DANKDOK UNMIVERSITY

Lecture Note 6. File System
Basic

April 21, 2021
Jongmoo Choi

Dept. of software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)
[J. Choi, DKU

Contents

Chap 35. A dialogue on Persistence
Chap 36. I/O Devices

Chap 37. Hard Disk Drives

Chap 38. RAID

Chap 39. Interlude: Files and Directories
v APls for file, directory and file system

Chap 40. File System Implementation

v Layout: superblock, bitmap, inode, data blocks, ...

v Access method: open, read, write, close, Iseek, fsync, mount, ...

J. Choi, DKU

Chap. 35 A Dialogue on Persistence

Professor: And thus we reach the third of our four ... err... thrde pillars of
Dperafing systermns: persistence-

Student: Did you say there were three pillars, or four? What is the fourth?
Professor: No. Just three, young student, just three. Trying to keep it simple
here.

Student: OK, finre. But what is persistence, oh fine and noble professor?

Professor: Actually, you probably know what it means in the traditional sense,
right? As the dictionary would say: “a firim or obstinate continuance in a course
of action in spite of difficulty or opposition.”

Student: [f's kind of like taking your class: somie obstinance required.

else. Let me explain.

Professor: Ha! Yes. But persistence iere means soniethiin
Imagine you are outside, in a field, and you pick a —

Student: (interrupting) I know! A peach! From a peach tree!

Professor: | was going to say apple, front an apple tree. Oh well; we
way, I guess.

Student: (stares blankly)
[meessor: Anyhoww, you pick a peach; in fact, you pick mary miany peaci’ws,]

L

! do it your

but you want to make them last for a long time. Winter is hard and cruel in
Wisconsin, after all. What do you do?

Student: Well, I think there are some different things you can do. You can pickle
it! Or bake a pie. Or make a_jarmi of some kind. Lots of fun!

Frotessor: Fun: Well, maybe. Certainly, you have to do a lot nmiore work to rmake
the peach persist. And so it is with information as well; making information
persist, despite computer crashes, disk failures, or power outages is a tough and
interesting challenge.

Student: Nice segue; you're getting quite good at that.

Professor: Thanks! A professor can always use a few kind words, you know.

< Persistence : Making information durable despite of computer crash, disk failures and so on

I J. Choi, DKU
3

Chap. 36 I/O Devices

36.1 System Architecture

36.2 A Canonical Device

36.3 The Canonical Protocol

36.4 Lowering CPU overhead with Interrupt
36.5 More Efficient Data Movement with DMA
36.6 Methods of Device Interaction

36.7 Fitting into the OS: The Device Driver
36.8 Case Study: A simple IDE Disk Driver
36.9 Historical Notes

Interrupt 1. Device is finished
CPU 3. CPU acks controller

interrupt 4—' z I Disk
JA‘- — s Keyboard
— 4—.Clock

2 Controller | =1 ,
L issues o = __..-Ac\Prlnler
N '

A
Bus
(Source: https://gcallah.github.io/OperatingSystems/IOHardware.html)
J. Choi, DKU

4

36.1 System Architecture

s Computer system focusing on Bus

v Hierarchical structure

= Memory bus (System bus): CPU and Memory
Fast, Expensive, Short

»]/O bus: SCSI, SATA, USB (and/or separated bus for Graphic Cards)
Slow, Less expensive, long, pluggable

v Modern system

= Special interconnect: Memory interconnect (e.g. QPI, Hyperport),
Graphic interconnect

» Make use of specialized chipsets: I/O chips with different interfaces

CPU Memory

4 Memory Bus

Graphics

(proprietary)

General I/O Bus
(e.g.. PCI)

<t # Peripheral /O Bus
| I I | (e.g.. SCSI, SATA, USB)

Figure 36.1: Prototypical System Architecture

PCle Memory
Graphics Interconnect

Graphics [<{IEE——_)>| CPU A

PCle eSATA

[| Disk
il

MNetwork

!II
i

Figure 36.2: Modern System Architecture
J. ulol, und

36.2 A Canonical Device / 36.3 The Canonical Protocol

m Devices
v Interface parts
» Registers: command, status, data
v Internals

» Logic: controller and special chips (device specific) + SW (called firmware)
= Memory: I/O Buffer (e.g. store receiving packet, delayed write, ...)

s Protocol
v How to interact with devices?
= Example: Four steps 1) idle check, 2) data, 3) command, 4) finish check

v 3 mechanisms: PIO(Programmed 1/O), Interrupt, DMA
= P|O: CPU performs all steps including idle/finish checking (polling)

While (STATUS == BUSY)

Registers | Status Command Data Interface : // wait until device ig not bUSY

-- Write data to DATA register
Micro-controller (GPU) Write command to COMMAND register
Memory (DRAM or SRAM or both) Internals

(starts the device and executes the command)
While (STATUS == BUSY)
i [/ wait until device is done with your request J

Other Hardware-specific Chips

Figure 36.3: A Canonical Device

5 oELC

36.4 Lowering CPU overhead with Interrupt

= Interrupt vs Polling
v Comparison

= Polling: Checking status (busy or idle, like spin) =» thread state: running (still

hold CPU while its usage is only checklng device status)

» |nterrupt: Inform when device is idle (or work is done) = thread state:
sleeping (release CPU which can be utilized usefully by other threads

Note) Interrupt definition: a mechanism that informs an event to OS
v Example
» Thread 1 requests disk access (read or write)

CPU | 1

1

1

1

1

1

1

1

1

'

Disk

v Tradeoffs
= Benefit of Interrupt: overlapping

CPU
Disk

1

1

Interrupt: CPU can do other useful job (for thread 2) while doing I/Os (for thread 1)

Polling: CPU just polling (actually waiting) while doing 1/0Os
= New requirement for Interrupt

Handling mechanism: call interrupt handler via interrupt table (page 28 in LN 2)

Sleep queue management (Context switch overhead)

» Usage suggestion (depend on devices)
Slow device: Interrupt, Fast device: Polling (like spin and sleep lock)

Optimization: Hybrid, Interrupt coalescing

J. Choi, DKU

36.5 More Efficient Data Movement with DMA

s DMA (Direct Memory Access)

v Comparison

» PIO (Programmed I/O): CPU manages data copy between memory and
devices

Concern: Devices are too slow for CPU (note CPU: ns, Disk: ms)
= DMA controller performs data copy between memory and devices
CPU can do other useful job (better overlapping)
v Example
» Thread 1 requests disk write without/with DMA using Interrupt
» Data copy (denoted as “c” in the figure is done by CPU vs. DMA)

nnnnnEeEn - - - - i SONEARNERENRN - - - - - - - - KEED
ponnn

. Disk 1|‘?|‘{|1|1‘
v DMA mechanism

[Tontrol] 4. Ack]‘

i

1 1
5. Interrupt when 2. DMA reguests
done transfer to memory - 3. Data trans ferred

—— Bus

I J. Choi, DKU

8

36.6. Methods of Device Interaction

s How to address registers in devices?

v Two approaches
= Direct I/O

Separated address space
Explicit I/0O instruction (e.g. in/out + port)

» Memory-mapped I/O
Single address space: DRAM + 1/Os
Memory access instruction (e.g. load/store + /O address space)

v Privileged instruction

» Kernel mode: okay vs User mode: protection fault

» Usually accessed in a kernel component called device driver

FFFFF

00000

Memory
addressing
space

FFFF

0000

Direct /O

/O
addressing
space

FFFFF

00000

/O

Memory addressing
space

Memory-mapped /O

'hoi, DKU

36.7 Fitting into the OS: The Device Driver

s Device driver

v A set of software in kernel that abstracts devices

v Two layers

= Manage 1) device registers (command, status, data), 2) interrupt and 3) DMA
= Support generic interface such as open, read, write, close, ... (like file)

v 70% of codes in Linux is device drivers (mostly kernel module)

s Layered architecture

v Character device (or raw mode): device accessed by user directly

= System call = Driver = Devices

v Block device: device accessed by user through file system (FS)
» System call = FS = Block layer (buffer, scheduler) = Driver = Devices

Micro-controlier <JSer App1 User App2) (User App3 User App4

| System calls Interface |

OS/Kernel Space 0S-specific
)) Verticals
Device Drivers
Device-specific
Hardware
Protocol-specific
O0S/Kernel Space Horizontals

Hardware Space

Device Controller

! ! {

} Hardware Protocol

Device 1 Device 2 Device 3

‘Device driver: generall

10

Application %
POSIX API [open, read, write, close, etc.] ~ rsss=ns
File System Raw
Generic Block Interface [block read/write] ‘ug’
Generic Block Layer g
Specific Block Interface [protocol-specific read/write] _"E’

Device Driver [SCSI, ATA, etc.]

Figure 36.4: The File System Stack

(Device driver: block driver specific)
J. Choi, DKU

36.8 Case Study: A simple IDE Disk Driver (Optional)

A simple IDE disk controller
v Direct I/O (separated I/O address), |/O instruction: in/out

v 4 Registers
= Control (0x3f6), Command block (0x1f2~1f6), Command or Status (0x1f7),
Data port (0x1f0), Error (0x1f1)
Note) 1) LBA: Logical Block Address, 2) Status: Busy/Ready, 3) Error: bad block,...

= Example (low-level interface)
. Wait for drive ready: read 0x1f7 until the READY bit is on

Write: Write sector count and LBA in 0x1f2~1f6 and Start I/0O by writing WRITE
command in 0x1f7

Data transfer: wait until READY and DRQ (Drive Request for Data), write data into
the Data port

oyt a1 ey sl a3
BirA A rTee = = D= T EFE & = OO = O OO O 1 = O > = R— e = e 1= .
== me=ris ""erasa i = T = T oo ot —h s ssn b B el
o mITiesrrcl B ocic e o i St eear s =
o e P B — O==c11 F O = I>Dat e Frooemsis
Addrraes s O=l1 ¥ 1 E o ar o>
PdAddrre s = D=l F = Saecit oo Corarris

BicAcA e = o= O=11 F =
P e e e — 8 — 5 —3 O=c1 F 4
DA dArrae s s Sz B S
PadaAdrrre s s O =cd F &

T.1B3 .2 i S =t v e
T.1= fo s B B o T ol ——
T.B=3 b ap W I w1 =
11 I TOEP 4 T. =M o P—TIT.2=5. , D—cizx i ~7re

O PRI ET
I PATTET

S B B L& I o> = Foiariacl
BPadaddre s = = o I BT o = F «orearcd

Bcaddrre s s D= T BT Cormrmarncl S st a s s
Siat s FRaeogd st e as ({ Pcddcdrrae s s ="l B F 2 =
> L= = =1 = = . o
BTSN RE DT> F AT IT. T SEFEFEC p-l =] CORERE T IO x> EFRROR
S5 can wac o S Reocy b sS e a3 {2RAdree s s D= 1 =1 % — { = — I wWTF a1 FRROR—=—1)»
= L= = L= = = EE]
EEE LTI i TP IE T o T =T = ™ OBIFE" 2 PATTET
=1 = = — B acl = O s e
L B = LTracs oI et alt s T da i = = e
i = Mecdk b o= Tharnaged
TP IE = o~ e ko ¥ > i Fowmaricl
MR —_ Mecddbd &a Tharmncage Recdgluae st =l
N = = g = C oo rnrrnes raci alhoco it ecd

Figure 36.5: The TINDE Interface
11

36.8 Case Study: A simple IDE Disk Driver (Optional

s Driver interface (OS-level interface
v Character driver: open, read, write, close, intr, ...
v Block driver: open, close, intr, rw (or request, strategy), ...
» Note: dynamic loadable kernel module interface for Linux (insmod, rmmod)

= IDE disk driver example: 4 main functions

v ide_
v ide_

rw() = ide_wait_ready() = ide_start _request()
intr()

static imt dde wait readw () €

5

(49]

while (((imt > = HAnNnb (021 E7)) = ITDE _BSY) | 1 (r & IDE_DRDY))
F r A e et S 1 driwe isn't busy

f=REE = =01 {

rt

rt__reguest (struc

" a)

ide wait ready

ocountbh (0x3IF 6,) 7 S S generate interrupt
ocoutlbh (Ox1 £2 x) 2 v how manys sectors 2
cutbh (Ox1f32, b >Ssector & OxfEf) ; S LBA goes here -
Ssutl (Ox1 £4 , (b—rsaector == =) = O3FEF) P = e and heras
csutihh (Ox1 £5, (b—rsaectoxr == 1a) & O2xxEF) P - e and herae!
coutih (Ox1 F£F6. Oxe0O | ({lbhb—dew&l) <<<4) I (ib—>scecctor>>24) &S0x0%F)) ;
ifFf(b—>=fFflags & B _DTRTYY) {

ocountih {O=x1 £77 . IDE__ CMD__WRITE) - M this 4. = a WRITE

ocounts1d (O3 F0O . bh—data, SAZ Ay 2 s trans fexr data oo !
i el e i

ocoutlh (O=x1 £77 , IDE__CMD__READ) v this i = RELTY (Nno data)
}

LT o s ide. rwi{struct Iowu £ =T) £

acguire{(aide_ lock)
Foxr (sSstract uf e e EOED = Edide gueue; L =0 =2 PEP—& (+ppPp) —>gnext)

s v wall gueue
P = b7 v 4 add reguaest tTo end
F. {ide gueucs —=— b)) oo IE o d=s empet

ide start reguest () ;5 v send reg to disk
while ((b—>Flags & (B_"VAT.ITDI|IB_DIRTY)) '— B__WAT.TD)

sleep (b, Eide__lock) ; S wrad Fuoas completion

3

release (&ide__lock) 7

wodid ide dntr () 1

struct I>wua £ k> 7
acguire {&ide_ dlock) ;

b (! (b—=Fflags= & B_DIRTY) & & wait readw () ==)
drnsd ¢O0xd1 £0, bh—>data, S1=2,4) v i fFf READ : get dat a

b—>flags = B_VALID;

b—>flags &= ~ B_DIRTY;;

wakeup (o) 7 A wake wailting process
i F ((ide gueute = bh—>grnezxt) 1= 0) A startc nesxt reogue st
ide start reguest (ide gueilae) P (i f one exists)

release{ajide_ lock) ; J. Choi, DKU

Figure 36.6: The xv6 ITDE Disk Driver (Simplified)

37 Hard Disk Drives

37.1 The interface

37.2 Basic Geometry

37.3 A Simple Disk Drive

37.4 1/0 Time: Doing the Math
37.5 Disk Scheduling

Cover Mou
(Cover no

nting Holes
t shown)

Base Casting

Spindle

Slider (and Head)
Actuator Arm
Actuator Axis

Actuator

FCFS

ol

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at S3

1I4 37 53 615 67 9[8 122124
1 1 L

183 1|99
1

llustration shows total head movement of 640 cylinders.

SCAN (Elevator)

o
1

14
1

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

37 53 6151 67 9|B 122124 1
1 1 1L

83 199
1 |
1

(Source: https://www.slideshare.net/PareshParmar6/disk-scheduling-algorithms-71247712)

13

J. Choi, DKU

37.1 The interface / 37.2 Basic Geometry

= Interface
v Basic unit: sectors (512-byte)
» Disk consists of a large number of sectors (0 ~ N-1 sectors or address space)
v Addressing (LBA: logical block address for disk)

» Sector addressing: 512B

» Multi-sector addressing (usually called as a disk block): 4KB or 8KB =
Kernel developer’'s viewpoint: disk is a set of disk blocks whose size is 4KB

s Basic Geometry
v Platter (two surface) = Track (thousands tracks per surface) = Sectors
v Head: sensing data
» Multiple heads (one per each surface), connected into an arm

v Data access: seek time + rotation latency (time) + transfer time
» Cylinder: a set of same tracks in each surface (no seek time required)

Sector Tracks Heads Seek Time Latency Time
Arm

L+

Cylinder

37.3 A simple Disk Drive

= In a same track access: Figure 37.2

v Assume
= 12 sectors in a track, original head position is 6, target is 10

= 10,000 RPM (rotation per minute) =» 1/6 rotation per ms (millisecond) =» a
rotation takes 6ms

» Rotational latency = 2ms in this case (3ms on average)
= Multiple tracks: Figure 37.3
v Original head position is 30, target is 11
v Need not only rotational latency but also seek time (ms)
» Note that seek and rotational latency perform in parallel
= Track skew: Figure 37.4
v To optimize sequential access (e.g. read sector 10, 11, 12, 13)
v Other optimizations: multi-zones, disk cache (track buffer)

i i i Rotates this wa
Rotates this way Fotates this way o OB way y
— & —

3
O O Track skew: 2 blocks

Figure 37.2: A Single Track Plus A Head Figure 37.3: Three Tracks Plus A Head (Right: With Seek)

15 Figure 37.4: Three Tracks: Track Skew Of 2

Quiz for 9th-Week 1st-Lesson

v 1. What is the benefit of DMA compared with the Interrupt-only? What
is the benefit of the DMA compared with P1O?

v 2. Discuss the differences between a character device driver and
block device driver (at least two differences)

v (Bonus) What is the command for loading a module (dynamic
loadable module) in Linux?

v Due: until 6 PM Frlday of this week (30t, April)
ERENENEN -

crPU |

» Linux Module

DMA

1JaJaJa]x]

Disk

» How It Works

5. DMA controll = 1. CPUS DMA controller
TESIE HOIES T4 x=] EjSstn ME Re 8 cPU
o) 7= DMA MODE READS

s

o HEOICE CALE Z =
=3 Ry X HE 2. CPUE DMA
ss — 00, Ao S et
$ta § oo =, DMA FAEQ. AXCOVER BF
controlleri= H&0] 2t
HEE AEITI=E Sl

DMA/bus/interrupt
contreller +——CPU memory bus

(I PCI bus 0

3. DMA controlleri= disk
controllecofl 7l CHOIE S =
IDE disk contralier 2=

4. Disk controllerBj%! byte
e mm 2 CjolE{ S

——1-

(Source: https://m.blog.naver.com/PostView.nhn?blogld=bycho211
&logN0=220975324334&proxyReferer=https:%2F%2Fwww.google.com%2F)

16

Linux Kernel Module
Programming

(Source: https://www.youtube.com
Iwatch?v=0768iZKtzBA)
J. Choi, DKU

37.4 1/0 Time: Doing the Math

s Metrics
v 1/0 time (latency)

v 1/O rate (bandwidth, MB/s)

= Workload

TI,?'O = Tseeh‘ = Trotation - Tf?‘ansfer‘

-tgi‘zeTra.ns fer
TI}()

Rrio =

v Random: issues small (e.g., 4KB) reads to random locations on disk
v Sequential: reads a large number of sectors consecutively (100 MB)
s Disk considered: Figure 37.5

v Cheetah: a high-performance SCSI drive
v Barracuda: a drive built for capacity

Cheetah 15K.5 Barracuda
Capacity 300 GB 1TB
RPM 15,000 7,200
Average Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 16 /32 MB
Connects via SCSI SATA

Figure 37.5: Disk Drive Specs: SCSI Versus SATA

17

J. Choi, DKU

37.4 1/0 Time: Doing the Math

s Metrics
v |/O time (latency)

v 1/O rate (bandwidth, MB/s)

s Lessons

Tfj{:' = r-rr.-?eek - T’r‘otation =+ Tf?‘ansfer‘

RIfO —

SizeTra nsfer

Tr/0

v |/O rate calculation: 1) I/O component time, 2) I/O time, 3) I/O rate
v Random: Seek + Rotation + Transfer per 4KB

= |/O time: 4ms + 2ms (15000/60*1000 = V4 rotation per second=>» 4ms = 2ms
on average) + 0.032ms (4KB / 125MB = 4KB * 1000 / 125 * 1000KB)

» |/O rate: 4KB / 6ms = 0.66 MB/s
v Sequential: One seek/rotation per large data (e.g. 100MB)
» |[/O time =4ms + 2ms + 800ms(100MB/125MB/s), I/0 rate = 100MB/0.8s

v Implication

= Sequential is much faster than random in disk
= SW engineers need to make programs that access disks in sequential

Cheetah 15K.5 Barracuda
Capacity 300 GB I'EB
RPM 15,000 7,200
Average Seek 9 ms
Max Transfer 125 MB/s 105 MB/s
Platters 4
Cache 16 MB 16/32 MB
Connects via SATA

18

Cheetah Barracuda

RI/ORandom 066MB/s 03IMB/s
Rijo Sequential 125MB/s 105MB/s

Figure 37.5: Disk Drive Specs: SCSI Versus SATA Flgllfe 37.6: DiSk Dl’iVE PEIfOl'ﬂlﬂllCE! SCSI VEISllS SATA
I

J. Ul0I, UNU

F

s Disk scheduler

37.5 Disk Scheduling

v Role: Examines I/O requests and decides which one to schedule next

s Examples

v FCFS (First Come First Serve)

» Pros) simple, Cons) may cause long seek distance

v SSTF (Shortest Seek Time First)
» Pros) reduce seek distance, Cons) unfair (especially boundary tracks)
v SCAN (a.k.a. Elevator) and C-SCAN
» Moves back and forth across all tracks

» C-SCAN: handle requests from inner-to-outer, then go back inner tracks
directly and handling requests again from inner-to-outer (or reverse)

Rotates this way
prabiic it

Original head position: 53 track

igure 37.7: SSTF: Scheduling Requests 21 And 2 e

10 Requests in queue: 98, 183, 37, 122, 14, 124, 65, 67 (about queue, see page 12 in LN 6)

J. UlOl, URNU

37.5 Disk Scheduling

s Examples (cont’)

v SPTF (Shortest Positioning Time First)
» Consider seek and rotation latency

= Why? Issues that consider seek only = not optimal (Figure 37.8)
Head position: 30 (sector), Next requests: 16 and 8
SSTF: 16 and then 8 = 1 seek + 5/6 rotation + 1 seek + 2/6 rotation

How about 8 and then 16 =» 1 seek (relatively further) + 1/6 rotation + 1 seek
+ 4/6 rotation

Performance depends on disk characteristics (seek vs. rotation)

» SPTF select a request who has the smallest position time (seek +
rotation time)

s Other scheduling issues

v Merge: requests 33, 4, 34, ...
v Anticipatory disk scheduling

Rotates this way
-

Figure 37.8: SSTF: Sometimes Not Good Enough

I J. Choi, DKU

20

Chap. 39 Interlude: Files and Directories

39.1 Files and Directories

39.2 File System Interface

39.3 Creating Files

39.4 Reading and Writing Files

39.5 Reading and Writing, But Not Sequentially
39.6 Shared file table entries: fork() and dup()
39.7 Writing immediately with fsync()

39.8 Renaming files

39.9 Getting information about files

39.10 Removing files

39.11 Making Directories

39.12 Reading Directories

39.13 Deleting Directories

39.14 Hard Links

39.15 Symbolic Links

39.16 Permission Bits and Access Control Lists
39.17 Making and Mounting a file system

21

J. Choi, DKU

Chap. 39 Interlude: Files and Directories

s Computer system
v Four key abstractions: process (thread), virtual memory, lock, and file

v Files are in Storage (Hard disk, Solid State Drive)
= Storage vs. Memory
* Non-volatility
. Advantages: Support persistence (store information permanently)

Issues: 1) Integrity, 2) Space-efficiency, 3) Consistency, 4) Crash
consideration (fault-tolerance), 5) Access control, 6) Security, ...

» These issues are managed by a file system

v How to analysis file system?
» |nterface: open, read, write, close, mkdir, link, mount, ... (Chapter 39)
= Layout: file, directory, inode, FAT, superblock, ... (Chapter 40)

HARD PISK

J. Choi, DKU

39.1 Files and Directories

n File

v Definition: A linear array of characters (bytes), stored persistently
» Each file has various data structure (text, c code, record, multimedia, ...)
= But, OS don'’t care its content, just treating it as a stream of bytes

v Each file has its name (absolute path, relative path)
v It also has some kind of low-level name in OS (e.g. inode)
» Like each process has a unique PCB (like program and PCB)
s Directory

v A special file that constructs a hierarchy (file hierarchy)
» Root directory

= Home directory -
= Working directory (one) (o) (o (o
v Contain <file name, inode> (%) ()

= or low-level name or first disk block e

| &) G (e
s Others are also treated as a file D
v Device, pipe, socket, and even process TN
docsl pics]W
[J. Choi, DKU

23

39.2 File System Interfaces

x APls

v System call: 1) open (return a file descriptor), 2) I/O, 3) attribute, 4)
create, 5) name resolution (directory hierarchy traverse), 6) file
system management, 7) directory management, ...

v Internals: 1) allocate/free block, 2) allocate/free inode, 3) namei
(name-to-inode), 4) buffer related

Filesystem system calls I

Filesystem svstem calls

Return a 5 ; Allocate : ’ File System
N Use namet R Attributes L' .
descriptor inode Structure Management

open stat
open : creat chown read

creat link 3 i
creat s : mknod chmod write mount chdir

chdir unlinik .
dugp link stat Iseek wmonnt chroot

é chroot mknod ;

pipe unhink

chown T3 oL
close

chmod uwmount

Filesyvstem low level functions
namei
alloc free ialloc ifree
iget iput bmap
buffer allocation algorithms
getblk brelse bread breada bwrite

(Source: http://slideplayer.com/slide/9118590/)

J. Choi, DKU
24

39.3 Creating Files / 39.4 Reading and Writing Files

s Create API
v open() with create flag (refer to LN1 or Figure 2.6 io.c in OSTEP)

int fd = open("foo", O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
= Arguments: 1) name, 2) flags, 3) permissions
» Return: fd (file descriptor)

v creat(): less used (but famous by Ken Thompson’s answer about
redesigning UNIX)

int fd = creat ("foo"); // option: add second flag to set permissions

s Read/Write API
v read_size = read(fd, buf, request_size);
v written_size = write(fd, buf, request_size);
= Arguments: 1) fd, 2) buffer that points memory space for data, 3) request

S|Ze THE LINUX
= Return: read or written size INTERRACE

J. Choi, DKU

25

39.4 Reading and Writing Files

s Read and write example

v Command line viewpoint prompt> echo helle > foo
prompt> cat foo

hello
prompt>

v System call viewpoint (using strace)

prompt> strace cat foo

open("foo", O _RBONLY |O_LARGEFILE)

= 3
read (3, "helloZn", 4096) = &
write(l, "hello\n", &) = &
hello
read (3, "", 4096) - 0
close (3) = 'O

prompt>

TiP: USE sTtraceE (AND SIMILAR TOOLS)

The strace tool provides an awesome way to see what programs are up
to. By running it, you can trace which system calls a program makes, see
the arguments and return codes, and generally get a very good idea of
what is going on.

The tool also takes some arguments which can be quite useful. For ex-
ample, —f follows any fork’d children too; —t reports the time of day
at each call; e trace=open, close, read, write only traces calls to
those system calls and ignores all others. There are many more powerful

flags — read the man pages and find out how to harness this wonderful
I tool. J. Choi, DKU
20

39.5 Reading and Writing, But Not Sequentially

s Conventional accessing mechanism for a file
v Sequential
v From the begin, increasing the offset while reading or writing

An array gf byte

I ,
start current offset (Position) end (size)

s How to access random position? (not sequentially)

v Iseek()
= Arguments: 1) fd, 2) relative offset from whence, 3) reference point

off_ t l1lseek(int fildes, off t coffset, int whence);

. Whence: SEEK_SET, SEEK CUR, SEEK_END
= Explicit update the current offset (c.f. read/write: implicit update)
» Do not confuse Iseek() with disk seek :-)

= Also do not confuse process and processor

I J. Choi, DKU
27

39.7 Writing Immediately with fsync()

s Performance consideration for write
v Write to DRAM vs Disk: 100ns vs 10,000,000ns (10ms)

v Delayed write
» Write data into DRAM (called buffer or page cache) and set them dirty
= |ater write all dirty data into disk in a clustering fashion (5 or 30 seconds

periodically)
» Write grouping and write reordering indeed enhance performance
= Synchronous vs. Asynchronous Buffer Cache
@ Cache
Bus Disk
s Concern of delayed write ot v
v Durability - prrag s

= User think his/her data is permanent but not in actuality
v How to guarantee durability
» fsync() system call

int fd = open("foo", O_CREAT|O_WRONLY |O_TRUNC, 5_IRUSR|S_IWUSR);
assert (fd > -1);

int rc = write(fd, buffer, size);

assert (rc =— size);

re = Esyne(fd);

assert(rc = 0);

I J. Choi, DKU
28

|’@@@|

Quiz for 9th-Week 2M-Lesson

TIME
s Quiz

v 1. Calculate the T

T T

seek’ ! rotation:

transfer»

T,0 and R, for the random and

sequential workload using Barracuda (hint: refer to 7~8 pages of the
chapter 37 in OSTEP).

v 2. Discuss the similarity and differences between CPU cache and
buffer cache (using delayed write).

v Due: until 6 PM Friday of this week (30", April)

Cheetah 15K.5

Barracuda

Capacity
RPM
Average Seek
Max Transfer
Platters
Cache
Connects via

300 GB 1TB
15,000 7,200

4 ms 9 ms

125 MB/s 105 MB/s
4 4

1le MB 16/32 MB
SCSI SATA

Figure 37.5: Disk Drive Specs: SCSI Versus SATA

Cheetah Barracuda

Rijo Random

0.66MB/s 031 MB/s

R;/o Sequential 125MB/s 105 MB/s
Figure 37.6: Disk Drive Performance: SCSI Versus SATA

29

Bus

@

Buffer Cache

Cache

Disk

Used

' Unfied Bufter
Cache

Mai n M cmry

J. Choi, DKU

39.8 Renaming Files / 39.10 Removing Files

s Change a file name
v Command line viewpoint

prompt> mv foo bar

v APl (system call) viewpoint: editor example

int fd = open("feoo.txt.tmp", O WRONLY |O_ CREAT|O_TRUNC,

S. TRUSR | S _IWUSR) 7
write (fd, buffer, size); [/ write out new version of file

fsync (£4) ;
close (£4) ;
rename {("foo.txt.tmp",

* rename(old name, new name)
= conducted atomically

x Remove a file

v API
= unlink(file name)

prompt> strace rm foo

nFfoo. tExtE"™Y);

unlink{"foom")

% Why not remove() or delete() instead of unlink()? Then, what is link()?

I
30

J. Choi, DKU

39.9 Getting Information about Files

s Contents in a file system

v Two types of data in file system: User data vs. Metadata
» User data (or just data): data written by users

» Metadata: data written by a file system for managing files (in inode) and file
system (in superblock)

v APl to see the metadata for a certain file

= stat(file_name, struct stat)
» fstat(fd, struct stat)

struct stat {

dew_t+ st__dewv; S* TD of device comtaining file =)/
Fno - st dinog S dnode number =)

mode T st mode; S* protection =/

nlink +© st nlinksz S mumber of hard links =/

el = st_wuid; S* user ID of owner =x=,/

it st__gidy; S % group ID of owner =,/

dewv_t+ st rdew; S dewvice ID (if special f£ile) =)/
oL st size; S+ Ttotal size, in bytes =/
Plksize t st blksize; S+ blocksize for filesystem I/ O =)/
blkcnit st _blocks; % number of blocks allocated «)/
Time T st _atime; S LTime of last access *x/

time t st mtime; Y% Lime of last modification =/
time Tt st _ctime; S+ time of last status change *=/

¥z

prompt>
prompt>
B len

Size:
Device:
Aocess:
PAoccess:

echo hello > file
stat file

5 el il Y=

6 Blocks: 8 TO Block: 4096 regular file
811 h/2065d Incde: &7158084 Links: 1

{0640/ —xrwW—T————=—)} Uid: (230686 rem=i) Gid: (3068B6/

2011-05—03 15:50:20.157524748 —0500
20131-05—03 15:50:20.157524748 —0500
2011-05—03 15:50:20.157524748 —-0500

v

rem=zi)

oi, DKU

39.11 Making Directories / 39.13 Deleting Directories

s APl for making directory
v mkdir(name, permission)

PR SRS MR
mkdfr {™Efoco™s: O 1)
prompt>
v After making
= Two entries: parent directory and itself

prompt> 1s —a
s R

prompt> I1s —al

total 8

drwxr—x——— 2 remzi rem=i & Apr 30 16:17 ./
drwxr—x——— 26 remzi rem=z=i 4096 Apr 30 16:17 ../

s API for deleting directory
v rmdir(file_name)
v We need to use it carefully

I J. Choi, DKU
32

39.12 Reading Directories

s APIs for reading directory
v opendir(dp), readdir(dp), closedir(dp)
v “Is”: like the below example (c.f. “Is —I": readdir() + stat())

int main(int argc, char #*argv[]) {
DIR xdp = opendir(".");
assert (dp != NULL);
struct dirent =*=d;
while ((d = readdir(dp)) != NULL) {
printf ("$d %s\n", (int) d->d _ino, d->d_name);
}
closedir (dp):;
return 0;

}

struct dirent {

char d_name [256]; /* filename =/

ino t d G /+ inode number =/

off € d off; /+* offset to the next dirent =*/
unsigned short d_reclen; /+ length of this record =/
unsigned char d_type; /* type of file =/

}i
= Why there is no writedir()?

I J. Choi, DKU
33

39.12 Reading Directories

s Directory name convention

WwWw, unixrock.com
(Source: http://lwww.unixrock.com/2013/04/solaris-directory-hierarchy.html)

34

39.14 Hard Links

s Link

v Make another file name to access an existing file
» Connect a file name with an inode

v Command line viewpoint
= Either file or file2

prompt> echo hello > file prompt> 1s —i file file?2
prompt> cat file 67158084 file

hello 67158084 fileZ2

prompt> In file filel prompt:>

prompt> cat file?Z

hello

v API
» link(old_name, new_name)

prompt> echo helle > file

v After remove one of them prompt> stat file
. ... Inode: 67158084 Links:s 21 ...
s Use unlmk() prompt> 1n file file2
prompt> stat file
= Still remain data ... Inode: 67158084 Links: 2 ...
g prompt> stat file2
prompt> rm file ... Inode: 67158084 Links: 2 ...
removed *filef prompt> 1In file2 file3
) prompt> stat file
prompt> cat file2 ... Inode: 67158084 Links: 3 ...
hello prompt> rm file
prompt> stat fileZz2
v Llnk COunt ... Inode: 67158084 Links: 2 ...

prompt> rm filel2
H H rompt> stat file3
= Delete data when link count is O s [t mwehn ms .
prompt> rm file3
I J. unot, ukKU
35

39.15 Symbolic Links

s Link

v Hard link: share inode number
= Create a new file name and share the existing inode

v Symbolic link (Soft link): different inode number, but its data is the
linked file name

» Create not only a new file name but also a new inode (set it as a
symbolic link)

» Can link between different file systems, Can link to a directory
v Dangling reference in symbolic link

oslab@osLab: —fos_kEeskt
:~Jfos_testS 1s -—alL

Z2rHl s a
AW rwWs e - x 2 oslab oslab 46926 4%l 23 12:09 .
drwxr-»xr - x 22 oslab oslab 4896 48l 23 1z:03 ..
’ = = VS
fos =tS echo "hello world"” = filel
£ 1Tn filel Ffile2

Tn - = FTililel TiLLe3

T~ fos te S
o -fos_testS Ls -all
2 Hl 1s

BZO7 drwixrwixr - 2 oslLab oslab 46896 48l 23 12:89 .

B196 drwxr-=xr-x 22 oslab oslab 4696 42 23 12:03 ..
I8 —rwW-rw-r - - ? oslLab oslab b a® 23 12:89 Filel
380 -rwW-rw-r- - 2 oslLab o=slab a1z 48 23 12:99 Filez
386 Lrw>xrwxriwx a

oslab oslab 5 42 23 12:09 1 -= File1l

;w oﬁiiﬁgrs cat File2

hello world
r~ o ca i 5

cat: File3: EEJ IEI-E!OIL-I- =:I—IEIEI;"I— pr == B =
z~JOs $

3860 fFilez 335 _:$:S ot J. ChOi, DKU
< _tests

A A

39.17 Making and Mounting a File System

s File system

v Make a file system
» Assemble directories and files
» Related metadata: superblock, bitmap, ... (main topic in chapter 40)

» Command: mkfs
Make an empty file system (only root directory) in a disk partition

r

' howtogeek@ubuntu: ~

howtogeek@ubuntu:~% sudo mkfs

mkfs mkfs.ext2 mkfs.ext4dev mkfs.ntfs
mkfs.bfs mkfs.ext3 mkfs.minix mkfs.vfat
mkfs.cramfs mkfs.ext4 mkfs.msdos
howtogeek@ubuntu: -5 sudo mkfs.extd4 /dev/sdas]]

= How to make partitions?: fdisk
v Example
= Partitioning and mkfs

» Ext2/3/4, NFS, LFS, proc, sysfs, ... per a partition

39.17 Making and Mounting a File System

s File system

v Mount
= Make a file system visible to users

= Connect multiple file systems within the uniform directory tree
mount arguments: 1) FS type, 2) partition, 3) mount point

$mount -t ext3 /dev/sda4 /mnt

‘..A..H.A..'_',."" .'n'h__n‘.‘-."-
4
[/l\] m bin dev b s

bn dev b mnl usr

Before mount After mount
mount point: mnt in the previous example = point the root of the
mounted FS

< Why multiple partitions?

I J. Choi, DKU
38

Chap. 40 File System Implementation

Objective of this chapter
v A variety of file systems

= UFS, FFS, EXT2/3/4, JFS, LFS, NTFS, F2FS, FUSE, RAMFS, NFS,

AFS, ZFS, GFS, FATFS, BtrFS,

v Make a new file system: called VSFS(Very Simple File System)

= Simplified version of UFS (Unix File System)

» 1) On-disk structures: inode, bitmap, directory, ...

» 2) Access method: read, write, ...
» 3) Various policies: cache, delayed write, ...

v More complex file systems =» next chapters

Useas:

Mount point:

lerinstallation:

K HARDDISK (17.2GB)

39

Ext4 journaling file system
Ext3journaling file system
Ext2 file system

btrfs journaling file system

| JFS journaling file system fion Table... | Revert

XFS journaling file system

FAT16 file system v
| FAT32 file system
swap area ck Install Now

physical volume for encryption

: , DKU

40.1 The Way to Think / 40.2 Overall Organization

m Disk

v Consist of partitions

v Afile system is created in each partition

Three primaonye portitions. Owve extended porckit
by cne con b ccbive (M) o

o
taining heve logical partitions |

s Partition
v Consist of disk blocks

Device Boot
dev/sdal *
dev/sda2
dev/sda3

dev /sdad
dev/sda5
dev/sdab
dev/sda?
dev/sda8

Start

7681
14182
28556
28556
34324
34771
32838

End
7681
14182
28556
38913
32030
34778
38913
34323

1

pisk /dev/sda: 320.1 GB, 320872933376 bytes
255 heads, 63 sectors/track, 38913 cylinders
Units = cylinders of 16865 * 512 = 8225280 bytes
Bector size (logicalsphysical): 512 bytes / 512 bytes
I/0 size (minimum/optimal}: 512 bytes / 512 bytes
pDisk identifier: ©Gxaab92818

Blocks
61690888
52219904
51286000
47453953
921666080

(=

e -1

358399%+ 82

33276928

H

18423808 83

Fartition table entries are not in disk order

System

HPFS/NTFS
HPFS/NTFS
HPFS/NTFS
wes Ext'd
HPFS/NTFS
Linux swa
HPFS/NTF5
Linux

(LBA)

p / Solaris

v User data is stored in a disk block (usually same size with the page)
v Assume a partition having 64 disk blocks (or simply blocks)

o
L

N

hL

|
S

[] [|
32 39 40 47

L]
48

o

5

o

o)/

[|
63

= Now consider what data structures are required for making a FS?

40

J. Choi, DKU

40.2 Overall Organization

s Layout of a file system (VSFS)

v Superblock: 0 blocks

» Metadata for managing a file system (one per a file system)
Information: how many data blocks, inodes, where they begin, ...

» Used during a mount function
v Bitmap: 1~2 blocks
» Metadata for managing free space (allocation structure)
» Two bitmaps: one for data blocks and the other for inodes
v Inode: 3~7 blocks
» Metadata for managing files (one per a file)
* |node size = 256B =» 16 inodes per a block = 5 blocks for inode =» total
80 files can be created

v User data: 8 ~ 63 blocks (can be dynamically adjusted)
= Data written by users

, Inodes) Data Region
E_ [U[U[U]UIU[UIU[D] [DID[D[DIDID[DD] [UFUIUIU[UIWU[U]
15 16 23 24
Data Region
DID[DID[DIDIDID] [DIDDIDIDIDIDID] [DIDIDIDIDIDIDID] [DIDIDIDIDIDIDID]
—52 39 40 47 Z’? 25 56 63, Choi, DkU

40.3 File Organization: The inode o

= How to manage metadata for a file £<
v inode (index node) e N
= File information such as mode, uid, size, time, link count, blocks, ... ”‘\
Can be accessed using stat() e
= | ocations of User data blocks =» Multi-Level index and Imbalanced tree
Direct block pointers (10 or 12 or 15), Single/Double/Triple indirect block
pointers(1/1/1)
. Benefit: Fast for a short file and Big size support for a large file
v Other approach: FAT (linked based), Extent-based, Log-based, ..
Size Name What is this inode field for? et el
2 mode can this file be read /written/executed? -
2 uid who owns this file? e, —
4 size how many bytes are in this file? Size e
4 time what time was this file last accessed? Timestamps
4 ctime what time was this file created?
4 mtime what time was this file last modified? Direct Blocks
4 dtime what time was this inode deleted?
2 gid which group does this file belong to?
2 links_count how many hard links are there to this file?
4 blocks how many blocks have been allocated to this file?]
4 flags how should ext2 use this inode? Tdioec: Blocks
4 osdl an OS-dependent field T — |
60 block a set of disk pointers (15 total) —— T =
4 generation file version (used by NFS) Kriphe Tndlrect o |
4 file_acl a new permissions model beyond mode bits s
4 dir_acl called access control lists
Figure 40.1: Simplified Ext2 Inode
% How large size can be supported by direct block pointers? How about an indirect pointer?
I J. Choi, DKU

42

40.3 File Organization: The inode

s Maximum file size supported by an inode

v Sum up: 48KB + 4MB + 4GB + 4TB
= Direct block point: 12 x 4KB
= Single indirect block pointers: 1 x 1024 x 4KB
Why 1024: 4KB / pointer size = 4KB/4B = 1024
= Double indirect block pointers: 1 x 1024 x 1024 x 4KB
» Triple indirect block pointers: 1 x 1024 x 1024 x 1024 x 4KB

v Benefits of imbalance tree: both performance and large size

= Small file: direct access via an inode
Indirect block =» require additional disk 1/Os
= Large file: support large size with the simple structure of inode

\! Data block

Mode
’i Data block : i 3
Owner Do | Most files ate small Roughly 2K is the most common size

Stre Average file size s growin Almost 200K s the average
p—— [Data blocic] 5 growng. R IR R
HI= Most bytes are stored in large files | A few big files use most of the space
= File systems contains lots of files | Almost 100K on average
File systems are roughly half full | Even as disks grow, file systems remain 50% full

s =
TR T e Directories are typically small Many have few entries: most have 20 or fewer
‘ =1k J | |

Direct pointers

pointer
— Data block

Double indirect
Figure 40.2: File System Measurement Summary

pointer
Triple indirect
pointer

(!ource: H!!ps:,,www.researcHga!e.ne!,!lgure,!He-architgg:ure-of-an-inode-in-EXT3-fiIe-svstem fig2 nggg)bé%}i%)

@@J@ Quiz for 10t"-Week 1st-Lesson
TIME]

s Quiz

v 1. What is the definition of metadata? List at least 5 examples of
metadata that we can access using “stat()” API.

v 2. Discuss the 4 components and their role when we create the VSFS
using “mkfs” command.

v (Bonus) The below figure is the snapshot that | perform the “Is —I” for
“/dev/tty”, “/dev/sda”, “/dev/sda1” in our Lab. environment. What are
the meaning of "b”, “c”, "rw” “5”, 8", "1” in the figure?

v Due: until 6 PM Friday of this week (71, May)

Create and mount
filesystems in Linux

' jongmoo@jongmoochoi: ~

i~$
:~§ Is -1 /dev/tty
crw-rw-rw- 1 root tty 5, 0 5% 7 10:10
t=$
:~5 Is -1 /dev/sda
brw-rw---- 1 root disk 8, @ 58 7 10:07

i~5
:~$ 1s -1 /dev/sdal

brw-rw---- 1 root disk 8, 1 58 7 10:07
fu5

E
S
[
=
=
=
o
2
=

(Source: https://www.linuxsysadmins.com/create-and-mount-filesystems-in-linux/)

I J. Choi, DKU
44

40.3 File Organization: The inode

= inode manipulation example (assume 12 direct blocks)

v When we create a new file (named hello.c whose size is 7KB) in a
root directory?

v Then, we compile it? (a.out whose size is 70KB)

* inode for / inode for hello.c inode for a.out
« times times times

. Iocatlons 8 Iocations: 9,10 Iacations: 11, 12, 13,

14, ..., 22, 23
)4 : T iblock 2 | iblock 3 | iblock 4

1'2‘ 18617 (18|19 |32 |33 |34 |35 |48 |49|50|51 |64 |65 |66 |67 . .
23|36 |37 |38 |39 |52|53|54|55|68 |69 |70 |71 & Note: 23 is the index block

27 (40 141 |42 (43 |56 |57 |58 |59 |72 |73 |74 |75 =
31 (44 |45 |46 |47 (60 (61 |62 |63 (76|77 |78 |79 Whlle Others (22’ 24’ "') are

——————— - data blocks

5|6 |7 |20(21
8 (10|11 |24 |25
13|14 |15 |28 |29

8| 3(R

~ -
~ —-—
-

-

—————
ssssss
—————

., Inodes Data Region .

[SEEGEE T[T [1]1] [DIDTDDIDDID[R] [DTDTD[DID[D[D[D]

O 7 15 16 23R4 31
Region

W FUNNDIDIWQIDIDI\@:EQIDIDIDIDIDIDI IDID‘1‘|3~I\DIDIDIDID

#include <stdio.h>]

457f 464c 0102 0001 24, 25, 26, 27,
int main() ...

0000 ... 28, 29

« hello.c: 1
e a.out: 2

J. Choi, DKU
45

40.3 File Organization: The inode

= inode manipulation example (assume 12 direct blocks)

v How to read the a.out?
» e.g.fd =open(“/a.out”, O _ RDONLY);

* inode for / « inode for hello.c « inode for a.out
« times « times e times

Iocatlons 8 . Iocatlons 9,10 . iacationS' 11,12, 13

14, ..,22,23
/ lblcckE iblock 3 | iblock 4

b 8193233343548495:3515465633? . .
a 22|23 |36 |37 |38|39| 52|53 |54 | 55|68 697071 = Note: 23 is the index block
B |9 (10|11 |24 25|26 |27 |4D |41 |42 |43 |56 (57 |58 |59 |72 |73 |74 |75 =
12|13|14|15|28|29|30|231 |44 |45 |46 |47 |60 |61 |62|63|76 |77 |78| 72 while others (22 24) are
sl T data blocks
\\\\\\ ., Inodes ____-----"""_——— Data Region
] d ERERENEREN [DIDTD[DID[DID[R] [DID[D[DID[D[D]D]
o x 15 16 23R4 31
Region

W FUNNDIDIWQIDIDI\MDIDIDIDIDIDI IDID‘1‘|3~I\DIDIDIDID

#include <stdio.h>]

int main() ...

457f 464c 0102 0001 24, 25, 26, 27,
0000 ... 28, 29

« hello.c: 1
e a.out: 2

J. Choi, DKU
46

40.3 File Organization: The inode

s Find a location: inode and data in a real

v How to find the location of an inode?
» Directory entry: <file name, i_number>
* |_number is used as the index in inode table (quotient and remainder)
e.g.) i_number = 33 =» 33/ (inodes per block) = 33/16 =2 ... 1 =» inode
table start + 4KB x 2 = 12KB + 8KB = 20KB = read a block starting 20KB =

go to the offset of inode_size x 1 = 256B
The Inode Table (Closeup)

i iblock 0 ! iblock 1 | iblock 2 | iblock 3 | iblock 4
o1 23 (168(17(18(19(32|33|34|35|48|42|50|51|64|65|66 |67

2 4|5 |6 | 7|20|21|22|23|36|37 |88 |39 |52|53|54|55|68 |69 |70 |71
Super i-bmap d-bmap 8 |9 [10{11]|24|25|26|27 40|41 |42 |43 |56 |57 |58 |59 | 7273|7475
12|13[14|15|28 |20 |30 (31 |44|a5|46 |47 (60|61 62|63 |76 |77 |78 |70

oOKB 4KB s8KB 12KB 16KB 20KB 24KB 28KB 32KB

v How to find the location of User data?

= 1) Find inode, 2) file’s current_offset / disk block size = quotient ...
remainder, 3) quotient is used to find a pointer in the inode (multi-level
index), 4) remainder is used as the offset in the disk block
e.g.) file’s current_offset=5000 =» 5000/(block size) = 5000/4096 =1 ... 904
=» index 1 in inode (e.g. block 12 in the previous slide when the file is a.out)
=» read block 12 =» go to the 904 in the block

I J. Choi, DKU
47

40.4 Directory Organization / 40.5 Free Space Mgmt.

= Directory
v User viewpoint: containing files at a same location
v System viewpoint: A list of pairs <file name, inode number>

v For fast search, add the file name length and record length (total bytes
including left over space)

dnum | reclen | strlen | name
5
2
12
i s |
24

Too
bar
foobar

v Can use more complex structure for directory (e.g. B-tree in XFS)

s Free space
v Bitmap: one bit per block (or inode), indicating whether it is free or used
v Alternative approach: free-list, tree, ...

v Pre-allocation: allocate free disk blocks in a batch manner = less
overhead, contiguous allocation, ...

Bit Mlap:
ltjojJofJafJoJafafajoJoJofJafafof1]a]

oo JTCO N RN
=k W N

J. Choi, DKU

40.6 Access Paths: Reading and Writing

s Reading a file from disk

v open a file “/foo/bar” whose size is
v Timeline

data inode
bitmap bitmap

root foo bar
incde inode inode

12KB, read data and close it

root foo bar bar bar
data data data[0] data[l] data[2]

open(bar)

read

read

read

read

read

read()

read

write

read

readl()

read

write

read

readl()

read

write

read

Figure 40.3: File Read Timeline (Time Increasing Downward)

= Open: directory tree traverse = connect fd to inode

» Read: current_offset =» find disk block location using the inode and read
it =» update the last access time in the inode

= Close: deallocate fd and related data structure in OS, No actions in disk

= Note: repeated reads for the bar’'s inode = How about caching it!
I

49

J. Choi, DKU

40.6 Access Paths: Reading and Writing

s Writing a file into disk

v Create a file “/foo/bar”, write data (also 12KB) and close it

v Timeline
data inode root foo bar root foo bar bar bar
bitmap bitmap | inode inode inode | data data data[0] data[l] data[Z]
read
read
read
read
create read
(/ foo,/bar) write
write
read
write
wwrilte
read
read
write() write
write
write
read
read
write() write
write
write
read
read
write() write
write
write

Figure 40.4: File Creation Timeline

(Time Increasing Downward)

» Open: 1) create a new inode for bar and update i-bitmap, 2) insert a new
entry into foo’s data block (10 I/Os for just creating a file)

= Write: 5 I/Os per a write (d-bitmap read/update, inode read/update, actual

user data write)

I
50

J. Choi, DKU

40.7 Caching and Buffering

m Issues

v Disk is too slow. THE CRUX: HOW TO REDUCE FILE SYSTEM [/O COSTS

Even the simplest of operations like opening, reading, or writing a file
incurs a huge number of I/0 operations, scattered over the disk. What
= Solutions can a file system do to reduce the high costs of doing so many [/Os?

v 1. Caching
= Caching directories (e.g. / inode, / data, current directory, ...) in DRAM
» Caching recently used file’s inodes and data in DRAM

» Management: LRU (Least Recently Used) replacement policy, dynamic
cache size management

Read / Write= 11 =

Memory
o
» -
| Page Cache il CPL)
2 -
| Page cacheM| writeSh —— T
| LH== = s Ml k=2 | e 2 =t page Cache = A

storage | AHZF

m memoryH| Load&F =
CPU Read
Storage

(Source: http://www.atmarkit.co.jp/ait/articles/0810/01/news134_2.html”)
51

J. Choi, DKU

40.7 Caching and Buffering

s Solutions

v 2. Write buffering (Delayed write)
» Consolidate several writes into a single one: e.g.) d-bitmap
» Schedule multiple writes so that they have less seek overhead: e.g.) bar

data

= Avoid writes: e.g.) temporary file (create and delete immediately)
= Concern: Data loss due to power fault or crash = fsync() or direct I/O

data inode root foo bar root foo bar bar bar
bitmap bitmap | inode inode inode | data data data[0] data[l] data[22]
readcl
read
read
read
create read
{/ foo,/"bar) wwrite
write
read
—rTite—
wwrike
—Tre=roi—
read
wwrite () —wTrite—
write
—vTrTite—
—Terci—
—Trerct
wwrite() —rvTrite
write
<o Tite—
—TreTrci—
—Tre=rct
write () wwrite
W rikte
W rite

Figure 40.4: File Creation Timeline (Time Increasing Downiw ard)

52

J. Choi, DKU

40.8 Summary

s Device and Driver
s Disk: I/O rate and Scheduling

- F|I e System SBB?:‘:; %‘fcf’f; B"I?;:pB" IE—de Table DATA BLOCKS
v Interface — A
= open(), read(), write(), ... s ,,,,;ji// =
= mkdir(), readdir(), ... = A
= mount(), mknody(), ... S =

v Layout \\{jf{:kﬁﬁ
= Data blocks ="
» |Inode, Bitmap, Superblock
= Boot block

s Importance of mental model for OS study (also system study)

ASIDE: MENTAL MODELS OF FILE SYSTEMS

As we've discussed before, mental models are what you are really trying
to develop when learning about systems. For file systems, your mental
model should eventually include answers to questions like: what on-disk
structures store the file system’s data and metadata? What happens when
a process opens a file? Which on-disk structures are accessed during a
read or write? By working on and improving your mental model, you
develop an abstract understanding of what is going on, instead of just
trying to understand the specifics of some file-system code (though that
is also useful, of course!).

J. choi, DKU
53

|’@@@|

Quiz for 10t"-Week 2M9-Lesson

TIME
s Quiz

v 1. How many disk blocks are allocated from the data region when we
create a file “a.out” whose size is 70KB.

v 2. When we read (or write) a file we need to access an inode and
data alternately, which may cause a long seek distance. Propose
your own idea for reducing this overhead.

v Due: until 6 PM Friday of this week (71, May)

| iblock 0 | iblock 1 | iblock2 | iblock 3 | iblock 4
01]2]|3|16(17|18|19|32|33 |34)|35|48 (48 (50| 51|64 | 65|66 |67
4| 5|87 |20|21|22|23|36|37|38|30|52|53| 54| 55| 68|89 |70|71
B8 10(11(24 (25|26 27|40 |41 |42|43| 56|57 |58|59|72| 73|74 |75
12|13(14|15/28/20|30| 31|44 |45 |46 47 (60|61 |82 83| 76| 77|78|79

““.."
hhm‘w' Inodes il Data Flegiﬂrl l
S HICIEIREE DDDDDDD[D] DDDD[DDDD] DDDDDDDD
0 7 8 15 16 23 24 3
Data Region

[DIDIDIDIDIDIDID] [DIDIDDDDDD] [DDDDDDDID] [DIDDDDRDD
32 39 40 47 48 55 56 63

I
54

data inode | root foo bar |root foo bar bar bar
bitmap bitmap |inode inode inode |data data data[0] data[l] data[2]

read
read
read

create
(/ foo/bar)

i
Fa

read
write() write

read

write() write

read
write

write()

write

Figure 40.4: File Creation Timeline (Time Increasing Downward)

J. Choi, DKU

Appendix

s Hard link vs. Symbolic link(Soft link)

directory entry in /dira directory entry in/dirB directory entry in /dira directory eniry in /dirB
inode name inode name inode name inode name
12345] namel | 12345] name2 23143 [namel h? /13579] name2
inode 12345 inode 23143 inode 13579
2 block 23567 1 block 14287 1 block 15213
: / “This is the : “This is new : “tdirainamel”
ex in the text in the

23567 e 14287 file afier 15213

. : modification :

s fd (file descriptor), file table and inode

O pen TFHHle table ITnode table

ProcA

Ref cowmnt: =2
L e O Ifsec: e
\ el commt: 1
% Flenarme
=
Tt
=
a
Rel cowunt: 1
/ B__fHlename
Ref coumntc: 1
7| orrses: e
—
L
=
=
[==

Process Tile desc

(Source: http://classque.cs.utsa.edu/classes/cs3733/notes/USP-05.html)

I J. Choi, DKU
55

