DANKDOK UNMIVERSITY

Lecture Note 9. Paging and
Beyond Physical Memory

June 20, 2021
Jongmoo Choi

Dept. of Software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)
[J. Choi, DKU

Contents

s From Chap 18~22 of the OSTEP

s Chap 18. Paging: Introduction
v Page Table
v Address Translation and Memory Trace

s Chap 19. TLB (Translation Lookaside Buffer)

v Faster Translation
v TLB hit: Fast translation vs TLB miss: TLB management

s Chap 20. Advanced Page Tables
v Multi-level Page Table
v Inverted Page Table
s Chap 21. Beyond Physical Memory: Mechanism
v Memory Hierarchy and on-demand loading
v Swap and Page Fault
s Chap 22. Beyond Physical Memory: Policies
v Cache management model: Locality, Trashing
v Page replacement policies: FIFO, LRU, OPT, Approximate LRU, ...

I J. Choi, DKU

Executive Summary

s Comparison among contiguous, segmentation and paging
v Contiguous allocation: based on base, limit register

v Non-contiguous allocation
= Segmentation: variable size

» Paging: fixed-size

e i

Base/limit reg:

process

Physical memory

(Contiguous allocation)

process

Physical memory

(Segmentation)

3

process

Physical memory

(Paging)
J. Choi, DKU

Executive Summary

s Comparison among contiguous, segmentation and paging
v Contiguous allocation: based on base, limit register

v Non-contiguous allocation

= Segmentation: variable size

» Paging: fixed-size

e i

Base/limit reg:

process process

Physical memory

(Contiguous allocation)
I

Segment
Registers
(Segment

Ta blé").,,__
s

Physical memory
(Segmentation)

4

process

Physical memory

(Paging)
J. Choi, DKU

Executive Summary

s Comparison among contiguous, segmentation and paging
v Contiguous allocation: based on base, limit register

v Non-contiguous allocation

= Segmentation: variable size
» Paging: fixed-size

e i

Base/limit reg:

process

Physical memory

process

(Contiguous allocation)
I

........ >
-------------- > D
e — >
Segment
Registers process Page.%table
(Segment ~
Table)
“> .
Physical memory Physical memory
(Segmentation) (Paging)

J. Choi, DKU
5

Chap 18. Paging: Introduction

= Why paging?
v Two common approaches for non-contiguous management
= Variable size: segmentation
Sharing, Protection support
Address translation: using segment table

But, memory becomes fragmented (external fragmentation), thus allocation
becomes more challenging over time

» Fixed size: paging
No external fragmentation, Easy for HW supports (e.g. TLB)
v Terms for paging
= Virtual memory: divided into a fixed size unit called page
= Physical memory: also divided into a fixed size unit called page frame

» Address translation: using page table

Page O

PFO
PFA

Page 1 Page table

Pago 2 [PF2

Page3 \ PF3

Pagecd PFEa
- PFS

Pagen 1 sl

Page n PFn

I Virtual Memory Physical memory J. Choi, DKU

18.1 A simple example and overview

s Example of Paging

v Virtual memory
» Tiny address space of a process: 64B total size, page size: 16B = 4

pages in an address space

v Physical memory
. T|ny physical memory: 128B, page frame size: 16B = total 8 frames

16

32

48

64

Frame O for OS itself

Frame 2, 3, 5 and 7 for the process (Note that they are not contiguous and

not in order)

Other frames are managed by a free list (a bitmap or list is enough)

(page 0 of the address space)

(page 1)

(page 2)

(page 3)

Figure 18.1: A Simple 64-byte Address Space
[

0

16

32

48

64

80

96

112

128

reserved for OS

(unused)

page 3 of AS

page 0 of AS

(unused)

page 2 of AS

(unused)

page 1 of AS

page frame 0 of physical memory
page frame 1
page frame 2
page frame 3
page frame 4
page frame 5
page frame 6

page frame 7

Figure 18.2: A 64-Byte Address Space In A 128-Byte Physical Memory

7

J. UINOIL, UNU

18.1 A simple example and overview

s Page table
v A data structure that records where each page is placed in physical

16

32

48

64

Figure 18.1: A Simple 64-byte Address Space

memory (which frame): same role as segment table

v Per-process data structure
v Used for address translation

» Virtual address: 4 =» physical address: 3 x 16B + 4 = 52
» Virtual address: 44 = physical address: 5 x 16B + 12 =92
» Virtual address: 21 = physical address: 7 x 16B + 5 = 117

0

(page 0 of the address space) 16

(page 1) *

(page 2)

(page 3) Page table for process ?

9%

112

128

reserved for OS

(unused)

page 3 of AS

page 0 of AS

(unused)

page 2 of AS

(unused)

page 1of AS

page frame 0 of physical memory
page frame 1
page frame 2
page frame 3
page frame 4
page frame 5
page frame 6

page frame 7

= Note: all pages are not required to locate in physical memory = demand paging (chap. 21)

Figure 18.2: A 64-Byte Address Space In A 128-Byte Physical Memory J

18.1 A simple example and overview

s Address translation in formal

v Address size

» Address space size: 64B =» virtual address size: 6-bit (2° = 64B)
c.f.) Address space size of 32-bit CPU: 4GB =» address size: 32-bit (232 = 4GB)

= Physical memory size: 128B =» physical address size: 7-bit (27 = 128B)
v Virtual address: consists of VPN (virtual page number) and offset

» Page (and frame) size: 16B =» offset size: 4-bit. As the result, the remaining 2-
bit becomes VPN (note that there are 4 pages (22))

= VPN is used for searching page table: VPN = PFN (Physical Frame Number)
v Physical address

» PFN x page size + offset (VPN is translated while offset is not)
v Example

= Virtual address: 21 =» bit: 01 0101 = VPN: 01, offset: 0101 =» PFN: 111 =>
111*16B + 0101 =>» physical address: 117

VPN offset
VPN offset . ’ :
1] Wirtual
! I I Address O 1 o E o 1
Va5 | Va4 | Va3 | Va2|Val| Va0 3 L L
7 Address
5 Translation
VPN offset =
I : 1 : 1 _ 1 l l
= @ | 68 | gl a [n [« [[= [[-
PFN offset

I " : -
Figure 18.3: The Address Translation Process

v

18.2 Where Are Page Table Stored?

s Address translation summary

v 1. Virtual address is divided in two parts: page number(p) and offset(d)
= Page number: used as an index into a page table
» Offset: used to locate the physical address within a frame

v 2. Each entry of the PT contains the starting address of the frame.
v 3. Combining the starting address with the offset = physical address

= How to manage page table?

v Per process data structure

v Stored in PCB (or separated data structure linked with PCB) in kernel
space = in memory

page table:

S page ffame 0 of physical memory

{unused) ge frame 1
|

address address fOO00 ... 0000 page 3 of AS page Hame D

48
cPU m Iilil—' page 0 of AS page frame 3

141 ... 1111 (unused)

80
P { page 2 of AS page frame 5

f

(unused) page frame 6

hysical
‘r)neymory page 1 of AS page frame 7

128

page table

Figure 18.4: Example: Page Table in Kernel Physical Memory

(Source: A. Silberschatzi “Oﬁeratinﬂ sttem Concept”)
J. Choi, DKU

10

18.2 Where Are Page Table Stored?

= Why in memory? (instead of CPU)
v Note that the base/limit register is in CPU.

220
v Since the page table is too large. : }

= 32-bit CPU, page: 4KB =» offset: 12-bit, VPN: 20-bit

= 220 entries in a page table = PTE (Page Table Entry)

= Usually 4B per PTE = 220 x 4B = 4MB size

v Assume that there are 100 processes
= 100 x 4MB = 400MB for page tables
» Too big to fitin a CPU =» place them in memory

= [wo Issues

v Each memory access requires address translation =» translation
needs to access a page table =» page table is in memory =» Does
this mean that each memory access actually requires two memory
accesses? = TLB (Translation Lookaside Buffer) =» chapter 19

v Even though they are in memory, they are still big = fixed size
chopping requires a large amount of mapping information =» multi-
level page table or inverted page table =» chapter 20

(N[N |w

I - J. Choi, DKU

18.3 What's actually in the Page Table?

s Page table
v Consists of PTEs(Page Table Entries), where each maps a page into a
page frame (map a virtual address into a physical address)
= |ike an array where each entry is indexed by VPN, having PFN as the value
of each entry
v In addition, each PTE has several information bits

» P (Present bit): whether this page is in physical memory or on disk (swap
out)

R/W (Read/Write bit): Whether writes are allowed to this page

U/S (User/Supervisor bit): if user-mode processes can access the page
A (Access bit, a.k.a. reference bit): for replacement

D (Dirty bit): whether the page has been modified

Others
G, PAT, PCD, PWT: determine how HW caching works for the page
Valid bit: used or unused (e.g. space between stack and heap which is not used)
Various Protection bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 = =2 rd =] = = = =2 1 o
| PN | |‘”|&‘|D|q|&’|§|j|§|l|

EE (N|U|N W

Figure 18.5: An x86 Page Table Entry (PTE)

= What is the difference between page fault (P bit) and segmentation fault (Valid bit)?
I J. Choi, DKU
12

18.4 Paging: Also Too Slow

m [0 access memory (e.g. mov 21, %eax)
v Find PTE address
» PTBR: Page table base register
v Fetch PTE /* access memory */
v Check bits

logical
address

page table

Ff
physical

address | f0000 ... 0000

Tl e ool

physical
memory

v Fetch physical address /* access memory again */

0o W =

L=l + - =

o T S Y S (g (g SRy Y
(=T - T = O) R S T S I

S/ Extract the VPN from the wvirtual address
VPN = (VirtualhAddress & VPN_MASK) >> SHIFT

/Y Form the address of the page—table entry (PTE)
PTEAddr = PTBER + (VPN x sizeof (PTE})

iy et FTE—
PTE = AccessMemory (FTEAddr)

// Check if process can access the page

if (PTE.Valid == False)

RaiseException (SEGMENTATION FAULT)

else if (Canficcess (PTE.ProtectBits) == False)

RaiseException (PROTECTION_ FAULT)

=lse=

// BAccess is OK: form physical address and fetch it
aoffset = VirtualAddress & OFFSET MASK

PhysA I =t REN SHTFT) | offset
R izter = 4

CCgSSMEmDIFjEEEEE§§X}
Figure 18.6: Accessing Memory With Paging

13

. Choi, DKU

18.5 A Memory Trace

= High-level viewpoint Sl st PTG »

for (i1 = 0; i < 1000; i++)
array[il = 0;

s Assembly viewpoint

1024 movl $50x0, (%=di, %eax, 4)
1028 incl %eax
1032 cmpl $0x03e8, 3eax

= Memory trace S S R

v Assumption N
= Page/frame size: 1KB (1024B) Ne & o e = =
* Code: VPN:1, PFN:4 (PA = 4*1024) -é
= Array: VPN:39, PFEN:7 (PA=7%1024) e
= PT: located in PA 1024 g w7 e

~ Figure 18.7: first five loop El, e 4 a w [™E
= PT[1] for instruction address g "z zee e 2
= Instruction fetch § Tl mmy emmy emmy emmy e .
= PT[39] for data address i U vemoysces
= Data fetch Figure 18.7: A Virtual (And Physical) Memory Trace

= 10 memory accesses per each loop (4 for instruction, 1 for data, 5 for PT)

I J. Choi, DKU
14

‘QUIZ)
TIME

s Quiz

v 1. Discuss the differences among 1) contiguous allocation, 2)

Quiz for 13t"-Week 2M9-Lesson

segmentation and 3) paging.
v 2. Assume that
= Size of virtual memory = 64B, Size of physical memory = 128B, and Size

of page and page frame = 16B (same as 7 page)

* Frame 3, 6, 1 are used for page 0, 1, 2 (different compared to 7 page)
» What are the physical addresses for virtual addresses of 4, 21 and 607?

Explain the answers using the VPN, PFN and offset.
v Due: until 6 PM Friday of this week (28", May)

P offset
- et o [1 | o [1 | o |
: [
Address
1 Translation
Not P
| T !
Page table for this quiz L h¥=ie=l | 4 1 1 o 1 o 1
PEN offset

Figure 15.3: The Address Translation Process

15

J. Choi, DKU

Chap. 19 Paging: Faster Translations (TLBs)

s TLB (Translation Lookaside Buffer)

v A part of MMU (Memory Management Unit) for faster translation

v Cache of recent used PTEs (popular virtual-to-physical pairs) = a
better name would be an address-translation cache

v Translation step: 1) HW first check TLB, 2) if (hit), translation
performs quickly without having to consult PT, 3) otherwise, access
PT, 4) update TLB to cache the recently used PTE

logical

CPU medule Execution unit address
(IPnn) » and registers CPU _’IT’_(!I_‘
ranslation
o ookasile page frame
u number number

TLB hit physical

E

f d
7 §

TLB

_ ' { -
MIPS R4X00; t 4 = TLB miss -
RA5000, 8000 or 10000

- physical
memory

Memory

page table

(Source: Google Image) (Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU
16

19.1 TLB Basic Algorithm

s How HW might handle an address translation?
v Hit =» only one memory access (line 7)

v Miss =» two accesses, one for PTE (line 12) and the other for read
data access (line 7 via line 19) + TLB update (line 18)

v Locality: most accesses hitin TLB

VPN = (Virtuallhddress & VPN MASK) >> SHIFT
(Success, TlbEntry) = TLE TLocokup (VPN)
if (Success == True) S/ TLB Hit
if (CanAccess (TlbEntry.ProtectBits) == True)
Offset VirtualhAddress & QFFSET MASK
Physaddr

L mEss N = e = FT) | Off=et
{::::EEEESSMemDIy(Physﬂddr)

RalseException (PROTECTION FAULT)
S/ TLBE Miss
ETEAC — P ITEH + (WP * S {(PTE))
PTE{ccessMemory {PTER@
if (PTE.Valitga —FoI==])
RaiseException (SEGMENTATION FAULT)
else if (Canhccess (PTE.ProtectBits) ==
RaiseException (PROTECTION FAULT)
else

R - NS S S Ry
(Y
£
=
i
[l
[
L

o v
i
[
n
1]

e
Pl =

(e
H=

False)

[= e
bt S = T ¥ |

2=
T
(1
ot
K
I-..:;:H
o S
aom
m i
+ H
Bt
g.ﬂ
L
e 2
O'\-
3
P!
il
et
F
b
4
v
H
[*]
T
H
Q
o
il
0
it
1]
e
l_'.
fn

Figure 19.1: TLB Control Flow Algorithm

J. Choi, DKU
17

19.2 Example: Accessing an Array

s Example code
v inta[10] & 4B x 10

v Page size: 16B = 4 array entries at most =» Assume Figure 19.2 layout
v Memory access behavior

= Access a[0] = TLB miss =» two memory accesses

» Access a[1],a[2] = TLB hit =» one memory access

= Access a[3],a[7] = TLB miss, Access a[4/5/6], a[8/9] = TLB hit

» TLB hit ratio: 70% (usually > 99% in general)

RVl ol BN |

. — . AV e N |
i 16 3 4 sgm O,‘ | e s
for (i = 0; i < 10; i++) { VPN
) RV = BN |

sum += al[i]; RIS
AR el N |

RV == N |

AV e N |

AR = N |

AR e N |

AV == N |

VAR e N |

YR =l N |

WP I

VU e N |

o9

Perrrrrererrenrn
0
0

il b ol o i
MARN-0

Figure 19.2: Example: Ax Asrayw T A Tiny Address Space

= If the page size is 32B, how is TLB miss ratio?

= What about if there exists an outer loop? (e.g. “for (j=0; j<2; j++)”)
I J. Choi, DKU

18

19.2 Example: Accessing An Array

s Use caching when possible

Tip: USE CACHING WHEN POSSIBLE

Caching is one of the most fundamental performance techniques in com-
puter systems, one that is used again and again to make the “common-
case fast” [HPO06]. The idea behind hardware caches is to take advantage
of locality in instruction and data references. There are usually two types
of locality: temporal locality and spatial locality. With temporal locality,
the idea is that an instruction or data item that has been recently accessed
will likely be re-accessed soon in the future. Think of loop variables or in-
structions in a loop; they are accessed repeatedly over time. With spatial
locality, the idea is that if a program accesses memory at address =, it will
likely soon access memory near x. Imagine here streaming through an
array of some kind, accessing one element and then the next. Of course,
these properties depend on the exact nature of the program, and thus are
not hard-and-fast laws but more like rules of thumb.

Hardware caches, whether for instructions, data, or address translations
(as in our TLB) take advantage of locality by keeping copies of memory in
small, fast on-chip memory. Instead of having to go to a (slow) memory
to satisfy a request, the processor can first check if a nearby copy exists
in a cache; if it does, the processor can access it quickly (i.e., in a few
CPU cycles) and avoid spending the costly time it takes to access memory
(many nanoseconds).

You might be wondering: if caches (like the TLB) are so great, why don't
we just make bigger caches and keep all of our data in them? Unfor-
tunately, this is where we run into more fundamental laws like those of
physics. If you want a fast cache, it has to be small, as issues like the
speed-of-light and other physical constraints become relevant. Any large
cache by definition is slow, and thus defeats the purpose. Thus, we are
stuck with small, fast caches; the question that remains is how to best use

mmmmm them to improve performance. Choi, DKU

Iy

19.3 Who Handles the TLB Miss?

s [wo approaches

v HW-managed TLB
= HW has a logic to manipulate TLB including TLB update
= HW must exactly know the PT format, address format, ...
» E.g.) Intel CPU = CISC

v SW-managed TLB

= HW simply raises an exception
= OS (TLB trap handler) explicitly manages TLB =» more flexible
= E.g.) MIPS, Sun SPARC v9 = RISC

VirtualAddress & VPN_MASK) >»> SHIFT

s, TlbEntry) = TLE Lookup (VFN)
Success == True) // TLE Hit
if (CanAccess(TlbEntry.ProtectBits) == True)
Virtuallhddress & OFFSET MASK
(TlbEntry.PFN << SHIFT) | Offset
AccessMemory (PhysAddr)

Offset
PhysAddr
Register

L

7

8 else
g RaiseException (PROTECTION FAULT)
10 else // TLE Miss

11 RaiseException (TLE_MISS)

Figure 19.3: TLB Control Flow Algorithm (OS Handled)

I J. Choi, DKU
20

19.4 TLB Contents: What’s in There?

= ATLB entry

v VPN + PFN + bits (32 or 64 or 128 bits)
VPN | PEN | otherbits
v Bits
= Valid bit: whether the entry has a valid translation or not
» Protection bits: R/W/E
» Others: ASID (Address-Space IDentifier), dirty bit, ...
v Fully-associative
= Can place any entry | e
v Search in parallel

page frame
number number

TLB hit

physical
| address

i d
y 3

f

physical
memory

page table

(Source: A. Silberschatz, “Operating system Concept”)

I J. Choi, DKU
21

19.5 TLB Issue: Context Switches

s LB
v Contains virtual-to-physical mapping

v Only valid for current-running process
= Context Switch =» need to invalid or distinguish TLB entries btw processes

v Example
= P1: VPN 10 - PFN 100, P2: VPN 10 > PFN 170
= P1run =» P1 accesses VPN 10 = CS from P1 to P2 = P2 accesses VPN
10 =» Case 1: cause problem

= Solution: 1) flush before CS (set all valid bit as 0) = case 2, 2) ASID
(Address Space IDentifier) =» case 3
. TLB flush is a heavy operation =» causing high TLB misses

22

VPN | PEN | valid | prot VPN | PFN | valid | prot VPN | PEN | valid | prot | ASID
10 100 1 TWX 10 100 0 WX 10 100 1 WX 1
10 170 1 TWX 10 170 1 r'wx 10 170 1 WX 2
- S (] S . _ 0 _ _ _ 0 —_ _
Case 1) Case 2) Case 3)
[J. Choi, DKU

Chap. 20 Paging: Smaller Tables

s Page table

v Locate in main memory
* 1) Increase the number of memory accesses = TLB (chapter 19)
= 2) Space overhead =¥ this chapter
v How large it is?
= 32-bit address space (232), 4KB page size (2'2) =» PTEs in PT = 220
» PTE size = 4B = 4MB for a PT (read page 1 of chapter 20 in OSTEP)

* Note that PT is managed per a process (400MB if there are 100
processes) = May cause a memory shortage

v How to make smaller PT?
= Bigger pages (page size: 4KB = 2MB, called huge page)
» Hybrid approach: segmentation + paging
= Multi-level page table
* Inverted page table

I J. Choi, DKU

23

20.1 Simple Solution: Bigger Pages

s Bigger pages
v 32-bit address space (232), 4B for PTE
= 4KB Page size (2'2) = PTEs in PT = 220 = PT size = 4MB

= 8KB Page size (2'3) = PTEs in PT = 21° =» PT size = 2MB
= 4MB Page size (2%2) = PTEs in PT = 210 = PT size = 4KB

v Pros): Simple, positive effect on TLB hit
v Cons): Internal fragmentation (waste of memory), heavy loading time
v How about multiple sizes for page?

= Support 4KB, 16KB and 4MB at the same time (like huge page + base
page in Intel)

» Pros): Flexible, less internal fragmentation
= Cons): Complexity in OS (still in progress)

* 4 ‘

0

I J. Choi, DKU

24

20.2 Hybrid Approach: Paging and Segments

= Hybrid approach
v Idea: Limit information in a segment can reduce PT size

v Simple example: 16KB address space, 1KB page size
» Use 4 pages (1 for code, 1 for heap and 2 for stack) = Fig. 20.1 (note: non-contiguous)
» Place in page frame 10, 23, 28 and 4 respectively
= Paging only: Fig. 20.2
16 PTES, most PTEs are invalid
. Hybrld approach

Code: base = 0, limit = 1K =» 1 PTE for code, Heap: base=4K, limit = 5K =» 1 PTE for
heap, Stack: base=14K, limit = 16K =» 2 PTE for stack
The limit register holds the maximum valid pages = access above the limit generates
the segmentation fault = PT can hold valid page only

E.g. Intel) Virtual addr. =» segmentation =» Linear addr. = Paging = Physical addr.

PEN valid prot present dirty S
i i = - - ofieal Address
Virtual Address Space Physical Memory 10 T 1 0 forFar Pomtan
code 0 0 - 0 — Sagmert
% S [_] — = = Selector Offset Linear Address
Space
heap 4 4 _ 0 .
$ 3
5 s 23 1 rw- 1 1 Global Descriptor Lingai Acelfods Physical
1y i
}? 1 ? 0 i Takis (S0 Address
12 12 Space
13 13 0 — B
stack i 1 _ 0 L e | Segment | Page Table Page
}g Descriptormm ! L (. || || [-"" "
18 _ e (<o o U N O i Page Diractory
i 0 . _ Fhy. Addr.
21 - 0 _ p== i == L e
22 Eriry
23 - — T
gg 0 Seqment__ /‘ "‘\
s = 0 - - - | Base Addmess X, .
—=Fal
gé - 0 — g
31 - 0 — - -
)) 28 1 rw- 1 1
Figure 20.1: A 16KB Address Space With 1KB Pages 4 1 e 1 1 Segirinion { ki]I

N rio e 20.2: A Page Table For 16KB Address SpiSeurce: Intel 64 and TAB2AreRIECIIFeYSW Developer’s

0 Manual, Volume 3: System Programming Guide)

20.3 Multi-level Page Table

= ldea

v Using structural PTs (instead of linear table) =» multi-level table
» Page directory: each entry represents related PT
= Can reduce a large number of unallocated page tables using valid bits in

the page directory

Linear Page Table

PTER|

201

PEN

2|2 prot

i2

13

SHE

100

~|=|olo|o|o|o|c|e|olo|c|=|o|=|~|valid

86

PFN204 ' PFN203 ! PFNZ202 1 PFN 201

nw
n

13

Figure 20.3: Linear (Left) And Multi-Level (Right) Page Tables

Multi-level Page Table

PDEBR| 200 |
PEN

PFN 200

=|o|o|~|valid

The Page Directory

26

204 —

PEN

201 —_———

2|2 | prot

12

13

=|o|=|=|valid

2|

100

PFN 201

[Page 1 of PT: Mot Allocated]

[Page 2 of PT: Mot Allocated]

L -

86

v
W

15

PFN 204

J. Choi, DKU

20.3 Multi-level Page Table

s Example: how much memory space for PT can be reduced?

v Address space: 16KB (14bit), page size: 64B (6bit) = 256 PTEs (8bit)

= Assume 6 pages (0, 1, 4, 5, 254, 255) are used for code, heap and
stack=>» Figure 20.4

» Pages are allocated in frames 10, 23, 80, 59, 55 and 45, respectively
v How many frames are needed for PT in the linear approach?

= Total 256 PTEs = 16 PTE (64B/4B) in a frame = 16 frames
v How about in the multi-level approach?

= 1 directory + 2 last-level PTs =» 3 frames (around 20%)

0 Page Directory Page of PT (@PFN:100) Page of PT (@PFN:101)
PFN valid? PFN valid rot PFN valid rot
0000 0000 d P P
code 128 0000 000 = de 100 1 10 1 I-X — 0 =
1 coda — 0 23 1 r-x — 0 —
256 0000 0010 (free) . 0 - 0 i - 0 o
heap 0000 0011 (iree) — 0 — 0 _ 0 _
384 0000 0100 heap - 0 80 1 w- — 0 s
0000 0101 heap — 3 59 1] rw- = 8 —
0000 0110 (free) - c - :} ~ — & ~
0000 0111 (froe) B 0 o 0 ﬁ — 0 -
. allfree ... - 0 — 0 - — 0 -
- 0 — 0 — — 0 —
1111 1100 (froe) — 0 — 0 - _ 0 _
stack 1111 1110 stack T 0 T 0 — = 0 —
16384 — 0 — 0 = 55 1 W
1111 111 stack 101 1 _ 0 - 45 1 W~

] Figure 20.4: A 16KB Address Space With 64-byte Pages Figure 20.5: A Page Directory, And Pieces Of Page Table
[y

s Address translation

20.3 Multi-level Page Table

v Virtual address is divided into three parts: Directory index, PT index
and offset (instead of two parts: VPN, offset)

Page Directory
PEN valid?

0

» Virtual memory size: 16KB =» address : 14bit _code liog
» Page size: 64B =>» offset bit: 6bit heap | 2>
» PTEs in a frame: 16 = PT index: 4bit
» PTEs in a directory: 16 =» Directory index: 4bit
VIT"N offlsel L6256
[refiz|nfw]oe]7[e]s[e]afa]1]0] code | 16084

Page of PT (@PFN:100)

PEN

valid

L IL
Page Directory Index

prot

Page of PT (@PFN:101)
PEN

valid

Page Table Index

prot

100]
0
0
0
0
0
0
0
0
0
0
0
0
0
= 0
101 1

10
23

T I 2

1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0

T-X
I-X

45

5

0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

< <
- I O R O A
LI}

Figure 20.5: A Page Directory, And Pieces Of Page Table

Isssssssss————

E.g. 1) VA =100 = 00 0000 0110 0100 =>» Directory: 0000,
PT index: 0001, Offset: 100100 = PA=23*64B +32 + 4

E.g. 2) VA= 300 => 00 0001 0010 1100 =>» Directory: 0000,
PT index: 0100, offset: 101100 =» PA = 80* 64B + 32+8+4

E.g. 3) 16257 =11 1111 1000 0001 =>» Directory: 1111, PT
index: 1110, offset: 000001 =» PA =55 x 64B + 1

E.g. 4) VA= 200 =>» 00 0000 1100 1000 =» Directory: 0000,
PT index: 0011, offset: 001000 = invalid in PT

E.g. 5) VA= 1030 = 00 0100 0000 0110 =>» Directory:
0001, PT index: 0000, offset: 000110 =» invalid in directory

J. Choi, DKU
28

20.3 Multi-level Page Table

s Address translation in Pseudo-code

v Concerns of the Multi-level PT

» Address translation requires two accesses to PTs (vs. one access in the
linear approach)

» Increased HW complexity for multi-level translation
v Remember TLB = It can hide them

1 WEMN = (WVirtuallfAddress & WPN MASEK) >> SHIFT

2> (Success, TIbENDtIrvwy) — TLE ILookup (WVEIM)

3 if (Success —— Triuase) A TLEB HAitT

4 By o (Canficcess (TlbhbEntrv.ProtectBits) = Trus)

s Offs=et — WirtualAddress & OFFSET_MASK

& Physbhddr = { TlIbEntry .. PPN << SHIFEFT) | Offset
" Fegister = AccessMemory (PhysAddr)

8 else

) RaiseException (PROTECTION FAUILT)

10 =1 == Y TLEB Miss

11 S Eirst, get page directory entry

12 PDIndex — (VPN & PD MASK) >> PD SHIFT

13 PDEAdddr — PDBR + (PDInd=s>x = sizcecof (PDE))

14 PDE = AccessMemory (PDEAdddr)

15 b & (PDE . Valid —— False)

16 Rajisebkxception (SEGMEMNTATION. FAULT)

17 else

18 A4 PDE is walids now Tfetch PTE from page table
19 EPTInds>x = (WP & PT MASKE) >> PT SHIFT

20 PTEAddr — (PDE .PFMN << SHIFT) + (PTIndasx=x = sizeof (PTE))
21 ETE = AccessMemory (PTEAdQdr)

22 if (PTE. Valid —— False)

23 RaiseException (SEGMENTATION FAUILT)

>4 else i fF (CanhAccess (PTE . ProcectRits) — Falsse)
25 RaiseException (PROTECTION FAUILT)

26 else

27 TI,LB TITnsert (VPMN, BPTE .PFM, PTE.ProtectBits)
28 RetryviInstruction ()

[FiEure 20.6: Multi-level Page Table Control Flow .
29 v. viiul, DKU

20.3 Multi-level Page Table

s More than two levels

v Virtual address: 30-bit, page size: 512B

» Address: 30bit, offset: 9bit = VPN: 21bit, PTEs in a page: 128 (512/4)

= 2-level: left figure

PT index = 7 bit (27 = 128), Page directory: need to cover remaining 14-bits

= 24 PTEs = 128 pages for Page directory

= 3-level: right figure

PT index = 7 bit, PD index0 = 7 bit (upper-level), PD index1 = 7 bit =» one
page for PD index0, PD index1 and PT needed only for valid PTEs = save

memory
VPN offset

|29]28[27]26]25]24[23[22]21]20]19[18[17]16]15[14[13[12[11]10] 9 [& [7 [6][5 [4[3] 2] 1] 0]
L L]

T T
Page Directory Index Page Table Index

Linear Address
) 22 21 12 11 [
[Directory| Table | Offset |
12 4 KByie Page
10 10 Page Table Physical Address
Page Directory
PTE -
(1]
PDE with PS=0
20
T -
32
CR3

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

er's Mgbual, Volume 3% System Programming Guide, Chapterj4ph0|’ DKU

VPN

offset

129]28]27]26]25]24]23]22[21]20]19[18[17]16]15]14]13[12]11]10[9 [8] 7 [6 |5 [4[3[2] 1] 0]
L

Il Il |
T T T
PD Index 0 PD Index 1 Page Table Index
Linear Address
47 39 38 30 29 21 20 12 11 o
| PmLa | Directory Ptr | Directory | Table | Offset |
] 94/{'9 12_4-KByie Page
e]
L PTE 74.._
Page-Directory- PDE with PS=0 40
Pointer Tabie 40 Page Table
Page-Directory
PDPTE g
]

| e

— PML4E

a0

CR3

Figure 4-8. Linear-Address Translation to a 4-KByte Page using I1A-32e Paging

20.4 Inverted Page Tables

s Page table

v VPN = PFN, One per process in a system

= Inverted Page Table

v PEN = VPN, Only one in a system (hence reduce memory for PT)
» Page table index: physical frame number (one entry per physical page)
= PTE: virtual page number, process ID that maps the physical page

v Address Translation

* Need search: 1) linear scan, 2) hash

logical
address

physical
address

CPU >{pd| p [d |

physical

search l

}i

i [d
A

pid [p

page table

memory

CPU

logical
address

Ff
physical

address

f0000 ... 0000

T

1

mil—»
A

ISR s oo S

f

page table

physical
memory

(Source: A. Silberschatz, “Operating system Concept”)
I

31

J. Choi, DKU

@@ﬁin Quiz for 14th-\Week 1st-Lesson
TIME]

s Quiz

v 1. Explain the definition of 1) MMU, 2) TLB, 3) page directory and 4)
inverted page table.

v 2.1In page 18, we calculate that the TLB hit ratio for accessing a[] is
70%. 1) What is the TLB hit ratio when the page size is 32B (instead
of 16B)? 2) What if there exists an outer loop like “for (j=0; j<2;
j++)" above the “for (i=0; i<10; i++)"”

v Due: until 6 PM Friday of this week (41, June)

int Sum = 0; oo O Ogget 12 16

for (i=0; i<10; i++) { VPN — 01
. VPN

sum += ali]; VEN

¥ VN

o6 : a[o] | al1] al2]

RPN
W PN

int sum = 0; o
for (j=0; j<2; j++) VEN = 12

for (i=0; i<10; i++) { vEN — 12
sum += a[i];

Figure 19.2: Example: An Arrawyv In A Tiny Address Space
— J. Choi, DKU

32

NERERRRRRRRN
0
\J
2
8
2
2
2
4
-
2

Chap. 21 Beyond Physical Memory: Mechanisms

s Memory hierarchy
v Register, Cache, Memory, Disk (or SSD), Sever, ...
v VM (Virtual Memory) focus on Memory and Disk
= Memory: relatively fast but small
= Disk: relatively slow but large
v OS wants to execute multiple processes at the same time

» Frequently accessed data =» place in memory
» Seldom accessed data = place in disk, bring into memory if necessary (

demand loading or demand paging) Virtual memory Physical
(per process) memory

1

Smaller,

faster, } CPU registers hald words retrioved
and tfram L1 cache

costlier L1 on-chip L1
1{ per byte) cache {SHAH] } L1 sache holds cache lines retrieved

;Lovlzga: u/ oft-chip L2 from the L2 cache memory

cache I:SRAM:I L2 cache holds cache lines

] rotriovad |rom main mamory
L3: main memory
Lnr r. DFHU-I
I ger, { } Main memory holds disk
slower, Mochs reltieved lrom local

isks

and
cheaper L4: local secondary storage
(per byte) (local disks)
slorage l Local disks hokd Hies

ratrigwed trom diaks an

dew ces remole network servers 0 | 0 L g,
LS: remote secondary storage by |
| (distributed file systems, Web servers)

J. Choi, DKU
13 Disk

21.1 Swap space

s Swap definition

v Space in disk for moving pages back and forth

» To migrate data from memory to disk when available memory space is

insufficient

= Moving granularity: page vs. process

When: light vs heavy memory hungry condition
How: replacement policy (LRU pages, low-priority processes)
» E.g.) 4 frames and 8-page swap space
Proc 0/1/2 =» ready or running, Proc 3 = suspended (swap out)

operating ¥//
system

ssssss P
@ swap out P 1

. process P,

@ swap in
B
paca backing store
main_memor

(Source: A. Silberschatz, “Operating system Concept”)

s Benefit

Physical
Memory

Swap
Space

PFN 0

PFN 1

PFN 2

PFN 3

Block 4 Block 5 Block 6 Block 7

Proc O | Proc 1 | Proc 1 | Proc 2
[VPNO] | [VPN2Z] | [VPN 3] | [VPN 0]
Block 0 Block 1 Block 2 Block 3
Proc 0 | Proc 0 Proc 1
VPN 1] | (vPN2) | [Free] | [ven o

Proc 1 BaGPEN Proc 2 WK
WERIN venop BVEETN [ven 1]

Figure 21.1: Physical Memory and Swap Space

v Allow to support the illusion of a large virtual memory for a process

(usually larger than physical memory)
v Transparent to programmers (vs. memory overlay)

34

J. Choi, DKU

21.2 Present Bit / 21.3 Page Fault

s Present bitin PTE

v To identify whether a page is in memory or swap out
*= Present bit == 1, access the page
» Present bit == 0, =» page fault
s Page fault
v Trigger page fault handler that bring the page from disk to memory
v From swap space or from a file (e.g. demand loading)

— Page is o
= backing Store
operating
Sywsterm
<=
eference t;alg
>
1ozl M I
o=
estart Page table
Nstruction
Tree Trarme

tmEble Mmissing page

Physical

(Source: A. Silberschatz, “Operating system Concept”)

= Features of paging: easy to support demand loading (fast execution), HW friendly, fixed, ..

% Load a page in virtual memory =»Read a disk block in file system (using inode) & VM

and FS works together in an integrated manner.

I J. Choi, DKU
35

21.4 Page Fault Control Flow

= HW control flow

1 WEMN = (WVirtuallhddress & WPDN MASE) >=> SHIFT

pr.d {Success, TlbhEDEtIw) — TLEBE Lookup (VER)

3 if (Success =—— True) S TLWEB Hit

4 FF (Canhccess (TlhbEntry .ProtectBits) == Tru=)
5 Offs=t = Wirtuallfddress & OFFSET MASE
IS PhysAaddr — {TIbhENt v . PPN << SHIFET) | Offset
7 Fegister = AccessMemory (PhysAddrz)

£ =lsa

< RajisekException (PROTECTION FAUILT)

10 el sa S TLE Miss

11 PTEAGddr — PTBR -+ (VPN = sizeof (PTE))

12 PTE = AccessMemory (PTEAdddr)

13 if (PTE . Valid == False)

14 Rajiseb®Exception (SEGMENTATION_ FAUILT)

15 =1ls=

16 S (Canhiccess (PTE . ProtcectBits) == Fazls<s)
17 RajiseException (PROTECTION. FAULT)

18 else il (PTE .Present —— True)

19 S assuming hardware-—managed TLE

20 TI.B Tnsert (VEPEN, PTE.PFN, PTE.ProtectBits)
21 RetryvyInstructiorn ()

23 els = (PTE .Present == kg
23 RajiseException (PAGE FAULT)

Figure 21.2: Page-Fault Control Flow Algorithm (Hardware)

s SW control flow

1 PFN = FindFreePhysicalPage ()

2 if (PFN — —13 Y mo free page found

(PFN = EvictPage () /S run replacement algorithm

4 iskRead (PTE.Diskaddzx n) // sleep (waiting for I/0)

5 PTE.present = True LS update page table with present
6 PTE.PFN — PFN S bit and translation (PFEFN)

7 RetryInstructicn () A Tretry instruction

Figure 21.3: Page-Fault Control Flow Algorithm (Software)
= What are the differences between the page fault and segmentation fault?

w\gésee Chapter 22) J. Choi, DKU

Chap. 22 Beyond Physical Memory: Policies

s Demand paging (a.k.a. demand loading)
v Make mapping information without actual loading (fast execution)

v Start running = occur page faults = loading in a lazy manner (we
can load pages that are actually used)

v Life is easy where there are a lot of free frames
s When little memory is free

v Memory pressure forces OS for paging out to make room
v Replacement policy: decide which page (or pages) to evict

J. Choi, DKU

22.1 Cache Management

s Goal
v Maximize cache hit (minimize cache miss)

s Model

v Average memory access time (AMAT)
AMAT = (Pyit-Tm)+ (Pmiss - Ip)

= Where
Ty: memory access latency
Tp: disk access latency
P.i: probability of finding data in the cache (P, = 1 — P};)
» Example (Details can be found in the page 2 of chapter 22 in OSTEP)
Assume that T,,= 100ns, To= 10ms (10,000,000ns)
P.i= 50% = AMAT = 0.5 x 100 + 0.5 x 10,000,000 = 5,000,050 = 5ms
P.i= 90% = AMAT = 0.9 x 100 + 0.1 x 10,000,000 = 1,000,090 = 1ms
P.i= 99% =2 AMAT =0.99 x 100 + 0.01 x 10,000,000 = 100,099 = 0.1ms
= Hit ratio is quite important
Expected hit ratio = S,,/Sy if an access pattern is the uniform distribution
Remember locality which makes it feasible to obtain high hit ratio

I J. Choi, DKU
38

22.2 Optimal Replacement Policy

Optimal replacement policy (known as MIN)

v Evict a page that will be accessed furthest in the future
= Best replacement policy
* Not implementable (comparison purpose, quite useful)
v Example
» Reference string: 01201303121
= Cache size: 3 frames
= Hit ratio = 6/11 = 54.5%

» Compulsory miss (Cold-start miss), Capacity miss, Conflict miss (Direct
mapping or set-associative case)

Resulting
Access Hit/Miss? Evict Cache State

(4] Miss 0
1 Miss 0,1
2 Miss 012
(§) Hit 01,2
1 Hit 0.1,2
3 Miss 2 0.1.3
(§] Hit 0,13
3 Hit 0,1, 3
1 Hit 0.1,3
2 Miss 3 0,1, 2
1 Hit 0,1, 2

Figure 22.1: Tracing The Optimal Policy

I J. Choi, DKU

39

22.3 A Simple Policy: FIFO

s FIFO (First In First Out)

v Evict a page that was brought into memory for the first time
» Like the FCFS scheduling policy (first-in page in a queue)

v Example with same reference string (01201303121)

= hit ratio = 4/11 = 36.4%

Resulting
Access Hit/Miss? Evict Cache State
(] Miss First-im— (4]
1 Miss First-imn— 0,1
2 Miss First-imm— B P]
0 Hit First-im— €, 1,2
1 Hit First-im— 0
3 Miss 8] First-im— 1, 2. 3
O MMiss 1 First-imn— 2, 3.0
3 Hiit First-in—» 2. 3.0
1 MAiss 2 First-imm— G P 5 e |
2 Miss 3 First-im— .12
1 Hit First-im— | oyl (N

Figure 22.2: Tracing The FIFO Policy

v Pros) Simple

v Cons) Not considering locality, Belady’s anomaly (less hit ratio with

larger cache)

= Anomaly example: 1,2,3,4,1,2,5,1,2,3,4,5 with 3 and 4 frames

40

J. Choi, DKU

22.4 Another Simple Policy: Random

s Random
v Evict a page chosen randomly

v Example: same reference string(01201303121)
= hit ratio = 5/11 = 45.4% = Figure 22.3
= Different at each trial = Figure 22.4

v Pros) Simple
v Cons) Not considering locality, unpredictable

Resulting
Access Hit/Miss? Ewvict Cache State 50 -
0 Miss 0
1 Miss D, 1 40 4
2 Miss 0,1,2 >
0 Hit 0,1,2 5 301
1 Hit 0,1,2 s,
3 Miss 0 1,2,3 © 201
0 Miss 1 2,3,0 .
3 Hit 2,3,0 W
1 Miss 3 2,0,1 0 I 1.
2 Hit 2,0,1 0 1 2 3 4 5 6 7
1 Hit Z,9,1

-

Number of Hits

Figure 22.3: Tracing The Random Policy
Figure 22.4: Random Performance Over 10,000 Trials

I J. uliul, urU
41

22.5 Using History: LRU

s LRU (Least Recently Used)

v Evict a page that was accessed oldest in the past

v Example: same reference string (01201303121)
= hit ratio = 6/11 = 54.5%

v Pros) Considering locality (temporal locality)

v Cons) Not good for the looping reference

Resulting
Access Hit/Miss? Evict Cache State
4] Miss LRU— 0
1 Miss LRLU— 0, 1
2 Miss LEU— 01,2
0 Hit LRU— 1,2, 0
1 Hit LRU— 2,01
3 Miss 2 LRU— 01,3
0 Hit LRU— 1,3, 0
3 Hit LERU— 1,0, 3
1 Hit LRU— D 3,1
2 Miss 0 LRU— 3.1, 2
1 Hit LRU— e Tt I |

Figure 22.5: Tracing The LRU Policy

v History based policies

» Use history as our guide (like Multi-level feedback queue)

= |LRU, LFU (Least Frequently Used), LRFU, MRU, ARC, 2Q, ...

I J. Choi, DKU
42

22.6 Workload Examples

s Workload analysis
v Workload: amount of work, characteristics of references in this case

100% A

80% -

60% -

Hit Rate

40%

20% A

0%
0

v 3 types in this slide

= No-locality: LRU == FIFO == RAND

= 80-20 workload (hot/cold): LRU > FIFO == RAND

» Loop workload: LRU == FIFO < RAND
v Most applications show strong locality = LRU employed popularly

v

The No-Locality Workload

OPT
LRU
X FIFO

— RAND

40 60 80 100

Cache Size (Blocks)

20

Figure 22.6: The No-Locality Workload

Hit Rate

Large cache size: close to optimal

The 80-20 Workload
100% 1

80% -

60% 1

40%

OPT

LRU
X FIFO
— RAND

20% | #

001{: T T T T
40 60 80 100

Cache Size (Blocks)

0 20

Figure 22.7: The 80-20 Workload

43

" The Looping-Sequential Workload

OPT

LRU
X FIFO
— RAND

20 40 60 80 100

Cache Size (Blocks)

Figure 22.8: The Looping Workload

V. ViV, WIN

22.7 Implementing Historical Algorithms

s How to implement LRU?
v Usually linked list

v Pages access

» Insert it to the head of the list (MRU position)

= Move down all pages to the next position

» Remove the page in the LRU position if necessary (miss case)
v Need to monitor all memory accesses

» Feasible in the file cache or server cache

» May degrade performance in the memory cache =» utilize HW supports
such as reference bit and dirty bit

MRU Resulting
Access Hit/Mis E t Cache Stat
5 4 0 Miss LRU— [}
1 Miss LRU— 0,1
4 T 4 T 2 Miss LRU— 0.1,2
0 Hit LRU— 1,2,0
3 5 1 Hit LRU— 2,01
3 M 2 LRU— 0,1,3
‘H‘ ref4 1 0 Hit LRU—» 1,30
+ T 3 Hit LRU— 1,0,3
1 Hit LRU— 0,31
4 3 2 Miss o LRU— 31,2
+ + + T 1 Hit LRU— B T
Figure 22.5: Tracing The LRU Policy
Fi Fi
LRU
I J. Choi, DKU

44

22.8 Approximating LRU

s Clock algorithm
v FIFO with Reference bit (also called as Access bit, see 12 page)

= HW: set reference bit as 1 when an associated page is accessed

» OS: manage a pointer for next victim
if (ref_bit == 1), clear it to 0 and give second chance (check the next page)

if (ref_bit == 0), evict it and move the victim pointer to the next page

= Approximate LRU well
The 80-20 Workload

100%
B0O%

&0% -

Hit Rate

4 0% o

20%

@ Clock

s0 100

0% T T T
0] 20 40 60
Cache Size (Blocks)

Figure 22.9: The 80-20 Workload With Clock

v Advanced version

» Periodic clearing
= Utilizing two HW bits: reference and dirty bit
J. Choi, DKU

45

22.11 Thrashing

m [hrashing
v A situation where the page fault rate is extremely high as each

process does not have enough frames

= A page fault triggers to replace a page that will be referenced soon,
which eventually making another page fault immediately

v A process is spending more time paging than executing

¥ 3

|
| thrashing

CPU utilization

k 4

degree of multiprogramming

J. Choi, DKU

I
46

22.11 Thrashing

Working set

v WS(t): a set of pages referenced between t-A and t
» To estimate how much memory a process needs

v Application of working set
» Detect thrashing or Find a chance for new process initiation

» Mechanism: D > m = Thrashing
WSS, : Working Set Size of Process P,
D =% WSS, (D: the total demand of frames for all process)
m: total # of available frames in a system
» Working-set Strategy
If (D > m), suspend some of the processes
If (D < m), another process can be initiated

=>» Prevent thrashing while keeping multiprogramming degree as high as possible.

page reference table
L 2615777751623412344434344413234443444, .,

J. Choi, DKU

Summary

= Virtual memory concept

v Separation of virtual memory from physical memory

= Virtual memory: user’s (or programmer’s) viewpoint, N
exclusive (per process) ~ memary

» Physical memory: system’s viewpoint, shared by multiple o
processes

 Allow the execution of a process that are not completely |
In memory

» Logical address space can therefore be much larger than — }--
physical address space.

= Allows more programs running
= Virtual memory can be implementedvia:. | [L
v 1) Address translation: paging, segmentation, TLB Dis
v 2) Demand paging: page fault, integration FS and VM
v 3) Replacement: LRU, FIFO, Clock, Working set, ...

I J. Choi, DKU

48

@@J@ Quiz for 14th-\Week 2M-Lesson
TIME]

s Quiz

v 1. Discuss the terms of 1) demand paging, 2) page fault, 3) thrashing
and 4) working set.

v 2. Calculate the hit ratio under the FIFO, LRU and Optimal (MIN)
policies when there are three frames and the page reference string is

“1,2,3,4,1,2,5, 1, 2, 3,4, 5”. What about when there are four
frames?

v Bonus) Explain the Belady’s anomaly using the Quiz 2.
v Due: until 6 PM Friday of this week (4, June)

O. 7 Thrashing

> Paoge Tauuult freguency
= For Working Set model
e if we know Wworking Set . then we do the prepaging usefulhy
= defimne the upper bound amd lower bound of page fault rate

\ Upper bound

Qpper bound exceed then allocate more number of frame
Lower bound

T————_if loywwer bound below then withdraw frame
by controlling page fault rate

Page faut rete

NMNumber of frame - Prevent thrashimg

= Page fault frequency>=

(Source: https://slidetodoc.com/ch-10-operating-system-ch-10-v-m/)

J. Choi, DKU
49

Lab4 : LRU simulator -

E E C G
¢ ‘ ¢ *Retenn‘on
D E F C G
* Lab4: Pl e e
A B C D E
v Make a LRU simulator (see 42 and 44 page) el | m
u Queue + HaSh _“_E_hjmmare ""é;'mmare

v Requirement

= 1) report: Introduction, Design (data structure/function), Results (at least
two outputs), Discussion, 2) Source code

v Submission: 1) upload e-learning campus (report only), 2) email to
TA (both report and source code)

v Environment: See Lab. 0 in the lecture site
v Due: Not actual homework in this semester

v Bonus: Analysis with different cache size and workload (No locality,
locality, loop: 43 page)

How to implement LRU caching scheme? What data structures should be
used?

also given cache (or memory) size (Number of page frames that cache can

eeeeeeee

hold at a time). The LRU caching scheme is to remove the least recently
used frame when the cache is fulland a new page is referenced which is

50

Appendix 1

= Linux implementation for segmentation and paging

task_struct

mm_struct

vm_area_struct

| vm file

_pége directory

thread |

CPU

vm_area_struct

| vm file

text

J. Choi, DKU

Appendix 1

s Copy-on-Write (COW)
v Allow both processes can share pages even though they are not
actually shared pages (set the copy-on-write bit in page table)
v If either process modifies a shared page, the page is copied
v Good for fork() and exec()

= Allow both parent and child processes to initially share the same pages
in memory

= More efficient for process creation

physical physical

process, memory process, process. memory process,
i !
L oA e— [PageA
| | .
| | { : . L—y B
. L— page B | . page A

| page C —]

| | » Copy of page C
)

(Before process 1 modified page C) (After process 1 modified page C)
= J. Choi, DKU

Appendix 2

= 19.7 AReal TLB Entry

v Real TLB example: MIPS R4000

» SW-managed TLB, 4KB page/frame size
= 32 or 64 entries in TLB (related to TLB coverage)

= Bit description

VPN: 19-bits = we expect 20-bits. But, user addresses will only come from
half of the address space (2GB for user, 2GB for kernel) = 19-bits are
enough

PFN: 24-bits =» support up to 64GB physical memory (224 x 4KB)
ASID: 8-bits, to identify which process own the VNP-PFN pair

G: global bit =» shared among processes (ASID is ignored)

C: coherence bit = for coherence protocol

D: dirty bit

V: valid bit

Page mask: for supporting multiple page sizes

[PEN N EIN
Figure 19.4: A MIPS TLB Entry
I J. Choi, DKU

53

Appendix 2

s 21.6 When Replacements Really Occur
v OS actually prepares free memory proactively, not wait until memory
is full
= Background thread: swap daemon or page daemon

= When free memory is below the low watermark, it begins to evict pages
until free memory becomes above the high watermark

v Group a number of pages and write them out at once (to make
sequential writes for better performance)

Total Memory
A

= Summary of Swapping
v Larger than physical memory N e g et
= Present bitin PT g\
= Page fault handler in OS

Low Watermark
v Transparent to user \

. | --- Min Watermark
= Sometimes not (stuck)

Fre

Direct Reclaimafion: Pages with
GFP_WRAIT allocation is suspended.

v

0 Time

I J. Choi, DKU

54

Chap. 24 Summary Dialogue on Memory Virtualization

Student: (Gulps) Wow, that was a lot of material.

Professor: Yes, and?

Student: Well, how am I supposed to remember it all? You know, for the exam?
Professor: Goodness, I hope that's not why you are trying to remember it.
Student: Why should I then?

Professor: Come on, I thought you knew better. You're trying to learn some-
thing here, so that when you go off into the world, you'll understand how systems
actually work,

Student: Hmm... can you give an example?

Professor: Sure! One time back in graduate school, my friends and I were
measuring how long memory accesses took, and once in a while the numbers
were way higher than we expected; we thought all the data was fitting nicely into
the second-level hardware cache, you see, and thus should have been really fast
fo access.

Student: (rnods)

Professor: We couldn’t figure out what was going on. So what do you do in such
a case? Easy, ask a professor! So we went and asked one of our professors, who
looked at the graph we had produced, and simply said “TLB”. Aha! Of course,
TLB misses! Why didn’t we think of that? Having a good model of how virtual

memiory works helps diagnose all sorts of interesting performance problems.
[o | ey _ L _ i, DKU

