DANKDOK UNMIVERSITY

Lecture Note 8: Memory
Management

May 11, 2021
Jongmoo Choi

Dept. of Software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)
[J. Choi, DKU

Contents

s From Chap 12~17 of the OSTEP

s Chap 12. A Dialogue on Memory Virtualization
s Chap 13. The Abstraction: Address Space

s Chap 14. Interlude: Memory API

v malloc(), free(), brk(), mmap(), ...

s Chap 15. Mechanism: Address Translation
v Base & Limit (Bound), Dynamic Relocation

s Chap 16. Segmentation

v Generalization, Sharing, Protection

s Chap 17. Free-Space Management
v Fragmentation, Splitting and Coalescing
v Strategies: Best fit, First fit, Worst fit, ...
v Segregated list, Buddy algorithm, ...

I J. Choi, DKU

Chap 12. Dialogue

s Memory virtualization

Student: So, are we dorne with virtualization?

Professor: WNo!

Student: Hey, rno reason to get so excited; I wwas just asking a question. Studerits
are supposed to do that, right?

Professor: Well, professors do always say that, but really they mean this: ask
qguestions, if they are good guestions, and you have actually put a little thought
irnnto thern.

Student: Well, that sure takes the wind out of my sails.

Professor: Mlission accomplished. In any case, we are rnot nearly done with
virtualization! Rather, you have just seenn how to virtualize the CPUILL bt reaﬂ’y
there is a big monster waiting in the closet: memory. Virtualizing miemory is

complicated and requires us to understand many more intricate details about
how the hardware and OS interact.

Student: That sounds cool. Why is it so hard?

Professor: Well, there are a lot of details, and you have to keep them straight
in your head to really develop a mental model of what is going on. We’'ll start
simple, with very basic techniques like base/bounds, and slowly add complexity
to tackle new challenges, including fun topics like TIL.Bs and multi-level page
tables. Eventually, we’ll be able to describe the workings of a fully-functional
rmroderrn virtual memory manager.

Student: Neat! Any tips for the poor student, inundated with all of this infor-
mation and gennerally sleep-deprived?

Professor: For the sleep deprivation, that’s easy: sleep miore (and party less).
For understanding ovirtual memory, start with this: every address generated

by a user prograwm is a virtual address- The OS is just providing an illusion
to each process, specifically 1 -

sorme hardware help, the OS will turn these pretend virtual addresses into real

_physical addresses. and thus be able to locate the desired information.
| L)KU
ress space (Large and Private), Virtual/Physical Address, Address Translation, Téoration

Chap 13. The abstraction: address space

Early system

Multiprogramming and Time sharing

Address space

Goals

Wirtual address space

for Notepad.exe

(OO0000000

TFF93951000

\

TFTa3952000

TFFFFFFFFFF

Physical memary

pages

B3A20000

AFEA000

F3CEQODD \
|\ TETO3850000

e B2ZBASOO0D

BCGS W

4

Virtual address space

far MyApp.exe
CODDOOEN

YFTFa3951000

TEFEFFFFEFF

(Source: https://msdn.microsoft.com/en-us/windows/
hardware/drivers/gettingstarted/virtual-address-spaces)

J. Choi, DKU

13.1 Early Systems

s Use physical memory directly
v OS and current program =» single programming system
v No (limited) protection
v Larger program than physical memory =» Overlay

OKB
Operating System

(code, data, etc.)

64KB

Current Program
(code, data, etc.)

mMax
Figure 13.1: Operating Systems: The Early Days

I J. Choi, DKU
5

13.2 Multiprogramming and Time sharing

s Computer becomes bigger

v Multiprogramming: multiple processes are ready to run
v Time sharing: switch CPUs among ready processes

v Issues

= Protection becomes a critical issue
= How to find suitable free space

oKB

64KB

i28KB

192KB

256KB

320KB

384KB

448KB

512KB

Figure 13.2: Three Processes: Sharing Memory

Operating System
(code, data, etc.)

(free)

Process C
(code, data, etc.)

Process B
(code, data, etc.)

(free)

Process A
(code, data, etc.)

(free)

(free)

6

J. Choi, DKU

13.3 Address space

= Abstraction
v A process has an illusion that it uses exclusively all memory even
though it is shared by multiple processes = virtual memory

v Well defined layout =» address space

= Code (instruction), Data (statically-initialized variables), Stack (function
call chain and local variables), Heap (dynamically allocated)

» Code is located at virtual address 0x0, but not physically

Proces 3 Poocems ¥ OKB
the code segment:
— _ S KB Program Code where instructions live
the heap segment:
Heap contains malloc'd data
VPN & Prooms 5 — | vemue KB dynamic data structures
Foge Toble fage Tabim | (it grows downward)
VPN S * Al YW S
VEEN 4 Al [’ PENa VEEN 4 Y
(free)
VPFM 1 - PN VIEN]
)
VPR 1 B 2 VPN 2
. éit grm;f upward)
VRPN L — YPMH L the stack segment:
- 15KB contains local variables
arguments to routines,
S _ I S Stack gfetum values, efc.
—- 16KB
Virtual memory Physical memory Virtual memory

Figure 13.3: An Example Address Space
J. Choi, DKU

7

13.4 Goals

m Transparency (easy to use)
v Programmer: no need to aware the memory size or available space
s Efficiency

v Both in terms of time and space (not slow and not requires much
additional overhead) =» Various HW support (e.g. TLB)

s Protection (isolation)
v Protect processes from one another

s Note: every address you see is virtual

#include <stdio.h>
#inclunde <stdlib_h>
int main(inkt arge, char zarxgwv[]) {

printef ("location of code z Epham, {(void) main}) ;
printef {("lecation of heap s Epka™, (void +) malloc (1)) ;
int = = 3;

printE (" locabtion of stack @ 2", (void =) &x);

return x=;

}

When run on a 64-bit Mac OS X machine, we get the following output:

location of code s Ox10%95afes50

location of heap : 0x2x10296008c0

location of stack : O0xTEEFf69]1acabtd
I J. Choi, DKU

8

Chap 14. Interlude: Memory API

Types of Memory

The malloc() call

The free() call
Common errors
Underlying OS Support

Other Calls - L
| [
free()
I H
#malloc ()

| |

I J. Choi, DKU

14.1 Types of Memory

= Two types of memory
v Static: Code (also called as text), Data

v Dynamic: Heap, Stack

= Stack
Implicitly by the compiler (hence sometimes called automatic memory)
Short-lived memory

void func() {
int x; // declares an integer on the stack

= Heap
Explicitly by the programmer
(relatively) Long-lived memory

voild Ffunc{() {
int #*x = (int =*) malloc({(sizeof(int)) ;
}
I J. Choi, DKU

10

14.2/3 The malloc()/free() call

= The malloc() call
v Input: memory size (how many bytes you need)
v Qutput: pointer to the newly-allocated space (or NULL if it fails)

v Use well-defined macros or routines, instead of number as input

v' malloc(sizeof(int));

v malloc(strlen(s) + 1);

s The free() call

v Input: pointer (size is not specified, meaning that it is managed by the
library)

int *x = malloc(l0 * sizeof(int));

free(x);

I J. Choi, DKU

11

14.4 Common errors

s« Common errors
v Forgetting to allocate memory

char #*src = "hello";
char =*dst; // oops! unallocated
strcpy (dst, src); // segfault and die

= Correct version (or strdup())

char =*src "hello";
char *xdst (char x) malloc(strlen({src) + 1);
strcpy (dst, src); // work properly

= We frequently meet the segmentation fault. Hence =

When you run this code, it will likely lead to a segmentation fault,
which is a fancy term for YOU DID SOMETHING WRONG WITH
MEMORY YOU FOOLISH PROGRAMMER AND [AM ANGRY.

* Make use of a debugger (e.g. gdb)

J. Choi, DKU
12

14.4 Common errors

s Common errors
v Not allocating enough Memory

char *src = "hallo®:
char xdst = {char %) malloc(strlen(srec)); // too small!
strcpy (dst, src); // work properly

= |t seems work, but not correctly (\0’), which causes buffer overflow,
leading to several security vulnerabilities.

= Some library allocates a little extra space.

v Forgetting to initialize allocated memory
» Heap has data of unknown value.

v Forgetting to free memory

= Memory leak

= Some languages support the garbage collection mechanism that
manages memory automatically without requiring explicit free() by
programmers = but if you still have a reference, the collector will never

free it (still problem)

I J. Choi, DKU
13

14.4 Common errors

= Common errors
v Freeing memory before you are done with it
» Dangling pointer
» Subsequent use can crash the program and even system

v Freeing memory repeatedly
= Double free

v Calling free() incorrectly
» |nvalid free
= Tools for solving memory-related problems
v Purify
v Valgrind

Vo

memory leak dangling pointer

I J. Choi, DKU

14

14.5/6 Underlying OS Support/Other Calls (Optional)

= Underlying OS Support
v malloc()/free() =» library

v It internally allocates several pages using the sys brk() or
sys_mmap() system call and manages them to serve the malloc()

and free() request
v If its space becomes too small, it requests more pages to OS again
using the sys brk() or sys mmap() = system call

s Other Calls

v calloc(): allocate and zero space

v realloc(): allocate a new larger region, copy the old region into it and
returns the pointer of the new region

] no

T S a— | J. Choi, DKU

Chap. 15 Mechanism: Address Translation

s CPU virtualization

v Limited Direct Execution
= Direct execution: process run independently for the most time (efficiency)

» Limited: OS get involved (control)
v Two mechanisms
» Restricted operations (e.g. system call): user mode = kernel mode (OS

control)
» Timer interrupt: user mode =» kernel mode (OS control), do periodic jobs
such as scheduling and context switch

s Memory virtualization

v Address Translation
= Address space: virtual memory (using virtual address)
= During execution: physical memory (using physical address which is
translated from virtual address)
v Again, we will pursue both efficiency and control
= Efficiency: small overhead =» hardware-based address translation
= Control: OS ensures that no processes is allowed to access any memory
but its own = OS memory management

I J. Choi, DKU
16

15.1 Assumption/15.2 An Example

OKB

128 | movl DxDi%abx) Yo
s A program e
. . . 18 Program Code
v High-level viewpoint i
vold func() { 3KB Heap
int x = 3000; // thanks, Perry.
X=X+ 3 // this is the line of code we are interested in 4KB l
v Assembly viewpoint
128: movl 0x0(%ebx), %eax ;1oad O+ebx into eax
132: addl $50x03, %eax ;add 3 to eax register
135: movl %eax, 0x0(%ebx) ;store eax back to mem
v Process viewpoint (address space) (fre)

= |nstructions: address 128 ~ 135 at code
= Variable x: address 15KB (15,360B) at stack

v Execution viewpoint (fetch + execution)

e Fetch instruction at address 128

Execute this instruction (load from address 15 KB)

Fetch instruction at address 132

Execute this instruction (no memory reference)
Fetch the instruction at address 135

Execute this instruction (store to address 15 KB) 16KB

Ml?;@, ...) during SECUNION 4 process And Its Address Spa

14KB

15KB 3000
Stack

15.1 Assumption/15.2 An Example

= Focusing on memory 8

v Address space (virtual memory)

» Starts at address O

= Grows to maximum of 16 KB 16
v Physical memory

= Can place any free space, not necessarily at
address 0 =» relocation
e

v Address translation e
J
= Assume that the process is located at

Operating System

(not n Lse)

L 1
Relocated Process

32KB~48KB in physical memory "a'“m““;‘“““"““’
= Then the virtual address 0 needs to be 19K =

translated into the physical address 32KB

=>» address translation 19

v Other slots (e.g. 16~32KB) are not used =
free space management

v OS also locates in physical memory

64KB
Figure 15.2: Physical Memory with a Single Relocated Process

I J. Choi, DKU
18

15.3 Dynamic (Hardware-based) Relocation

= Integration of Virtual and Physical memory
v Virtual memory: 0~16KB vs Physical Memory: 0~64KB
» Being loaded into 32KB~48KB
v Address translation: virtual address =» physical address
» Firstinstruction: 128 =» 32KB + 128 (32768 + 128 = 32896)

= Variable x: 15KB = 32KB + 15KB = 47KB
» |n general: base address + offset (instruction or variable’s address)

oxB 128 | mowvi oxo(cabx) e of =25 3
e e e
1B
Program Code
2KB
aIKB Heap
4aKB l
Base register..
{frea)
I Limit register .-

IS~ ——————— e
15KB e

Stack | e
ek Ll

Figure 15.1: A Process And Its A ddress Space

19

OKB
Operating System
16KB
(notin use)
Heap 0
I o
(allocated but not in use) E
0
! 8
i
(notin use)
64KB

Figure 15.2: Physical Memo
< \What if a virtual address is Iarger than the limit register?

with a Single Re ocated Process

J. Choi, DKU

@@'@ Quiz for 12th-Week 1st-Lesson
TIME]
i QUiZ

v 1. Discuss the definition of the following terms using the below figure
: 1) virtual memory, 2) physical memory, 3) address space, 4)
address translation, and 5) relocation.

v 2. What are the physical addresses when we access the virtual
addresses of 1KB, 3KB, 15KB and 17KB in the below figure.

v Due: until 6 PM Friday of this week (21, May)

DKE JJJJJJJJJJ == e,
EEE R Rt S 0KB
1B
Program Coda
e Operating System
IKB Heap
aKB -
l Base register 16KB
(not in use)
(free) Heap e
] o
(allocated but notin use) E
5
St;lck 8
I Limit register 48KB) 2
Sl s s D (no‘ m USB)
15KEB e
Stack | e
ik T 64KB

Figure 15 1: A Process And Tts A ddress Space

Figure 15.2: Physical Memory with a Single Relocated Process :hoi, DKU

15.3 Dynamic (Hardware-based) Relocation

s Summary of address translation (and relocation)
v Virtual memory: per process (exclusive), start at 0x0 (size: 16KB)

v Physical memory: shared by processes, start at any address (different

among processes)
v Three main components: Compiler, OS and Hardware (Architecture)
= A program is compiled as if it is loaded at address 0 (virtual memory).

» The program is loaded any space in physical memory, while setting base and
limit registers appropriately = relocatable

» An address requested by CPU is translated into a physical address while
running (and protected)

OKB o (o oxniocab stear
132 | addl ox03, eea
125 | movi =womx, oxoiseabx)
1KB
Program Code
2KB
3KB Heap
4aKB l
(free)
14KB I
15KB aoo0o
Stack

18KB

Figure 15.1: A Proces

s And Its Address Space

Base reg'i'"stqr

0KB

16KB

32KB 2

64KB

Operating System

(not in use)

Code

Heap

i
(allocated but not in use)

i
Stack

(not in use)

Relocated Prqéess

Figure 15.2: Physical Memory with a Single Relocated Process

yS|§?I memory

Ba,§e...reg.igter

Li?ﬁit-re,_gister

T 15KB 2000

oKB

“iKB

2KB

3KB

4aKB

14KB

16KB

328 [mevi oxoiscebx), e p—
++*"132 |acdl 0x03, 'ﬂ;—r:x
135 | movl Seasi, ox0(2eabx)

Program Code

Heap

!

(free)

I

Stack

Figure 15.1: A Process And Its Address Space

Virtual memory (fot protessB)

15.3 Dynamic (Hardware-based) Relocation

s Summary of address translation (and relocation)

v How to translate? Using two hardware registers

» Base register: start address (30004 in this example)
physical address = base register + virtual address
E.g. virtual address = 10 =» physical address = 30014

= Limit register (Bound register): upper bound (or size, 12090 in this

example)

E.g. virtual address = 13000 =» segmentation fault
= Base/Limit registers are switched at each context switch time

E.g. base register: 30004 = 25600

25600

30004

42094

88000

102400

operating
system

process

process

base

process

limit

30004

base base + limit

CPU

P pyspm—
12090

Y

address i yes
= <

no

Y

trap to operating system

monitor—addressing error

Y

no

yes

memory

(Source: A. Silberschatz, “Operating system Concept”)

22

J. Choi, DKU

15.4 Hardware Support: A Summary

= MMU (Memory management unit)
v Part of CPU that helps with address translation

v E.g.) Base/limit registers, Segmentation related registers, Paging
related registers, TLB (Translation Lookaside Buffer) + circuitry

s Summary of HW support for Dynamic relocation

Hardware Requirements Notes

Privileged mode Needed to prevent user-mode processes
from executing privileged operations

Base/bounds registers Need pair of registers per CPU to support

address translation and bounds checks
Ability to translate virtual addresses Circuitry to do translations and check

and check if within bounds limits; in this case, quite simple
Privileged instruction(s) to OS must be able to set these values
update base /bounds before letting a user program run
Privileged instruction(s) to register OS must be able to tell hardware what
exception handlers - code to run if exception occurs
Ability to raise exceptions When processes try to access privileged

instructions or out-of-bounds memory

Figure 15.3: Dynamic Relocation: Hardware Requirements

I J. Choi, DKU
23

15.5 Operating Systems Issues

s OS responsibilities

v Memory management
= Allocation for new processes, free list manipulation, ...
» Reclaim the space of terminated processes

v Base/limit registers management during Context switch
» Save/restore base/limit registers into/from PCB (MMU)
» Process relocation if necessary

v Exception handling
» Handlers + Table (e.g. segmentation fault handler + IVT)

OS Requirements Notes
Memory management Need to allocate memory for new processes;
| Reclaim memory from terminated processes;
Generally manage memory via free list
Base/bounds management Must set base/bounds properly upon context switch
Exception handling Code to run when exceptions arise;
likely action is to terminate offending process

Figure 15.4: Dynamic Relocation: Operating System Responsibilities

I J. Choi, DKU
24

15.5 Operating Systems Issues

Global view

S & boot

Hard ssware

(inikialize I:-l.'a.::I:aI:r:l-E
Initializatio

start imbeErrmpet B

imikrali=e =ss Eable
imitiali=e free list

-

memermber add resses of .
syr=erm call hamnd ber
Hmer handler
ilkegmal merm-aooess hamd ler
iifemal instroction handleEr

si=rt timmer; imberrapt afier 30

OS & ran
Ak sl smnaselas bk

Hardsware FProgram

fuse r muosdde §

OS involved

Handle the trap N

Call switcoch {5 romatirse
save memslA) o proc-siroect])
[Encluding base S bouands=)
restorne regs=iE) from proc-stract(B Y

4 T start prooess Mo
alioca entry in proces=s tabile
aliocats memony: for process = =
refturn-from—trap (into S /
_ restore Pemisters of O
o RO DO LESe T TEokeale

jumnp bo ATs (imdtaal) PO
Process & rums
Fetch instruction
Translats wirtual address
and performm Setoch
Exescut instresction
If exprlicit load f store:
FEFnsure addrress is i bowrrmeds;
Translate wirtu=al address
and perform load / stone
Timee r interrupt
o to ke el muoede
\] unpr bo interrupt hamndber

\

/

LEimcluding base M bouands)
returm-from-trap (into B) J

Handle tihe trap
Decide fo berminabs process B
dic—allocate B s ome oreoery
e B's entry in proocess table

/ restore remsters of B
TRoE Do mseT TEoecle
jumnp bo B's PO
FProcess B runs
Executs bad load
Load is owt—o - bocemed s
mroee bor e rmeel meaoed e
\ junmp bo Erap handler

ecubtion (Dyvnamic Relocation) & Huntimme

25

Choi, DKU

15.6 Summary

s Memory virtualization

v Address translation

» OS: memory allocation/free, base/limit initialize, exception control
(infrequent event)

= HW: virtual to physical at every execution (frequent event, MMU)
= Support transparency: users have no idea where their processes are

v Mechanisms
= Contiguous allocation

1) Base and limit registers relncaton
Pros: Simple and Offer protection register
| .
Cons: Internal fragmentation logical physical
= Non-contiguous allocation opy |—tese @ 200 o memory
: : . 346 14346
2) Segmentation: Variable size
3) Paging: Fixed size

MMU

(Source: A. Silberschatz, “Operating system Concept”)

I J. Choi, DKU

26

Chap. 16 Segmentation

m Issues of the base/limit register based dynamic relocation
v A big chunk of “free” space in the middle of address space
» Even though they are free, they are taking up physical memory

v Hard to run a program when the entire address space does not fit
iInto an available space in physical memory

B 1z ey gt e OKB
e Program Code
2KB Operating System
3KB Heap
aKke l 16KB
Base register.. |
(notin use)
32KB Tole 2
(free) = 0
] i
(allocated but nat in use) EJ
j T
48KB.-+ - %
I Limit register . o
B e (I'IGt in US@)
15KB w00 | e
Stack | e
ek L— L. 64KB
R e S SR s Figure 15.2: Physical Memory with a Single Relocated Process
<+ How large the free space between heap and stack in 32-bit CPU?
I J. Choi, DKU

27

16.1 Segmentation: Generalized Base/Limits

s Keyidea
v Contiguous =» Non-contiguous
v Segment: divide a program into multiple segments (each segment is

a contiguous portion of the address space)

oKB

1KB

2KB

aKB

4KB

s5KB

sKB

14KB

15KB

18KB

Figure 16.1: An Address Space (Again)

» E.g.) code segment, data segment, stack segment, heap segment, ...

v Support base/limit per segment
= OS places segments independently in physical memory

Program Code

Heap

(free)

|

Stack

0KB

Operating System
16KB
{not in use) Segment Base Size
Slilck Code 32K 2K
30KB LA Heap 34K 2K
Q Stack 28K 2K
. ' Figure 16.3: Segment Register Values
(not inuse)
64KB
Figure 16.2: Placing Segments In Physical Memory .
— J. Choi, DKU

28

16.1 Segmentation: Generalized Base/Limits

s Address translation
v virtual address 100 (e.g. PC) = physical address: 32KB + 100
v virtual address 4200 (e.g. pointer x) =» physical address 34K + 104
v virtual address 7000 (or 3000) =» segmentation fault

v virtual address: segment number + offset
= Segment number: choose appropriate segment register (or table entry)
» Offset: location within the segment (assume that it begins with 0)

1KB Program Code OKB
3KB Operating System
:KE Heap 16KB
e I Segment Base Size R
] Stack
Code 32K 2K e Tootin usa)
Heap 3K 2K E;
wree) Stack 28K 2K
I Figure 16.3: Segment Register Values 48KB NN
B Stack E4KB

Figu 16.1: A Add Space (A in) ” . .
sune " ress mpace tasain Figure 16.2: Placing Segments In Physical Memory

I J. Choi, DKU
29

16.2 Which Segmentation Are We Referring To?

s Segment encoding in virtual address
v Segment number part + offset part

v In the previous example
= Address space size: 16KB = 2*14 = 14 bit
Number of segment: 3 = 2 bit
Number of offset: remaining 12 bit =» maximum size of a segment: 4KB

13 12 11 10 9 8 7 6 5 4 3 2
Segﬁ’:ent Offset - T
= Segment: 00 =» code, 01 =» heap, 11 =» stack =
= virtual address 4200 = 4096 + 64 + 32 + 8
13 12 11 10 8 8 7 6 5 4 3 2 1 0 Segment Base Size
lo/1/ojo/o/ojo[1(1]/0(/1(0][0]0] Code 32K 2K
1 : 1L ;] Ht‘!ap 3K 2K
Segment Offset Stack 28K 2K

Figure 16.3: Segment Register Values
Segment number: Used for searching its related base register
Offset: If this offset is larger than the limit, trigger the segmentation fault.

Otherwise, add offset with the value of the base register, generating the
physical address (4200 = “01 (heap) + 104” = 34K + 104)

O e vTtaaT auuTeoees 100 anta 000 disctssed in the previous slide? - hot DKU

|‘_@'@@|
TIME

s Quiz

Quiz for 12th-Week 2M9-Lesson

v 1. Discuss the roles of 1) compiler, 2) operating system, and 3) CPU
(or HW) for memory virtualization (hint: 21 page).

v 2. Using the below left figure, explain the physical addresses of the
virtual addresses of 100, 3000 and 5000 (using the terms of segment
number and offset)

v Bonus. Discuss the values of SEG_ MASK, SEG_SHIFT and
OFFSET_MASK in the below right figure (hint: see 5 page in the
OSTEP)

v Due: until 6 PM Friday of this week (21", May)

((((((

sssss

Segment Base Size
Code 32K 2K
Heap MK K
Stak 28K XK

Figure 16.3: Segment Register Values

Figure 16.2: Placing Segments In Physical Memory

KB

16KB

32kB

48KB

B4KB

Operaing System

{not inuse)
bl

Stack
{notin use)

Hezp
i

31

Pseudo code for address translation
in segmentation

1 // get top 2 bits of 14-bit VA
1 Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT
3 // now get offset
4 Offset = VirtuzlAddress & OFFSET MASK
5 if (Offset >= Bounds[Segment])

RaiseException (PROTECTION_FAULT)
else

PhysAddr = Base [Segment] + Offset

Register = AccessMemory (PhysAddr)

= R |

16.3 What About the Stack? i

s Stack issue

v It grows backward =» translation must proceed differently
» Need extra HW support

Segment Base Size (max 4K) Grows Positive?

CDdE‘{}[} 32K 2K 1
Heap 01 34K 3K 1
S'l'EiCk]_ 1 28K 2K 0

Stack

Figure 16.4: Segment Registers (With Negative-Growth Support)

Figure 16.1: An Address Space (Again)

v Instead of offset, adding “virtual address - total address
space size” (or “offset in stack - maximum segment size”)
with the value in base register

= Virtual address: 15KB = 11 1100 0000 0000

Qoereing System

(ot s

. Segment number 11 =» stack)

. Offset 1100 0000 0000 = 3KB u %&
» Physical address: 28KB + (15KB - 16KB) or 28KB + (3KB —
4KB) = 27KB i}

(not s

= Another example: 16KB - 4B =16380=b 111111 1111 1100
=» seg. Number = 11 + offset = 1111 1111 1100 = 4902 =>

ghxsical address = 28KB + (4902B — 4096B) = 28KB — 4B
32

B

Fiqure 6.2 Placing Secments In Physical Memory

16.4/5 Support for Sharing/ Granularity

s Benefit of segmentation
v Sharing among multiple processes
-da!a 1 limit | base
v Protection support eomerts /v |_stes | o
segment table
logical memory process £ 68348 datad
process P1 T2773
Segment Base Size (max4K) Grows Positive? Protection
Codegy 32K 2K 1 Read-Execute
Heﬂplll 34K 31(1 REEid-Wl'itE editor 90003 "
Stack;; 28K 2K 0 Read-Write e 98553
Figure 16.5: Segment Register Values (with Protection) N physical memory
e =
logical memary BIRERRRIES
process P2
[| Seg ment SlZe (Source: A. Silberschatz, “Operating system Concept”)

v Coarse-grained
= Relatively large size, small # of segments in a process (around 4)
v Fine-grained
» Relatively small size, large # of segments in a process
» Make use of a table (segment table) for manipulating large # of segments.

I J. Choi, DKU

33

16.6 OS Support

s For segmentation support
v Context switch: save/restore segment related registers
v Free space management

» Try to reduce external fragmentation =» coalescing and compaction

oOKB

s8KB

16KB

24KB

32KB

40KB

48KB

SEKB

64K B

Figure 16.6: Non-compacted and Compacted Memory

v Allocation

» Best-fit, worst-fit, first-fit, buddy algorithm (=» see chapter 17)

Mot Compacted

Operating System

(not in usa)

Allocated

(not in usa)

Allocated

(not in-use)

Allocated

oKB

s8KB

16KEB

24KB

32KB

40KB

48KB

SeKB

54KB

Compacted

Operating System

Allocated

(not in use)

<+ Compaction in memory: prepare for large free space vs Compaction in disks: reduce seek time

34

J. Choi, DKU

16.7 Summary

s Segmentation
v Divide address space into logical regions called segment

v Overcome the memory wasted between segments (e.g. heap and
stack in the base/limit mechanism)

v Flexible: support sharing and protection

s But, still have some problems

v Variable size = relatively hard to implement in hardware, may cause
external fragmentation which complicate free space management

v Memory waste within a segment, especially sparse segment = need
to allocate address space that are actually used by a process

v Alternative: fixed size = Paging (chap 18.)

segment o

physical rmemory

35

Chap. 17 Free Space Management

s Free-space management
v Variable size (e.g. malloc() or segmentation)
= Complicate, need to handle external fragmentation =» in this chapter
v Fixed size (e.g. paging)
» Relatively easy, usually a list of free fixed-size units = later chapters

Thp [OFpoTot g | [P poTok g | O

= e | o Bt EE e L b b Lt i)
Processs 1 % O Frrosacesss 1 F fe. 1 Froacesss 1 peln 5 ¥
. Process 2 1-—- LB Process 2 et

A '
{._ > oma FProcesss 5 .5 |
<1 M
Wy o Ew D] el
e L et e et] Sy e e Lt h]

Frescesss LA
FProcssss 1 % 2O Processs 1 e L | 20T

Processs 2 Fo5.0 | Frocesss <8 3% Prroscesss <8 HEW
L3 | Lt | L3 0

Frocesss 3 L =N Process 8 I =MW Frocess & 1 EhT Frocess 8 TEMWT

4= atvE LN AT AT

L= oy =¥ L8 =]

(Source: A. Silberschatz, “Operating system Concept”)

= Process 2 is “relocated” dynamically
= Need the swap space (in a disk) when a process is suspended.

= How to handle when a new process is forked at (h) step whose size is 3 or 10%E?DKU

36

17.1 Assumptions

= Interfaces
v malloc()/free()

s Free space
v Managed by a list (free list)

v In actual OSes, free space is managed by various data structures
including a hashed list or tree (e.g. buddy system)

s Fragmentation
v External: variable-size allocation
v Internal: fixed-size allocation
v Focus on external fragmentation

37

allocated partition
external '
used fragmentation '
used ’m]..nsed
used
internal fragmentation
J. Choi, DKU

17.2 Low-level Mechanisms

s Splitting and Coalescing

v Memory: 30-byte heap free used free
0 10 20 30
v Free list — , adc!r:ﬂ I add_r:ED > NULL
len:10 len:10
v Request

= 10B =» allocate one of the free entries
= Larger than 10B =» fail or need compaction

= Smaller than 10B =» need splitting

Allocate 1 byte
addr:0 addr:21

head len:10 len:9

— NULL
v Free

* Free the used space 10~19 =» need coalescing
Sort free entries, check neighbors when inserting into the free list

addr:10 addr:0

> ddr:20 :
len:10 len:10 i » NULL head —p 390 _ iy

IE‘“:‘ID IE”:SD

= Oee appendix (page 45~49) an .2 INn PSTEP for real free space managen“{'e(r:\r{c.’i’ PKU

head —p —_—

17.3 Basic Strategies

s Free-space allocation policy
v Best-fit
» allocate from the smallest chuck which is bigger than the request size
v Worst-fit
= allocate from the largest chuck which is bigger than the request size
v First-fit

= allocate from the first chuck which is bigger than the request size,
search start from head

v Next-fit

» allocate from the first chuck which is bigger than the request size,
search start from the last allocated chunk

Head Last aIIocated block (14MB)

il I-II[

8MB 12MB 22MB 17MB MB 18MB 14MB 4MB 36MB

+ Need to allocate 16MB available space. Which one by each policy?

J. Choi, DKU
39

17.4 Other Approaches

= Buddy allocation

v To make splitting/coalescing simple

v Allocate a free memory with the size of 2" (e.g. 4KB, 8KB, ...)

s Segregated Lists

v Some applications have one (or a few) popular-sized request
v Manage them in a segregated list =» same size = easier to split and

v Popular example: slab allocator in Solaris (and in Linux)

v More complex data structure for fast searching (e.g. balanced B-tree)

coalescing
s Others
1 Mbyte block | 1M]
Request 100K [A=128 K[128K | 256 K [SI2ZK |
Request 240K [A=128 K[128K | B=23%6K | 52K]
Request 64 K [A= RS KE=s1x64 K] B=256K | SI2K |
Request 256 K [A = 128 Kfc=sx[64 K] B=256K | D=256K | 256 K]
Release B [A= 28 Kf=sx]64 K] 256 K [D=256K | 256 K]
Release A [128K [e=sax]64 K] 256 K [D=256K | 256 K |
Request 75K [E= 28K =ax[64K] 256 K [D=256K | 256 K]
Release C [E=128K] 128K | 256 K [D=256 K | 256 K]
Release E | 512K [D=256K | 256 K |
Release D | 1M]

M

512K

256K

128K

64K

v
[A= 128K E-aix6dK] 356K D=-25K | 256K |

(Source: A. Silberschatz, “Operating system Concept”)

40

J. Choi, DKU

17.5 Summary

= Memory virtualization
v Goal: Transparency, isolation, efficiency
v Virtual memory (Address space) and Physical memory
v Address translation: virtual to physical address

s Dynamic relocation
v Base & Limit (Bound) approach
v Generalized approach = segmentation

s Free-Space Management
v Reduce fragmentation (external/internal)
v Mechanism: Splitting, Coalescing and Compaction
v Policy: Best fit, First fit, Worst fit, Buddy algorithms, Slab,
v = Variable size makes management complex (1000 solutions)

TiP: IF 1000 SOLUTIONS EXIsSsT, NO GREAT ONE DOES
The fact that so many different algorithms exist to try to minimize exter-
nal flagmentatlon is indicative of a stronger undelly]_no truth: there i1s no
one “best” way to solve the problem. Thus, we settle for something rea-
sonable and hope it is good enough. The only real solution (as we will
see in forthcoming chapters) is to avoid the problem altogether, by never
allocating memory in variable-sized chunks.

I J. Choi, DKU
41

|@©@| Quiz for 13t"-Week 1st-Lesson
TIME]

s Quiz

v 1. Discuss the following terms using the below figure : 1) swap out
(also called as “suspend” in LN 2), 2) relocation, 3) external
fragmentation, 4) compaction and 5) splitting.

v 2. There are a lot of interesting questions in &2/ H Al &t in the e-
learning campus. Add your response or comment about an existing
guestion that you are interested in (Explain your action as an answer
of this quiz).

v Due: until 6 PM Friday of this week (28", May)

fo5 W

Proceses 1 } CNTT Frroeceses B } et W | Proeceses 1L AR
o Pl T e s X } 18P Freroece s 2 LRl

e e oY

EXN N

T T B e — W

e
e eses B e w] e eoses 0] | 2w =
g e L e T T e e e <8
I <2 BT =W =
(=2t] Lot |
-

AT

I J. Choi, DKU
42

Appendix: 17.2 Low-level Mechanisms

s Tracking the size of allocated regions

v free(): argument =» pointer only, not size
» Need to track the size of a unit that is freed for coalescing
= Most allocators utilizes a header block, usually just before the handed-

out chunk of memory

Size, magic number for integrity checking, additional pointer to speed up
deallocation, and other information

typedef struct _ header t | void free (void *ptr) {
header t +hptr = (void =)ptr - sizeof (header t);

int size;
int magic;
} header_ t;

{* The header used by malloc library

pir —» =

= The 20 bytes returned to caller

Figure 17.1: An Allocated Region Plus Header

hptr —» —
size: 20

magic: 1234567

ptr =—

The 20 bytes returned to caller

Figure 17.2: Specific Contents Of The Header

43

J. Choi, DKU

s Embedding the free list into a heap

Appendix: 17.2 Low-level Mechanisms

v Figure 17.3: initial stage, build a free list inside the free space

» Free space: 4KB (4096 byte), entry of the free list: 8 byte (size, next) = size
becomes 4088.

v Figure 17.4: after “malloc(100)”

» Header for the allocated space: 8 byte (size, magic #) = 3980 (split occurs)

» Head: pointer for the free list, ptr: pointer returned to malloc()
v Figure 17.5: after three “malloc(100)’s =» 3764

head —»

size: 4088

[virtual address: 16KB]
header: size field

next: (e}

header: next field (NULL is O)

} the rest of the 4KB chunk

Figure 17.3: A Heap With One Free Chunk

size: 100

[virtual address: 1 6KEBE]

magic: 1234567

ptr -

head ——»

} The 100 bytes now allocated

size: 3980

next: o

} The free 3980 byite chunk

Figure 17.4: A Heap: After One Allocation

et

sptr

head

size: 100

magic: 1234567

size:

100

magic: 1234567

size:

100

magic: 1234567

size:

3764

next: 0

Figure 17.5: Free Space With Three Chunks Allocated

[wirtual address: 16KEB]

= 100 bytes still allocated

= 100 bytes still allocated

(but about to be freed)

= 100-bytes still allocated

The free 3764-byte chunk

KU

Appendix: 17.2 Low-level Mechanisms

s Embedding the free list into a heap

v Figure 17.5: after three “malloc()’s, trigger one “free(sptr)” request
v Figure 17.6: after “free(sptr)”
= Two entries in the free list: head - (100, 16708) > (3764, 0 (NULL))

sptr —»

head —-»

= Virtual address 16708 = 16 x 1024 + 3 x 108

v Figure 17.7: after three “free()’s
» Compaction-less version (c.f. Compaction version: Figure 17.3)

size: 100

magic: 12345687

size:

100

magic: 1234567

size:
magic: 12345687

size:

next: 0

100

3764

[virtual address: 16KB]

= 100 bytes still allocated

= 100 bytes still allocated

(but about to be freed)

= 100-bytes still allocated

The free 3764-byte chunk

Figure 17.5: Free Space With Three Chunks Al]ocated.

head —»

sptr —»

size: 100

magic: 1234567

size: 100
next: 16708
size: 100

size:

next: 0

magic: 1234567

3764

[virtual address: 16KB]

] 100 bytes still allocated

(now a free chunk of memory)

= 100-bytes still allocated

\—‘..- -

= The free 3764-byte chunk

Figure 17.6: Free Space With Two Chunks Allocated

45

head —»

[virtual address: 16KB]

size: 100
next: 16492
size: 100
next: 16708
size: 100
next: 16384
size: 3764
next: 0

{now free)

(now free)

The free 3764-byte chunk

Figure 17.7: A Non-Coalesced Free List

