DANKDOK UNMIVERSITY

Lecture Note 7. Advanced
File System

May 4, 2021
Jongmoo Choi

Dept. of software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)
[J. Choi, DKU

Contents

s From Chap 41~45 of the OSTEP
s Chap 41. Locality and the Fast File System

v Performance requirement
v Storage-aware performance enhancement

s Chap 42. Crash Consistency: FSCK and Journaling
v Consistency requirement
v Journaling mechanism

m Chap 43. Log-structured File Systems
s Chap 44. Flash-based SSDs

s Chap 45. Data Integrity and Protection
s Chap 46. Summary

s Summary. Features of Various FS: Ext2/3/4, FAT, Flash FS
and Lab3

I J. Choi, DKU
2

Chap. 41 Locality and The Fast File System

s UFS (Unix File System) ~ m——
4 LayOUt Superlck Block |
" Boot sector Enouo}:block.x i
= Superblock: how big FS is, how many inodes, ol | OOy
where is inode, ... x
= Bitmap + Inode + User data Enough ks L

' hold M fnodes
= S|mp|e and easy_to_use to hold M inodes

v Access method

* |node access, data access alternately

Look good, but consider disk geometry (see
chapter 37) and multiple I/Os per a write (see
chapter 40) File anddiectry

= Concerns: 1) Long seek time, 2) Consistency bl
Performance issue = this chapter
Consistency issue =» next chapter

'

N blocks

Block N - |

I J. Choi, DKU

41.1 Poor Performance

s UFS (also our VSFS)

v poor performance
v 1) Inode and User data are located in different tracks 2) A file is
fragmented as time goes (external fragmentation) =» long seek

data inode | root foo bar |root foo bar bar bar S Data
bitmap bitmap | inode inode inode | data data data[0] data[l] data[2]
read
read
open(bar) read
read
read
read gnetize
read) read daka on di
Wil Tracks -;
read e '
read() read W
write - Disk
oad / Rotation
read() read Head _ :
. : Motion 6t Slispénsion
Figure 40.3: File Read Timeline (Time Increasing Downward) o i S
% How to overcome this problem?
J. Choi, DKU

I
4

41.2 FFS: Disk Awareness

s New proposal: FFS (Fast File System from BSD OS)

v Place inodes and user data blocks as close as possible

v Disk-awareness

» Data in the same cylinder =» no seek distance (or closer cylinder =» less
seek distance)
Cylinder group is defined as a set of tracks on different surfaces that are the
same distance from the center

v This idea is also used in Ext2/3/4 File system

Sing|e frack (e_g_, dark gray) Cylinder Groups
=
g
£o)
0g ke
55 o §
— N — e
ESS co¥
0 =00
Yo L300
bt 1 +— 800%
3G E 208y
Kehd 0530
gl +— (5:8
TeE 20
c (.010.1: L. oY0
£20% 0070
003 «— TOED
O 0 8) E g"")
558 ~ 3592
0w E 2 zZ i
s «“0
l'ﬁ > = 0:0: c AMOD TIME SUMMARY INFO BLOCK TOTALS
m': m “_ .‘_“_‘ CYLINDER NUM LAST BLOCK POS FREE BLOCK FPOSITION
-“ -D = m NUM CYLINDERS LAST BLOCK POSITION INODE MAP
U UJ NUM INODE BLOCKS LAST INODE POSITION AMAGIC NUMBER
ﬁ“é NUM DATA BLOCKS NUM FRAGS AVAIL BLOCK MAP
-

Source: https://slide Iaver.comlslide[8117044{
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘IIIIII B =P B . é,DKU

5

41.3 Organizing Structure: The Cylinder Group

s FFS in detalil

v Partition(or a disk): divided into a number of cylinder groups
v Cylinder group

= N consecutive cylinders

= Structure of each cylinder group

Superblock (duplication for reliability)
Per-group bitmap, inode and data blocks

= Management

Allocate an inode and data at the same group: e.g. Inode and data blocks for
file A in Group 0, those for file B in group 1, ... = Small seek distance

Ext2: similar approach called block group
v Feature of FFS: Different internal implementation, but same external

interfaces
o o A i
............... N U Y N
8.1 —
- ib db Inodes | o |
[J. Choi, DKU

41.4 Policies: How to Allocate Files and Directories

s Allocation in FFS

v ldea: keep related stuff together

» Data and related inode, file and its related directory, ...
v Allocation issue

= E.g.) Create a file A. which group does it allocate?

» E.g.) Create a directory B. which group does it allocate?

Group O Group 1 Group 2

Inodes Data [T T LI I T I T I T

——— ———— S
- - ~
——— ——— ~
= Se— ~

S
S
~

ib db Inodes ‘ Data ‘

ib db Inodes ‘ Data ‘

v Allocation rules
= Rule 1. Directory: place it into a cylinder group with a high number of free
inodes (a low number of allocated directories)
. To balance directories across groups

= Rule 2. File: 1) put files in the cylinder group of the directory they are in,
2) allocate data blocks of a file in the same group as its inode

. To allocate inode, data blocks and directory as close as possible

I J. Choi, DKU

41.4 Policies: How to Allocate Files and Directories

s Allocation in FFS

v Allocation rules
» E.g.) create three directories (/, /a, /b) and four files (/a/c /a/d, /ale, /b/f)
. Assumption: 1) Directory: 1 block, 2) file: 2 blocks

» FFS allocates three directories at different group (rule 1, load balancing),
allocate files in the same directory (rule 2, namespace locality)

group inodes data group inodes data
B e e o /S——— =
T e e S 1 gcde———= accddee——~
i e by — = 2o ——e B R e e
3 O co————— Fr—e e e e
g d—————— dd———————— 4 —\——————— ————————
5 e—m——————— es———————— e LT e
& f————————— ff—————— 6 ——————————
7 T R S S S — 7T -——
(Even allocation) (FFS allocation)
v Analysis

13 ”

» “ls —I" in the “a” directory
. Within one group in FFS allocation vs Access 4 groups in even allocation

» User usage pattern: strong namespace locality

I J. Choi, DKU
8

41.6 The Large-File Exception

s How to handle a large file for allocation in FFS?

v Large file =» fill up a cylinder group with its own data = undesirable
with the consideration of the namespace locality

v Rule 3. For a large file

» Allocate a limited number of blocks (called as chunks) in a group. Then,

go to another group and allocate a limited number of blocks there. Then,
move another one. ...

* Pros) locality among files, Cons) locality in a file

v E.g.): 1) file A: 30 blocks, 2) limited number of blocks in a group: 5

group inodes data
0 fa————— i e e e e LS T e e
1 — aaaaa——— = = - - -
2 mmrerenss - BRI e T e e e
3 e el - e e e B e e S
4 -——————— ga@aa———- ———————— —————— ————————
5 o AaBlE s e T T T
(FFS allocation)
group inodes data
0 /a———————— /aaaazazaa 33a3aaaaaa aazaaaaaas a——————
] ——————— . ——————— . . ————————— ————————
- e ‘Without Rule 3) _
J. Choi, DKU

9

41.6 The Large-File Exception

How to handle a large file for allocation in FFS?

v Analysis of Rule 3
» How much is the seek overhead for accessing a large file?
Seek and Transfer alternatively due to the Rule 3 in FFS

v Example

» Assumption: Seek=10ms, Bandwidth = 40MB/s

= Example 1) limited number of blocks (chunks) in a group = 4MB
Transfer time: 4MB / (40MB/s) = 100ms vs. seek time = 10ms = 90%(100 / 110)
bandwidth is used for data transfer

» Example 2) limited number of blocks (chunks) in a group = 400KB
Transfer time: 0.4MB / (40MB/s) = 10ms vs. seek time = 10ms =» 50%(10 / 50)
bandwidth is used for data transfer

» =» Large chunks can amortize the seek overhead

The Challenges of Admortization

=1
0
<
|
0
0
N
0
0
0
4

-k

|
i]
Q
h
A
Q
)
i)
A

32K

Log(Chunk Siz¢ Needed

1 T i T * 1
oo 250 50%c = 100

Percent Bandw.idth (Desired)

Figure 41.2: Amortization: How Big Do Chunlks Hawve To Be? J, ChOi, DKU

10

41.7 A Few Other Things about FFS

s Another features in FFS

v Larger disk block size: 512B (sector) in UFS =» 4KB (disk block) in
FFS

* Pros) Larger size = Less seek and more transfer = Higher Bandwidth
usage in disk

= Cons) Internal fragmentation R mep AKX KOO QOKA 00OC
. Waste space (e.g. half when a file is 2KB) | fragmentnumbers | 03 47 &I 1215
v Sub-blocks (fragment) allocation Hiodh nunien ; g

= To overcome the internal fragmentation
v Parameterization

» Sequential block requests: 1, 2, 3,, (request 1, transfer, request 2,
transfer, ...) = But when the request 2 is arrived in disk, the head has
already passed the location of 2 =» solution: parameterized placement

= c.f.) Modern disk: use track buffer

Figure 41 .3: FFS: Standard Versus Parameterized Placemment

v Others: Symbolic link (link across multiple file systems), atomic

rename“i Iong file name, ... _
J. Choi, DKU

11

Chap. 42 Crash Consistency: FSCK and Journaling

= Non-volatility: no-free lunch
v Can retain data while power-off
v But, requires maintaining file system consistency

s Consistency definition

v Changes in a file system are guaranteed from a valid state to another
valid state

» E.g.) inconsistent state: bitmap says that a block is free even though it is
used by a file

v What happen if, right in the middle of creating a file, a system loses
power?
= Solutions
v FSCK (File System Check)
v Journaling: employed many file systems such as Ext3/4, JFS, ...
v Others: Soft update, COW, Integrity checking, Optimistic, ...

J. Choi, DKU

Quiz for 11th-Week 1st-Lesson

] QUIZ

v 1. Read page 2 in Chap. 41 of OSTEP and explain why fragmentation
(external fragmentation) happens and what is the benefit of a
defragmentation tool?

v 2. Assume that we create four directories (/, /a, /b, /b/c) and four files
(/al/d, /ble, /b/c/ft, /blcl/g). Also assume that each directory has 1 block
while each file having 2 blocks (like 8 page). Discuss how FFS
allocates these directories and files.

v Due: until 6 PM Friday of this week (14", May)

b LOocCAaLliTy anD THE FastT FILE SwSTEM

Traditional File Systemrm

Worse, the file systerm svould end up getting qu ite fragmemnted, as the

!n:-_ space was not carefully managed. The free list would end up point- D

i 3 cks sp sread across the d as files got allocated. T e S e

lhn_ Wk }u]d ‘.;_rni_]\. “fabe the next free block. result was that a logi- e . =N \
el Mo fGle would be accesed by back and forth across A e g

the di <.k thus reducir 8 P nerformarnce dramatically. [== 11} | [| |
For example, imagine the 1 ol o ing data block region, which contains
four files (A, B, C, and D), each of size 2 blocks:

T
[Bcct biock | Super biock | Free space mamt | 1-nodes Rootdir | Fles and directories |

If B and D are deleted, the resulting layout is:

i - |
fongrinprbed Sni turo, chmlks. ok 1w New File System - Structure

s chunk of four Let's say wor mnow

\-. FOUL AT e, the froe spe

......

= r
tiguously and make free space for one or a few
contiguous regios At > data arcund and then rewritin ng i nnn:[:.e. and
such bBo i"‘_l]‘I.L[e ..J\angi_-,

One other problem: the
Thus, transferrimg data frc
blc_n_l_-— vwoere geoeond because

wigimnal bl -x_J-. size was too small (512 bytes).
the disk w inherently inefficient. Smaller

ey minimized internal fragmentation (waste (Source: https://www.slideshare.net/parang.saraf/a-fast-file-

within the block), but bad for transfer as each block might require a posi-

Frm perhend e B T e probless system-for-unix-presentation-by-parang-saraf-cs5204-vt)

I J. Choi, DKU
13

42.1 A Detailed Example

Example
v Simple FS: 8 inodes, 8 disk blocks, i-bitmap, d-bitmap
v One file: size=4KB, owner =Remzi

Bitmaps

Inode Data Inodes Data Blocks
i 5 y—l [] ' {5
. : : L
0 1 2 3 4 5 6 7 (8] 1 2 3 4 5 [5) 7

owner : remzi owner : remzi
permissions : read-write permissions : read-write
size | size g2 g

pointer T o pointer il

pointer : null pointer § B

pointer » nuall pointer . null
pointer = ninll pointer : null

v Modify the file: appending, size=8KB
* Note that we need to change three locations =» need three writes

Bitmaps
Inode Data Inodes Data Blocks

J. Choi, DKU

42.1 A Detailed Example

s Crash scenario
v Three writes: Db, I[v2], B[v2]

v Delayed write using cache (or queuing) =» Unexpected power loss or
system crash = Some writes can be done while others are not.

Db only is written to disk: no problem
B[v2] only is written to disk: space leak

I[v2] only is written to disk: 1) garbage read, 2) inconsistency: inode vs.
bitmap

Db and B[v2] are written to disk (except I[v2]): inconsistency
Db and I[v2] are written to disk (except B[v2]): inconsistency
I[v2] and B[v2] are written to disk (except Db): Garbage read

v Need consistency: write all modifications or nothing (a kind of
atomicity)

Disk writes
e By B

R TR T T T N S T AP

r Destage writes
reordered by disk

J. Choi, DKU

42.2 Solution #1: The File System Checker

m Traditional solution: fsck (file system checker)

v Consist of several passes
» Superblock: metadata for FS, usually sanity check

* Free blocks: check all inodes and their used blocks. If there is an
inconsistent case in bitmaps, correct it (usually follow inode info.)

* |node state: validity check in each inode. reclaim wrong inodes

Inode links: link counts check by scanning the entire directory tree. Move the
missed file (there is an inode but no directory entry points it) into the
lost+found directory

Duplicate pointers: find blocks which are pointed by two or more inodes
Bad blocks: pointer that points outside its valid ranges

» Directory checks: fs-specific knowledge based directory check (e.g. “.”

1 ”

and “..” are the first entries
v Issue: too slow

» Remzi says that “the fsck looks like that, even though you drop the key
in your bedroom, you start a search-the-entire-house-for-key algorithm,
scanning from the basement, kitchen, and every room.”

I J. Choi, DKU

16

42.3 Solution #2: Journaling (or WAL)

= Journaling
v A Kind of WAL (Write-ahead logging)

Key idea: When updating disks, before overwriting the structure in
place, first write down a little note to somewhere in a well-known
location, describing what you are about to do.

Crash occur = The note can say what you intended =» redo or undo
s Journaling FS

v Linux Ext3/4, IBM JFS, SGI XFS, NTFS, Reiserfs, ...
v Features of Ext3 file system
» [ntegrate journaling into ext2 file system

» Three types: 1) journal (data journal), 2) ordered (metadata journal,
ordered, default), 3) writeback (metadata journal, non-ordered)

v

v

Super

SGroup O

SGroup 1 - - - Group ™

(Ext2 disk layout, like FFS)

Super

Journal

Group O

Group 1 = o Group ™

(Ext3 disk layout: Ext2 + Journaling)
I J. Choi, DKU

17

42.3 Solution #2: Journaling (or WAL)

s Data Journaling
v Assume we want to do three writes (l[v2], B[v2], and Db)

v Before writing them to their final locations, we first write them to the log
=» step 1: journaling.

™>B| I[vZ2] BlvZ2] Db TxE >

Journal

» TxB: Transaction begin, include Tid and writes information
* Log
Physical logging: same contents to the final locations
Logical logging: intent (save space, but more complex)

= TXE: End with Tid

v After making this transaction safe on disk, we are ready to update the
original data = step 2: checkpointing
v Recovery (fault handling)

» |n the case of failures btw journaling and checkpointing, we can replay
journal (redo) =» can go into the next consistent state

» |n the case of failures btw TxB and TxE, we can remove journal (undo) =
can stay in the previous consistent state

I =r<=a — === = |J, Choi, DKU

42.3 Solution #2: Journaling (or WAL)

= How to reduce journaling overhead? =» 1. performance
v For journaling, we need to write a set of blocks
= e.g. TxB, i[v2], B[v2], Db, TxE
v Approach 1: issue all writes at once
» Unsafe, might be loss some requests

TxEB 1w =21 Bv2] > TxE
id—1 id—1

Joumal

» Transaction looks valid (it has begin and end). Thus, replaying journal
leads wrong data to be updated.

v Approach 2: issue each request at a time, wait for each to complete,
then issuing the next (e.g. fsync() at each write)

= Too slow
v Approach 3: employ commit
» Separate TxE from all other writes (e.g. fsync() before TxE)

= Recovery: 1) not committed = undo, 2) committed, but not in the
original locations =» redo logging

® ®
S [TxB| Iv2] | Bv2] | Db S8 Iv2] | Bv2] | Db |ixgl ———»
3 lid=1 9 lid=1 id=1

v Approach 4: issue all writes at once and apply checksum using all
contents in the journal (integrity example)

I J. Choi, DKU
19

42.3 Solution #2: Journaling (or WAL)

= How to reduce journaling overhead? =» 2. write volume

v Data journaling writes data twice, which increases |/O traffic (reducing
performance), especially painful for sequential writes

= Metadata Journaling
v Journal Metadata Only

» User data is not written to the journal (I and B, except D)

Journal

TB| I[v2] B[v2] |[TxE

v Question?

» Does the writing order btw user data and journal become matter? = Yes,
writing journal before user data causes problems (garbage read)
v Conclusion: ordered journaling

= 1) Data write = 2) Journal metadata write = 3) Journal commit = 4)
Checkpoint = 5) Free

v Real world

= Ext3: support both ordered and writeback(non-ordered)
» Windows NTFS and SGI’'s XFS use non-ordered metadata journaling

J. Choi, DKU
20

42.3 Solution #2: Journaling (or WAL)

s limeline

v Data journaling vs. Metadata Journaling
= Horizontal dashed line is “write barrier”

* Note that, in this figure, the order btw Data and Journaling is not
guaranteed in the metadata journaling timeline (writeback mode in the
ext3.)

Journal File System
TxB Contents IxE |Metadata Data
(metadata) (data)
issue issue issue
complete
complete
complete
________________ isswe
complete
| issue issue
complete
complete

Figure 42.1: Data Journaling Timeline

Joumal

t
Journal

[

Journal File System
TxB Contents TxE |Metadata Data
(metadata)
issue issue issue
complete
complete
complete
___________ issee |
complete
] swee
complete

Super

Tx1 Tx

Tx3

T

TxS

Figure 42.2: Metadata Journaling Timeline

J. Choi, DKU

42 .4 Solution #3: Other Approaches

s Summary
v fsck: A lazy approach

v Journaling: An active approach
= Ext3, Reiserfs, IBM’s JFS, ...

v Soft update
» Suggested by G. Ganger and Y. Patt

= Carefully order all writes so that on-disk structures are never left in an
inconsistent state (e.g. data block is always written before its inode)

» Soft update is not easy to implement since it requires intricate
knowledge about file system (On contrary, journaling can be
implemented with relatively little knowledge about FS)

v COW (Copy on Write)
» Used in Btrfs and Sun’s ZFS

v Optimistic crash consistency
» Enhance performance by issuing as many writes to disk as possible
» Exploit checksum as well as a few other techniques

I J. Choi, DKU
22

Features of Actual FS: Ext2/3/4 File System

s Ext2

v Reference: R. Card, T. Ts'o and S. Tweedie, “Design and
Implementation of the second extended FS”,
http://e2fsprogs.sourceforge.net/ext2intro.html

v Performance enhancement: 1) cylinder group, 2) pre-allocation:
usually 8 adjacent blocks, 3) Read-ahead during sequential reads

s Ext3

v Ext2 + Journaling
v Use a block group (or groups) for journaling
v Three types: 1) data journal, 2) ordered, 3) writeback

Figure 18-1. Layouts of an Ext2 partition and of an Ext2 block group

WRITEBACK ORDERED DATA
L eee—— e e e -
7/ | . | :
EI?:I; Block group 0 Block group n . fii‘ﬁf’ 1[?[:1)7) Fixed (Data)
7 F ﬁ Sync
"‘--,,__ g\
= [Journal (Inode) j [Journal (Inode) J [Journal (lmdc+Dala)J Journal Write
Super Group Data block | inode inode g L Sync ¢ Sync ¢ Sync
Block Descriptors Bitmap | Bitmap | Table Data blocks %
1 block n blocks 1 block Thlock nblocks n blocks '_E Journal (Commit) Journal (Commit) Journal (Commit) Journal Commit
- ; ,,,,,,,,,,
Other BGs for data BGs for journal Other BGs for data 5 Fixed Oum)
B| vz semdenes
{1 I IS5 P Do . ; , ,
IB DB | INODE ! i 080 S aeo B old E < 2 £
i ! ! 3 { & ! 4 : 1;, [Fixed (Inode)] [Fixed (Inode)] [Fixed (Inode+Data)] Checkpoint Write
s
. : : ; | [
IB = Inode Bitmap, DB = Data Bitmap, JS = Journal Superblock, JD = Journal Descriptor Block, JC = Journal Commit Block = .
- 1X4 Hy

|
L | S

23

Features of Actual FS: Ext2/3/4 File System

s Ext4

v Ext3 + Larger file system capacity with 64-bit
= Supports huge file size (e.g. 16TB) and file system (e.g. 264 blocks)
» Directory can contain up to 64,000 subdirs

v Extent-based mapping

» Extent: Variable size (c.f. Inode: fixed size (4KB))

E.g. Contiguous 16KB =» need one mapping vs need 4 mappings
Ext4, BtrFS, ZFS, NTFS, XFS, ...

* Need split/merge in a tree structure (extent tree)
v Hash based directory entries management

Direct

Dinect

Drata

Block-based =

il

Metadata is list of (direct) pointers

Extent

Extent-based [_Exex

ta

Extent

/fE

Metadata is list of extent structures (offset + length) to mixed-size blocks

extd inode

i_block

index node

leaf nodes

forecr]

to fixed-size blocks

eh_header I

root

extent index 4

extent

extent

—

/27-.-

N

disk blocks

extent index

extent

extent

1

E—

(Source: https://www.slideshare.net/relling/s8-filesystemslisal3,

httﬁs: ‘ ‘ bloa.naver.com‘ PostView.nhn?blogld=jalhaja0&logN0=221536636378)

24

J. Choi, DKU

Features of Actual FS: FAT File System

W Why?
v Large vs Small storage (USB, Memory card, IoT device)
» Space for Metadata is quite expensive

s Solution: FAT file system
v Originated by Microsoft
v ldea: Bitmap, Inode =» FAT (File Allocation Table)

» 1) Used for used/free, 2) data location (link for next block)
. c.f.:inode: per file metadata vs. FAT: for all files (one in a file system)

» Directory entry: point to the first index for FAT
» Metadata (size, time, permission, ..) in directory entry

One Directory Entry
32 bytes

e X—‘\

- —\‘\,

File Size
(example: 6,230)

Start-of-File Cluster
(example: 40)

File Name
(example: file.dat)

-

v
37 38 39 40 41 42 43 44 45 46 47 48 49 50
File Allocation Table
4 bytes per entry wica (a T4 00 41 46 43 EOF 00 00 EOF 00 00 00
H r - y N

J. Choi, DKU

Features of Actual FS: FAT File System (optional)

s Example

v Layout assumption
= 1 block for Boot Sector, 2 blocks FAT, 1 block for root directory

v Working scenario
= After initialization

Res [Res | Res | OxFF | Ox05 | OxFF | 0x07 | 0x08 /(23
0x09 | OXFF [0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x00 .« 13
0x00 | 0x00 | 0x00 | 0x00 | 0Ox00 | Ox00 [Ox00 [Ox00
0x00 | 0x00 [0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x00

(-1 7. 0 I N N N e N N O I

15 16 23 24 31

O N N S N Y O[O 1 0 Y 1) A

32 39 40 47 48 55 56 63
I J. Choi, DKU

Features of Actual FS: FAT File System (optional)

s Example
v Layout assumption
= 1 block for Boot Sector, 2 blocks FAT, 1 block for root directory

v Working scenario (similar example in 40.3 The inode)

= When we create a new file (named hello.c whose size is 7KB) in a root
directory?

* Then, we compile it? (a.out whose size is 15KB)

Res | Res | Res [OxFF [Ox05 | OxFF | 0x07 | 0x08 . 3
0x09 | OxFF [0x00 | 0x00 | 0x00 | 0x00 [0x00 | 0x00 « .13
0x00 | 0x00 [0x00 | 0x00 | 0x00 | 0x00 [0x00 | 0x00 + hello.c:4

0x00 | 0x00 [0x00 | 0x00 | 0x00 | 0x00 [0x00 | 0x00 + a.out: 6

B FAT ello.da.out] [aout] | [[[[][1 I
0 F 15 16 23 24 31

SR 0 O O O i A =~ R OO 0 O 0 IO
o 12 39 40 48 55 56 63
#include <stdio.h> 457f 464c 0102 0001
int main() ... 0000 ...
I J. Choi, DKU

27

Features of Actual FS: Flash-aware FS

w Why?
v Disk vs. Flash memory
= Same: non-volatile
» Different: 1) need erase operation in flash, 2) endurance, 3) read/write:

small unit (4/8KB, usually called page), erase unit: large unit (512KB
called block), 4) performance, mechanical, price, shock resistance, ...

,=.|‘,} Plane 0 : Block 0
Chip Page D
Block0 |-
= - —— Die 0 Die 1 Page1
<Read/Write> <Read/Write + Erase> 1 T 1 Page 2
=11k = =11E= e F: mrl-1
e EEIHESE Page3
Control Gate Control Gate B8 8 o= 3
o alll|x)a o
Page 4
Block n-1
T s

Drain (D)

Source (8)

Current Flows - Floating Gate Erased MEII'I ATEB (Dal'a} %ml

<What is erase?> <page vs. block >

I J. Choi, DKU
28

Drain (D)

Source (S)

No Current - Floating Gate Programmed

Features of Actual FS: Flash-aware FS

s Solution

v Out place update (not in place update)

» Allocate new disk blocks (erased) and write them = mapping (address
translation)
» Reclaim the old invalidated disk blocks =» garbage collection
= Example
A file whose size is 15KB = 4 data blocks
Assume that disk blocks 1, 4, 7 and 8 are allocated for the file
A user modify the file ranging from 0 to 10KB
In place update = write on the already allocated blocks
Out place update = allocate new blocks and write on them

v Real flle systems: F2FS, LFS

..... 2 o o
100 0 e . 10 10
| >< inode> ‘. smamm o <inode>
11 11 e 711
o g <after update 1,4,7> ol 8 <after update 1,4,7> :
<data blocks> <data blocks> <data blocks> <dat;.‘;i;cks>
<In place update> <Out place update>

J. Choi, DKU
29

Features of Actual FS: Flash-aware FS (Optional)

s F2FS: Flash Friendly FS by Samsung
v Key idea
= Use inode (like FFS) and Out-place update (like LFS)
» Make new mapping in an inode and Invalidate old data (Translation)
= Garbage collection to reclaim invalidated blocks
v New features

= 1) Multiple logging: for hot/cold separation, 2) NAT: to prevent
wandering tree problem, 3) GC Optimization (Fore vs background,
greedy vs cost-benefit)

v Note: General FS (e.g. Ext4) + FTL (Flash Translation Layer)
» FTL: Abstract flash memory like disks = See Chapter 44 in OSTEP

Fixed location Multiple logs

Inode block

|:| Data

Metadata |:| Direct node

|:| Indirect node
direct pointers
o m
inline data

Inline xattrs Segment Info.
Table (SIT)

single-indirect m
Double-indirect (SSA)

Triple-indirect irect node blocks -Cleaning data

Figure 2: File structure of F2FS. (Source FZFS FAST 15) .—I—I—I—I==I_=

-Direct node blocks for dir -Dir data
D rect node blocks for filer -File data

Summary

s File basic
v Layout: superblock, bitmap, inode, data blocks
v Access methods: open(), read(), write(), ...

s Optimization
v Performance: FFS, Ext2, ...

» A watershed moment in file system research

» Storage-awareness, simple but effective techniques
v Consistency: Ext3/4, JFS, ...

» Change from valid state to another valid state

» Journaling: Performance and Reliability tradeoff

s Others

v F2FS: for Flash memory file
v FAT: for small storage

: :) niLrs2
+ ext2 — Great implementation of a “classic” file system e

+ ext3 - Add a journal for faster crash recovery and less s
risk of data loss exra
exrs
: - Beres
+ extd - Scale to bigger data sets, plus other features |

(Source: https://www3.cs.stonybrook.edu/~porter/courses/cse506/f14/slides/ext4.pdf)

I J. Choi, DKU
31

Lab3 : Ext2 Analysis

= Lab3: Analyze Ext2 file system internal (a kind of digital forensic!!)

v What we need to do
= 1. create ramdisk
2. make ext2 file system on ramdisk
3. mount the ext2 file system
= 4. run the script on the mount directory (./create.sh) = will generate dirs. and files
5. find a file assigned to you and find blocks allocated for the file

Assigned files: last three digits of a student number =» directory + file name
(e.g. *****236 =» directory name is 2, file name is 36)

6. dump ramdisk (using xxd), examine Ext2 (or make a program that parsing Ext2)
Superblock = Group descriptor = root inode = root data =» dir. inode = dir. data

v Requirement: report =» 1) goal, 2) analysis results and snapshots, 3) discussion
v Submission: 1) upload e-learning campus, 2) email to TA
v
v

Due: 6pm, 28t May (Friday)

Bonus

* Print your name and student id while mounting Ext2

» Ext2 source modification + make + module insert (e.g. insmod) + mkfs + mount

o

o

2021 OS LAB3

Dankook University
Hojin Shin

Content

[e

Appendix 1: Lab3 details

s Main steps

5y532153550GESL-Lea]Y:~/workspace/2620 1/05 Lah3s 1s
append.c (el Vakefile ramdisk.c
5y532153550@ESL-LeelY:~/workspace/2620_1/05 Lab3s sudo su
root@ESL-LeelY: /home/sys32153550/workspace/2028 1/05 Lab3¢ make
make -C /1ib/modules/5.3.8-42-generic/build Mehome/sys32153558/workspace/2620 1/05 Lab3 modules
make[1]: Entering directory '/usr/sre/linux-headers-5.3.68-42-generic’
{C [M] /heme/sys32153550/workspace/2020 1/05 Lab3/ randzsk.o
Building modules, stage 2.
HODPOST 1 modules
{ /home/sys32133550/warkspace/2620. 1/05 Lab3/randisk.nod.o
LD [M] /home/sys32153550/workspace/2820 1/05 Lab3/ randisk ke
make[1]: Leaving directory '/usr/src/linux-headers-5.3.0-42-generic’
root@ESL-LeelY: /home/sys32153550/warkspace/ 2028 1/05 Lab3¢ 1s
append.c create ol Makefile medules.order Module.symvers ramdisk.c ramdisk.ko ramdisk.mod ramdisk.mod.c ramdisk.mod.o ramdisk.o

root@ESL-LeelY: /home/sys321535560/workspace/2020 1/05 Lab3# insmod ramdisk.ke
root@ESL-LeelY: /home/sys32153556/ workspace/2020_1/0S Lab3# 1smod | grep ramdisk
ramdisk 16384 @

root@ESL-LeelY: /home/sys32153550/ workspace/2626 1/05 Lab3# mkfs.ext2 /dev/randisk
mke2fs 1.44,1 (24-War-2018)
Creating filesysten with 262144 &k blocks and 65536 inodes
Filesysten LUID: 5f361367-33af-482a-9613- 7e3ab1080fTd
Superblock backups stored on blocks:

32768, 98304, 163848, 229376

Mllocating group tables: done
Writing 1node tables: done
Writing superblocks and f1lesystem accounting information: done

rout@ESL-Lee]Y: /home/sys32153558/ workspace/2620 1/05 Lab3# mount /dev/randisk . /mnt

(make a ramdisk and insmod it)

root@SL-LeelY: /home/sys32153550/workspace/2020_1/05 Lab3# ./create.sh
create files ...

done

root@ESL-LeelY: /home/sys32153550/ workspace,/2620_1/05 Lab3# 1s mnt

P 1 2 3 456 7 8 9 lost+found

root@ESL-Lee]Y: /hone/sys32153558/ workspace/2620 1/05 Lab3# s mnt/@

PR B3 PRRALH%6 6367 /074 /B8 8B L%
1 BB ABALBNLES BTRNLBTLNREI BY
BUBADNNHE BHTHAB6L6G6 72768 836 % %%D
DL K3 BITHLULBILDNREGT7 37780 48BITHN

(make file hierarchy by running script)

33

(mkfs and mount)

rontESL-LealY: /hone/sys 32153558 workspace/2020 1/0S Lab3 wd -g 4 -1 0190 -5 Bu33426000 /dey/randick
36426000; 3523530 24310360 G00GE00D 09OBEAD. 5/50-1......v..
36426010: £R000G00 AR02ASAG CADACAEA 0RAAAAADviiviwww.

rontGesL-LeedY: /hone/sys32153530 warkspace/ 2826 1/05 Lab3g wed -0 4 -1 810 -5 Bx18hchea0 /dev/ randisk
18bcBOER; 35213530 24320269 696AAR0D £AAAG0ED 5/38-2..........
10bc616; 6300960 BHCAAHRR GOCRED0D QOBEAAD ..\vvvvvryiei

rootEESL-LeelY: /hone/sys32153550 warkspace 2820 1/05 Lab3# wxd -g 4 -1 0100 -5 ExLAc67080 /dev/ randisk
16c67608; 35213530 24330200 AG0B6EA0 6900588 5/30-3..........
10c67613: BORC00CH HRG00CEN Aoncoce cooceaed ...

rontgesL-LeelY: /hone/sys32153350 warkspace/2820_1/05 Lab3# wud -0 4 -1 0109 -5 BX11622000 /dev/ randisk
11622008; 35273530 2031330a 00600206 0500008 5/50-13.........
11023610: AORC0000 0EANAGRE AO00RO00 CONGAAAEvveiiiii

(Explore file system layout)
J. Choi, DKU

Appendix 1: Lab3 details

s Key structures

_E_E"C'f“ Elock SGrouaps O Block Saceags 1 Biock Srowap F-oW Elock Seoups B
(=g e TP)
r AR A el Rt
Elock D"E':::ﬁ“: it B iy | Enorte Tl ie e ko i | e

ST .
Soargresr = B b (L=t Roo .
Eloeck Drescrip o [=) Y Babarea Wi Tl Crirectory Crata -

[FoR— =X I Il Poar

Tkl

=
Deccriprtar

Bitrmesge

Batarapr

Erpeccfie Tk les

Crirec oy

(layout)

(supe

rblock)

34

(directo

ry entry)

00 [01| 02| 03|04 05 06|07 |08 09 0afob]|oc|od]oe] of 00 | 01 [02| 03] 040506070809 0alob]|oc]od]oe]|of
00 inode count block count res block count free block count 00 block bitmap inode bitmap inode table free blk ent | free ino cnt
10 free inode count first data block log block size log frag size 10 | used dir ent | padding reserved (padding)
20 block per group frag per group inode per group mtime (g roup descriptor table)
30 wtime mount max _mount magic state errors min_o r
count size version
40 last check check interval creator OS maijor version 00 { 01 02 | 03 04 | 05 | 06 l 07 08 | 09] Oa | 0b 0c | 0d ‘ Ge ‘ of
block 00 mode uid size access time change time
50 | def_res uid | def res gid | first non-reserved inode | inode size arp compatible feature flag — - 8 - N - -
num 10 moadification time deletion time gid] link count blocks
60 | incompatible feature flag | feature read only compat uuid (16 byte) 20 flags 0S description 1
70 volume name (16 byte) 30
80 40 block pointer (60 byte)
90 prealloc dir block 50
a0 last mounted (84 byte) prealloc block 60 generation I file access control list dir access control list
bo 70 | fragmentation blk addr OS description 2
c0 | algorithm usage bitmap |) l ' I padding
do journal uuid (l I10d e)
e0 journal inode number | journal device | last orphan 00 | o1 | 02] 03 04 | 05 06 | 07 08 ‘ 09 l 0a | b | 0c [od ‘ 0e | of
fo hash seed (16 byte) t | pad | padding " _ poveny
- inode record len o name (~255 byte)
100 default mount option I first meta block | default hashversion type

J. Choi, DKU

Appendix 1: Lab3 details

s Bonus

static int ext2 fill_super{struct super_block *sb, woid *data, int silent)

¢ struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); root@eSL-Lee]Y: /hame/sys32153530/workspace/2620 1/05 Lab3/os ext2# Insmod o5 extd.ko
osset ikl e Tl 1 root@ESL-Lee)Y: /hone/sys32153550/workspace/ 2620 1/0S Lab3/os ext2# Tsmod | arep o ext?
Tt e, e 05 ext? T8 0
nmimnad tamy o DEock st BERTRKIAAE root@ESL-LeelY: /hone/sys32153550/workspace/2620. 1/05 Lab3/os exta# ed .,
. e o ol g rODtEESL-Lee)Y: /home/sys32153558 workspace/2628 1/05 Lab3# s
istuagrad. bmg ok momnk append.c Makefile modules.order o5 ext? randisk.ko ramdisk.mod.c ramdisk.o

(modify ext2 source: just add your nhame) i mt Module.symvers ramdisk.c ramdisk.mod randisk.mod.o
OB CGESL-LEe]V /Ome/ 5 532 153000 W TRapace/ 2028_17U5_Lab3/0s_Exide Make (insmod: os_ext2)

rake -C /1ib/modules/5.3.8-42-gener1c/build M=/home/sys32153550/workspace/2026 1/05 Lab3/os_ext2 modules
nake[1]: Entering directory '/usr/src/Linux-headers-5.3.0-42-generic’
CC M1 fhome/sys32153550/workspace/2820_1/05 Lab3/os_ext2/balloc.o

CC[H] /hone/sys32153558/workspace/2828 1/0S,Lab3)os ext2/dir o rEo;{ngﬂi-ﬁeiYégl;o:efs;;i;iﬁaswmorkspaceimz@_lms_l_aba# mkfs.ext2 /dev/randisk

CC M /home/sys32153559/workspace/2620_1/05 Lab3/os_ext2/file.o ’Ergating' fﬂ'esysté“a;ith -

CC M1 home/sys32153550) workspace/2620 1/05 Lab3/os_ext2/1alloc.0 Filesysten LUID: B20555ee-13bb-4475-687- 1cOSacaf33

CC (M]/home/sys32153550/workspace/2020_1/05 Lab3/os_ext2/Inode.o superblock backups stored on blocks:

CC [M] /home/sys32153550/warkspace/2626 1/05 Lab3/os ext2/1octl.o 37768, 98304, 163840, 229376

CC (M /home/sys32153550/warkspace/2020 1/05 Lab3/os ext2/nanel,o

CC M1 fhome/sys32153590/workspace/2020 1/05 Lab3/os_ext2/super.o Allocating group tables: done

CC (M /home/sys32153350/workspace/2820 1/05 Lab3/os ext2/symlink.o Writing inode tables: done

LD [M] /home/sys32153556/ wa rkspace/2020 1/05 Lab3/os ext2/os ext2.o Writing superblocks and filesystem accounting information: done

Building modules, stage 2, !
MODPOST 1 modules root@ESL-LeedY: /home/sys32153550/workspace/2620 1/05 Lab3# mount -t os ext2 /dev/ramdisk ./mnt
s (home/sy332153550/workspace/ 2028 1/05 Lab3/os ext2/os exi2.mod.o

LD [M] /home/sys32153550/ workspace/2028_1/05 Lab3/os_ext2/os ext2.ko (mkfs and mount)

make[1]: Leaving directory 'fusr/src/l1nux-headers-3.2,6-42-generic'
root@ESL-LeelY: /home/sys 32153556 warkspace/2020_1/05 Lab3/os_exta 1s
acle dirc fileo Inode.n Makefile nanmet. 05 ext2.mod.0 synlink.c xattr.h | '

acl.h o diro ialloc.c 1octl.c modules.order o5 ext2.ko o5 exti.o smlink.o xatir security.c mt@ESL LE‘EJY.fh0m9f5y53215355@f1\'0rkspaﬁﬁfww_”us_].aha# d[ﬂE‘Eg ‘ grep DB—EHE

nalloc.c ext2.h ialloc.o ioctl.o Module.synvers os ext2mod super.c tags xattr_trusted.c [25]_[]]_55993925] 05 eyl ¢ Lee JEYEUH 05 Lah3

balloc.o file.c inode.c Kconfig namei.c 05_ext2.nod.c super.o yattr.c xattr user.c

. (Your name and student ID are printed out
(make module: kernel loadable module) at the kernel level NOT at the user level!!

I J. Choi, DKU
35

|@©@| Quiz for 11th-Week 2M9-Lesson
TIME]
I QUiZ

v 1. We want to create a file whose size is 4KB, as shown in the below

left figure. Using the figure, explain the terms of “inconsistent”, "space
leak”, “garbage read” and “dangling reference”.

v 2. FTL (Flash Translation Layer) is a SW layer that abstracts flash
memory like disks. Three key roles of FTL are 1) address mapping,
2) garbage collection and 3) wear-leveling. Explain these roles (refer
to Chapter 44 in OSTEP).

v Due: until 6 PM Friday of this week (14, May)
|
L

Bit = =
|no:j:n?32?a Inodes Data Blocks App—!-?at- =0]
= e Standard File System |
Bl pa .-
Bt esase T B 1 2 3 4 5 6 7 [Cache mechanism |
1Wear I.evetirlg] luﬂ:.ddress Mapplngl
OWINer : remzi [Carbags Coneation) ..
) ! . % g FTL !
pe rmlSSanS : ‘—eaﬂ_wrl-e Plane O Pliane 1 Plame O Plamne 1
size = Eas= gl | ||Fe2asS] —pags g 3
g p-“—rg- :ag_z_gc: —age = =
% | ===
pointer ¥ ol Die 6 rimen semory Aray Die 3
pointer : null Flash Memory Disk
pointer : null (Source: https://www.secmem.org/blog/2020/01/17/FTL/)
[J. Choi, DKU

36

[s Figure 41.1: FFS Locality For SEEIR Traces
37

Appendix 2

41.5 Measuring File Locality: FFS relies on Common Sense
(What CS stands for M)

v Files in a directory are often accessed together (namespace locality)

v Measurement: Fig. 41.1
» Using real trance called SEER traces
= Path difference: how far up the directory tree you have to travel to find
the common ancestor btw the consecutive opens in the trace
E.g.) same file: 0, /a/b and /a/c: 1, /a/b/e and /a/d/f: 2, ...

= Observation: 60% of opens in the trace = less than 2.
E.g.) OSproject/src/a.c, OSproject/include/a.h, OSproject/obj/a.o, ...

FFS Locality
o —
1009 -___r’_,__-;;g:-?'
- rac:g /
> anaorm

/-/
60% —| ;.-'/. /

)
/
A% — ‘f 4

20% —| / o

ab iﬁ’f

e T T T T T

O =2] =] a8 10
Path Difference

80%o —

Cumulative Frequency

0%

J. Choi, DKU

Appendix 2

s 42.3 Solution #2: Journaling (or WAL): Revoke record in
journal: for block reuse handling

v Scenario: 1) there is a directory called foo, 2) a user adds an entry
to foo (create a file), 3) foo’s contents are written to block 1000, 4)
log are like the following figure (note that directory is metadata,
which is also logged)

TxB I[foo] D[foo] TxE -
id=1| ptr:1000 [fimnal addr:1000] id=1

Journal

v 5) The user deletes the foo (and its subfiles), 6) The user creates
another file (say foobar), which uses the block 1000, 7) Writes for
foobar are logged (note that file contents themselves are not
logged)

TxB I[foo] D[foo] ITxE|TxB|l[foobar] [T xE
id=1| ptr:1 000 [fimal addr:1000] id=1 |id=2| ptr:1000 |id=2

Journal

v 8) At this point, a crash occurs. 9) recovery performs “redo” from the
beginning of the log. 10) overwrites the user data of the file foobar
with the old directory contents.

v Solution
» Ext3 adds a new type of record, a revoke record, for the deleted file or

E—JILECI0ry. When do replaying, any revoked records are notredo | ;i

Appendix 2

s Features of Actual FS: LFS (Log-Structured File System)

v Why? How to reduce seek distance?
» Allocate related data as close as possible: FFS, Ext2, ...
= But, eventually fragmentation occurs
E.g.) create a file 1 in a dir1, and a file 2 in a dir 2 =» 8 random writes in FFS
v Proposal: write data sequentially in new place (log) instead of original
place (out-place update vs in-place update)

* Need to add new mapping information (inode map)

E.g.) create afile 1 in a dir1, and a file 2 in a dir 2 =» 8+1 sequential writes in
LFS

Original data = invalidate
= Need garbage collection for reclaiming invalidated data

[3
o —~ . UFs 1§
L |] ! i r) Ile? "?H“""nl ’ L Clgan plack
= 5 7T [:% - L5 lud hies
oy

I (3} Garbage Collection
I (4] Allocation free space

— ‘—'H“*"r...‘r.... S T T T e T
I T anonl I 1 T

i " Hi [1

i H o8 ow

...

uctured-file-system-for-dummies.html, J. Choi. DKU
ps://deepal.org/publication/ssdfs-towards-Ifs-flagh-friendly-file-system-without-gc-operation) ’

