me 1
1z 1nse = (use —+ T X = MDD 2 Fava T.9 me S22
13 retuirn tmpe;

< = - * Summary of two versions (semaphore in

Figure 31 .9:

1 sem_t emptyv; H H H
: el eemw page 20 vs condition variable in page 14)
; Sem_t mmbess « 1) No count variable (owing to counting semaphore)
= TR SEsEURssrUTRLa CHRE 4 2) ordering =» mutex vs mutex =» ordering (See
2 for (i = 0; i < loops; di++) page 40)
s sem _wailt (&Sempty) ;
=] Ssem__wait (Ssmutesx) ; S Line P11 .5 (MOVED MUTEX HERE . . _)
10 put (i) ; // Liine P2
11 sem _post (&Smutesx) ; S Line P2.5 (- - . AND HERE)
iz sem_post (&full) ; S/ Line P3
13 }
14 }
15
16 woild =wconsumer (void warg) {
17 Sasts= S
18 B =t o {di = O3 1 < loops;; i+—+) i
19 sem__wait (&fwull1) ; S L.ine C1
20 sem _wait (&fsmutex) ; ot Lidne C1 .5 ({MOVED MUTEX HERE. . .)
21 int tmp = get () ; // Line CZ2
22 sem __post (Smutex) ; Vv I.ine CZ2.5 [AND HERE)
23 sem _post (&aemptv) ; S/ Line C3
24 printf ("SdNn", Ttmp)
25 ¥
26 ¥
27
28 int main(int argc, char warg~w[]) {
29 T - - -
30 sem dinit (Sempty, & MAK) ; S MAX buffers are empty to begin with. . .
31 sem. dnit (&Ffull; 0, 5.0 b2 v = & = and 0 are full
32 sem__init (&mutesx, LG i 7 A /Y mutex=1 because it is a lock
A

Figure 31.12: Adding Mutual Exclusion (Correctly)

31.5 Reader-Writer Locks

s Producer/Consumer vs. Reader/Writer
v Producer/Consumer: need mutual exclusion (e.g. list insert/delete)

v Reader/Writer: need mutual exclusion, but allow multiple readers
(e.g. tree lookup and insert)
= Specific comparison
A Producer or Consumer in Critical Section = next Producer or Consumer
must wait
A writer in Critical Section = 1) next writer or 2) next reader must wait

A reader in Critical Section =» 1) next writer must wait, 2) but next reader
can enter (better performance)

» |ssue (related to starvation)

Readers in Critical Section + a writer is waiting =» a reader arrives : wait or
allowed (depending on either writer preference or reader preference)

Readenr ﬁ RReaeadenr ﬁ

J Raeadcdaer=s IJ
CEFaTE e Eaten

C Racadcdae D INatabhbasa

N it e ﬁ Reacde \l

J WA A te 1T= /)
X ARRESSTE wwrza it

— A e ess taor cdatabasoe

31.5 Reader-Writer Locks

s Implementation for reader/writer
v lock: for mutual exclusion on readers

v writelock: to allow a write or multiple readers
» The below implementation prefer readers (writers can starve)

typedef struct _rwlock t {

sem_t lock; Y binary semaphore (basic lock)

sem_t writelock; // used to allow ONE writer or MANY readers

B i readers; S/ count of readers reading in critical section
} Ewlaecls g

wvoid rwlock init(rwlock_ t #1rw) {
rw—>readers = 0;
sem_ init{(srw—>lock, o, i 1 T
sem_init(&rw—>writelock, O, i

rl1 r2

void rwlogk_ cquire_reaJ}ockr%wrock_t * W) {
sem__wai (&Y w—>l1lock) ;
rw—>=rea ers++;
= (rw— eaders == 1)
sem wait (arw—>writeldpck)
sem__post (&rw—>lock) ;

NG URE BN

=
=0V

}

[
U WwN

Ve first reader acguires writelock

e e
o w N
-

}

NN
=

void rwlock_ release readlock (rwlock_ _t *x1rw) {
sem_wait (&rw—>lock) ;
rw—>readers——;
i s (rw—>readers == 0)
sem_post (&arw—>writelock); J/ last reader releases writelock
sem_ _post (&S&rw—>lock) ;

wl w2 wl

void |rwlock acguire_writeldck (rwlock__t ==1rw) {
senf._wit (&srw—>writelock)]

NNNNNN
NG @R W

}

WWwNN
=]

¥

0]
N

void rwlock release writelock (rwlock t© x1rw) {
sem _post (&arw—>writelock) ;

W W w
gk W

¥

[Figure 31.13: A Simple Reader-Writer Lock

22

31.6 The Dining Philosophers

s Problem definition

v There are five “philosophers” sitting around a table.

v Between each pair of philosophers is a single fork (thus, five total)
v The philosophers each have times for thinking or for eating
v

In order to eat, a philosopher needs two forks, both the one on their
left and the one on their right = shared resource =» concurrency

Figure 31.14: The Dining Philosophers

J. Choi, DKU

31.6 The Dining Philosophers

= Solution
v Basic loop for each philosopher

v Now question is how to implement getforks() and putforks()
» Using five semaphores: sem_t forks[5]
= Obtain semaphore before acquire a fork

v Cause Deadlock

= All philosophers obtain their left fork, while waiting their right one
= How to avoid this issue?

s New Solutions

v 1) break ordering, 2) set limit, 3) employ transaction (e.g. the Monitor),
4) more resource, 5) teach philosophers (idea from a student)

&
while (1) A @
think () ;
setfoxis () 7
eat ()
utforlks (¥ ;
B ’ =]
=
Figurce 31.14: The Dining Philosophecocrs (p)

Figure 31.14: The Dining Philosophers
wvoid get_ forks (int p) {

void get_forks (int p) {
sem_wait (&eforks[left(p)]); if (p == 4) | i 7 7
sem_wait (&forks[right (p)l); 3 sem_wait (&forks[right (p)1);
} sem wait (aforks[left (p)]l);
5 } else {
void put_ forks (int p) { sem wait (&forks[left (p)]1):;
sem_post (&forks[left (p)]l); 7 sem_wait (&forks [right (p)]);
sem_post {&forks[right (p)1): s }
¥

= }
Figure 31.15: The get _forks () And put_forks () Routines 24 Figure 31.16: Breaking The Dependency In get_forks ()

|r@@@u

Quiz for 7th-Week 1st-Lesson

TIME
s Quiz

v 1. Explain the meaning of semaphore value in Figure 31.5. In other
words, what does it imply when the value is 1 (or 0 or -1 or even -2)?

v 2. Discuss the differences between the producer/consumer and
reader/writer problem (at lease 2 differences).

v Due: until 6 PM Friday of this week (16", April)

Value | Thread 0 State Thread 1 State
1 Running Ready
1 call sem_wait () Running Ready
0 sem_wait () returns Running Ready
0 (crit sect: begin) Running Ready
0 Interrupt; Switch—T1 Ready Running
0 Ready | call semwait () Running
=1 Ready decrement sem Running
-1 Ready (sem<0) —sleep Sleeping
-1 Running | Switch—T0 Sleeping
-1 (crit sect: end) Running Sleeping
-1 call sem_post () Running Sleeping
0 increment sem Running Sleeping
0 wake (T1) Running Ready
0 sem_post () returns Running Ready
0 Interrupt; Switch—T1 Ready Running
0 Ready | semwait () returns Running
0 Ready (erdtmsect) Running
0 Ready | call sempost () Running
1 Ready sem_post () returns ~ Running

Figure 31.5: Thread Trace: Two Threads Using A Semaphore

25

walt{mutex) walt|mutex)
readers++ readers++

if | readers==1)

If | readers==1)

wait{wrmutex) wait{wrmutex)

signal(mutex) signal{mutex)
Read Here Read Here
walt{mutex) wait{mutex)
readers-- readers--
if{readers==0) if{(readers==0)
signal{wrmutex) signal{wrmutex)

signal{mutex)

(Source: www.chegg.com/)
J. Choi, DKU

signal(mutex)

Chap 32. Common Concurrency Problems

s Concurrency
v Pros: can enhance throughput via processing in parallel

v Cons: may cause several troublesome concurrency bugs (a.k.a.
timing bugs)

s 32.1 What Types of Concurrency Bugs Exist?

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16
OpenOffice Office Suite 6 2
Total 74 31

Figure 32.1: Bugs In Modern Applications

v Total bugs: 105
» Deadlock bugs: 31
= Non-deadlock bugs : 74

v Differ among applications

I J. Choi, DKU
26

32.2 Non-Deadlock Bugs

= Two major types of non-deadlock bugs

v Atomicity-Violation Bugs (From MySQL sources)

[

= = R = L 7 I R

Th¥read 1::
if (thd—>proc_infao) {

fputs (thd—>prec_infe, ...);:

}
Thread 2::
thd—->proc_info = NUILL;

v Order-Violation Bugs

oo R e W N e

e
WM o=

Thread 1:1:
void init{) |

mThread = PR _CreateThread (mMain,

}

Thread 2::
void mMain(...) {
mState = mThread->State;

27

J. Choi, DKU

32.2 Non-Deadlock Bugs

Lol R -2 R 5 B 5 B

ok ek ek ek ek ek
U = W N = O

= Solution to Atomicity-Violation Bugs

pthread_mutex_t proc_info_lock = PTHREAD MUTEX_INITIALIZER;

Thread 1::
pthread_mutex_lock (&proc_info_lock) ;
if (thd->proc_info) {

fputs (thd->proec. info, ...);

}
pthread_mutex_unlock (&proc_info_lock);

Thread 2::

pthread_mutex_lock (&proc_info_lock);
thd->proc_info = NULL;
pthread_mutex_unlock (&proc_info_lock);

I J. Choi, DKU

28

32.2 Non-Deadlock Bugs

s Solution to Order-Violation Bugs

O 00N U ke W e

TR TR O R U T 5 TR % Y 5 O O B e e e e e el e e
N Wk NGRSO ENDW R BN = O

28

pthread_mutex_t mtLock PTHREAD MUTEX_ INITIALIZER;
pthread_cond_t mtCond PTHREAD_ COND_INITIALIZER;
int mtInit = 0

Thread 1::
voilid inat () {

mThread = PR_CreateThread (mMain, ...);

// signal that the thread has been created...
pthread mutex lock (&mtLock) ;

mtbtInit = 1;

pthread cond_signal (&mtCond) ;

pthread mutex unlock (&mtLock) ;

}

Thread 2::
void mMain(. ..} {

// wait for the thread to be initialized...

pthread_mutex_lock (&gmtLock) ;

while (mtInit == Q)
pthread cond wait (&mtCond, &mtLock) ;

pthread mutex unlock (&mtLock}) ;

mState = mThread—>State;

" Bthread_cond_waits z: unlock and lock mutex imEIicitIy before and after sleep (seﬁ %ar\]g_e D6K)U
. ol,

29

32.3 Deadlock Bugs

s Deadlock
v A situation where two or more threads wait for events that never
occur
Thread 1: Thread 2:

pthread mutex_ lock (L2) ;

pthread mutex lock (L1) ;
pthread_mutex_lock (L1) ;

pthread_mutex_lock (L2) ;

» E.g.) When a thread (say Thread 1) is holding a lock (L1) and waiting for
another one (L2); unfortunately, the thread (Thread 2) that holds lock L2

is waiting for L1 to be released.

Holds
E - Lock L1
Lock L2 E>
Holds

Figure 32.2: The Deadlock Dependency Graph

I J. Choi, DKU
30

Wanted by
§
E>
fiq pajuem

32.3 Deadlock Bugs

s Deadlock: 4 Conditions <= oo

v Mutual exclusion .
v Hold-and-Wait F
v No preemption for resource Lock L2| ——xp>
v Circular wait
Figure 32.2: The Deadlock Dependency Graph
| 5
: :
| U} :
3 2 A (=AF, =)
B, 4 1 (= 0= %
B : : *
¢ % | : |
J B : A
. : :

(a) Deadlock Possible (b} Deadlock

J. Choi, DKU
31

32.3 Deadlock Bugs

s How to handle Deadlock: three strategies
v 1. Deadlock Prevention
v 2. Deadlock Avoidance via Scheduling
v 3. Deadlock Detection and Recovery

Approach EXESOICE i&llocatlon Different Schemes Major Advantages . WA
Policy Disadvantages
eInefficient
*Works well for *Delays process
q processes that perform a initiation
Requesting all resources at . .
single burst of activity *Future resource
once *No preemption requirements must
necessary be known by
processes
Conservative:; *Convenient when
Prevention mce reommi o) applied to resources «Preempts more
resources Preemption whose state can be
often than necessary
saved and restored
easily
Feasible to enforce via
compile-time c.hecks “Disallows
5 *Needs no run-time E
Resource ordering . . incremental
computation since
. . resource requests
problem is solved in
system design
*Future resource
Midway between that . . q requirements must
- . M late to f tleast | -N t q
Avoidance | of detection and onznsls;lea Ztho g n::;z::mp ton be known by OS
prevention p Y *Processes can be
blocked for long
periods
Very liberal; *Never delays process
. requested resources Invoke periodically to test initiation sInherent preemption
Detection P .
are granted where for deadlock *Facilitates online losses
possible handling

ource: “Operating systems: Internals and Design Principle” by W. Stalling)

IIIIII‘ﬁlIIIIIIIIllllllléalaalllllllllll

32

J. Choi, DKU

32.3 Deadlock Bugs

s Deadlock prevention
v This strategy seeks to prevent one of the 4 Deadlock conditions

v 1. Hold-and-wait
= Acquire all locks at once, atomically

i
@ i
3
4

v 2. No Preemption | B
= Release lock if it can not hold another lock |

= Concern: 1) may cause Livelock, 2) sometimes require undo

Two threads could both be repeatedly attempting this sequence and
repeatedly failing to acquire both locks = add random delay

v 3. Circular Wait
= A total ordering on lock acquisition

= E.g.) The comment at the top of the source code in Linux: i_mutex”
before i mmap_mutex”

pthread_mutex_lock (prevention); // begin lock acquistion

1 1 top:

2 pthread mutex_lock(L1); 2 pthread_mutex_lock (L1);

3 pthread mtex lOCk(LZ); 3 if (pthread_mutex_trylock(L2) != 0) {
- - 4 pthread mutex_unlock (L1);

4 5 goto top;

5 pthread_mutex_unlock (prevention); // end 6 }

‘Acauire all locks atomicalln (Release lock if it can not hold anothJe|E3 Ihoc_:k U
. ol,

33

32.3 Deadlock Bugs

s Deadlock prevention (cont’)

v 4. Mutual Exclusion:

» “lock free” approach: no lock but support mutual exclusion

Using powerful hardware instructions, we can build data structures in a
manner that does not require explicit locking

= Atomic integer operation with compare-and-swap (chapter 28.9 in LN 4)

vold increment (counter t +c) |{ | void AtomicIncrenent (int svalue, int amount) |
Pthread mutex lock (éc—>lock);) Qo |
c—>valuett; ‘
SR A] int old = #value;
Pthread mutex wunlock (&c->lock); ' shile (0 Siap vl 14 old | [
- { | while (CompareAndSwap(value, old, old + amount) == 0);
* Using Lock o parehndSap (value, old,)
| Lock free

» List management (39 page in LN4)

1 wvoid insert(int wvalue) i
2 nodse_ £t »n = malloc(sizecf (node_t)) ;
3 assert({n != WULIL) ;
4 n—>wvaluse = waliue;
5 n—>next = head;
& head = 11;
i }
UsiniiLock Log free
1 void insert (int T\.TEllLIE}.{) 3 void¥insert (int value) |
2 node_t *n = malloc(sizeof(nede_t)); f =
5 assert(n != NULL); 2 node t «n = malloc(sizeof(node t));
4 n->value = value; 3 assert(n != NULL};
5 pthread mutex lock(listleck); // begin critical section 4 n->value = value;
B n->next = head; 5 do {
7 head = n; [n->next = head;
8 pthread mutex unlock(listlock); // end critical section 7 } while (ComparelAndSwap (&head, n->next, n) == 0);
B L _E
@ [ock free: applicable only sond&

]-r- 1 1 1
peCIliC Cas5es VS LOCK. derlierdl

32.3 Deadlock Bugs

s Deadlock Avoidance via Scheduling
v Instead of prevention, try to avoid by scheduling threads in a way as
to guarantee no deadlock can occur.

= E.g.)two CPUs, four threads, T1 wants to use L1 and L2, T2 also wants
both, T3 wants L1 only, T4 wants nothing

TI T2 T3 T4 CPLH T4

L1 ves yes no no

L2 yes yes yes no CF’U2- T2

» E.g. 2) more contention (negative for load balancing)

] 4 S
v w u en o cPU1 | T4
L1 yes yes yes no '

* No deadlock, but under-utilization =» A conservative approach

I J. Choi, DKU

35

32.3 Deadlock Bugs

s Deadlock Avoidance via Scheduling (cont’)

v Famous algorithm: Banker’s algorithm
» E.g.) Multiple processes with single resource case (also applicable to

multiple resources case)

| Has [Max il | Has | Max Jl | Has | Max_
A 5 A 5 A 5

0 2 2
B 0 6 B 0 6 B 1 6
8 0 3 C 1 3 & 1 3
D 0 7 D 5 7 D 5 7
Initial State: Free =10 State 1: Free =2 State 2: Free =1

= Safe and unsafe state

. Try to stay in safe state while allocating resources

deadlock

unsafe

=

36

J. Choi, DKU

32.3 Deadlock Bugs

s Deadlock Detection and Recovery

v Allow deadlocks to occasionally occur, and then take a detection and
recovery action

= E.g.) If an OS froze once a year, you would just reboot it (but failure is a
norm in a Cloud/Bigdata platform)

= Many DB systems employ active deadlock detection approach
v How to detect?

= Periodically, build resource allocation graph, checking in for cycles
v How to recovery?

= Select a victim (youngest or least locks)

Edge R1

I =, —_

v v =
Assign Request = r i
~ ~ a a 'i> p\ :)/PD

- “ =
R R @ R,

Meaning of Node and Edge in Resource allocation grap Resource allocation graph
Resource allocation graph Example without Deadlock Example with Deadlock

(Source: https://www.slideshare.net/AbhinawRai/ deadlock 51330115)

J. Choi, DKU
37

32.4

Summary

Concurrency method

v Lock, Condition variable, Semaphore, ...

Well-known concurrency problems
v The Producer/Consumer problem

v The Reader/Writer problem

v The Dining philosopher problem

Concurrency bugs
v Non-Deadlock bugs
v Deadlock bugs

Deadlock approach
v Prevention

v Avoidance
v Detection and Recovery

Tip: DON'T ALWAYS DO IT PERFECTLY (TOM WEST'S LAW)

Tom West, famous as the subject of the classic computer-industry book
Soul of a New Machine [K81], says famously: “Not everything worth doing
is worth doing well”, which is a terrific engineering maxim. If a bad
thing happens rarely, certainly one should not spend a great deal of effort
to prevent it, particularly if the cost of the bad thing occurring is small.
If, on the other hand, you are building a space shuttle, and the cost of
something going wrong is the space shuttle blowing up, well, perhaps
you should ignore this piece of advice.

I J. Choi, DKU

38

|’@©@| Quiz for 7th-Week 2"d-Lesson
TIME]
s Quiz

v 1. Explain 4 conditions for deadlock using the below left figure.

v 2. Is there a deadlock in the below right figure of this page?

v Due: until 6 PM Friday of this week (16", April)

o —1 N G

R1

____________________________________ ° \ °
; [
4 &% ! ¢
@ M| R2 R3
! | i R4
? : . R5 &
| 1 @ e S o P3
(a) Deadlock Possible (b) Deadlock (Source: www.chegg.com/)
[— J. Choi, DKU

39

Appendix 1

s 31.4 Producer/Consumer (Bounded Buffer) Problem
v Second attempt: Adding mutual exclusion

1 sem_t empty;

2 sem_t full;

3 sem t mutex;

4

5 void *producer (void *arg) |

6 int 4;

7 for (i = 0; i < loops; i++) {

8 sem_wait (eamutex) ; // Line PO (NEW LINE)
9 sem_wait (&empty) ; // Line P1

10 P () // Liine P2

11 sem post (&full) ; // Liine P3

12 sem_post (&amutex) ; // Line P4 (NEW LINE)
13 kI

14 }

15

16 void =*consumer (veoeid =arg) {

17 i o, i -

18 for (i = 0; i < loops; i++) {

19 sem_wait (&amutex) ; // Line CO (NEW LINE)
20 sem _wait (&full) ; // Line Cl1

21 int tmp = get () ; // Line CZ2

22 sem_post (&emptvy) ; // Line C3

23 sem_post (&mutex) ; // Line C4 (NEW LINE)
24 pEIALTI("EdNn"™; LHop);

25 }

]
o)l

! * Is it correct?

NN
® N

int main(int argc, char =argv[]) {

29 Fif

30 sem_init (&empty, 0, MAX); // MAX buffers are empty to begin with...
31 sem_init (&full, 0, 0): // ... and 0 are full

32 sem_init (&mutex, 0, 1); // mutex=1 because it is a lock (NEW LINE)
33 ot

W
s

}

— Figure 31.11: Addinﬁ Mutual Exclusion (Incorrectly) .
40 u.uﬂm,DKU

Appendix 1

s 31.7 How to Implement Semaphores
v Using mutex and condition variable

typedef struct __ Zem t {
int wvalue;
pthread_ cond_ t cond;
pthread mutex_ t lock;
} Zem_t;

// only one thread can call this
void Zem init (Zem t =*=s, int wvalue) {
s—>value = wvalue;
Cond_init (&s—>cond) ;
Mutex_init (&s—>1lock) ;

e RS B e L L A o

[
= O

}

e
= W N

void Zem _wait (Zem_t =*s) {
Mutex_ lock (&s—>lock) ;
while (s—>value <= 0)
Cond wait (&s—>cond, &s—>1lock) ;
s—>value——;
Mutex_unlock (&s—>1lock) ;

L T = T)
o W e N W

}

IS
B =

void Zem_ post (Zem_t =s)
Mutex_ lock (&s—>1lock) ;
s—>value++;
Cond_signal (&s—>cond) ;
Mutex_ _unlock (&s—>1lock) ;

R e B S N o B S |
N e W
——

Figure 31.16: Implementing Zemaphores With Locks And CVs

I J. Choi, DKU
41

Appendix 2

s 30.3 pthread_cond_broadcast: Covering Conditions
v Memory allocation library for multi-thread env.

v Issue: which one to wake up?

= E.g.) no free space, T1 asks 100B, T2 asks 10B, Both sleep = T3 free
50B = T2 wakeup: okay, T1 wakeup: sleep again, but T2 also sleeps

v pthread_cond_broadcast() instead of pthread cond_signal()

1 s/ how many bytes of the heap are free?
2 int bytesL.eft = MAX HEAP STIZE;

3

a /S /S need lock and condition too

5 cond. t CF

6 mutex t m;

7

8 wolidd

9 allocate (int size) {

10 Pthread mutex lock (&m) ;

i | while (bytesl.eft < size)

12 Pthread cond wait (&c, &m) ;

13 void =«=ptr = ...; // get mem from heap
14 byteslL.eft —= size;

15 Pthread mutex unlock (&m) ;

16 return ptr;

17 ¥

18

19 void free (void =«ptxr, int size) {

20 Pthread mutex lock (&m) ;

s bytesL.eft += size;

22 Pthread cond signal (&c) ; /S / whom to signal??
23 Pthread mutesx unlock (&m) ;

24 }

Figure 30.13: Covering Conditions: An Example
<+ Please read carefully the program in Figure 30.13, Figure 30.14 and

Figure 31.12. It will be great helpful when you do the Lab. 2 A

I J. Choi, DKU
42

