
J. Choi, DKU

Lecture Note 9. Paging and
Beyond Physical Memory

June 20, 2021
Jongmoo Choi

Dept. of Software
Dankook University

http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)

J. Choi, DKU

Contents

From Chap 18~22 of the OSTEP
Chap 18. Paging: Introduction
ü Page Table
ü Address Translation and Memory Trace

Chap 19. TLB (Translation Lookaside Buffer)
ü Faster Translation
ü TLB hit: Fast translation vs TLB miss: TLB management

Chap 20. Advanced Page Tables
ü Multi-level Page Table
ü Inverted Page Table

Chap 21. Beyond Physical Memory: Mechanism
ü Memory Hierarchy and on-demand loading
ü Swap and Page Fault

Chap 22. Beyond Physical Memory: Policies
ü Cache management model: Locality, Trashing
ü Page replacement policies: FIFO, LRU, OPT, Approximate LRU, …

2

J. Choi, DKU

Executive Summary

Comparison among contiguous, segmentation and paging
ü Contiguous allocation: based on base, limit register
ü Non-contiguous allocation

§ Segmentation: variable size
§ Paging: fixed-size

3

Physical memory

process

Physical memory

process

(Contiguous allocation) (Paging)
Physical memory

process

(Segmentation)

Base/limit reg.

J. Choi, DKU

Executive Summary

Comparison among contiguous, segmentation and paging
ü Contiguous allocation: based on base, limit register
ü Non-contiguous allocation

§ Segmentation: variable size
§ Paging: fixed-size

4

Physical memory

process

Physical memory

process

(Contiguous allocation) (Paging)
Physical memory

process Segment
Registers
(Segment
Table)

(Segmentation)

Base/limit reg.

J. Choi, DKU

Executive Summary

Comparison among contiguous, segmentation and paging
ü Contiguous allocation: based on base, limit register
ü Non-contiguous allocation

§ Segmentation: variable size
§ Paging: fixed-size

5

Physical memory

process

Physical memory

process Page table

(Contiguous allocation) (Paging)
Physical memory

process Segment
Registers
(Segment
Table)

(Segmentation)

Base/limit reg.

J. Choi, DKU

Chap 18. Paging: Introduction

Why paging?
ü Two common approaches for non-contiguous management

§ Variable size: segmentation
• Sharing, Protection support
• Address translation: using segment table
• But, memory becomes fragmented (external fragmentation), thus allocation

becomes more challenging over time
§ Fixed size: paging

• No external fragmentation, Easy for HW supports (e.g. TLB)
ü Terms for paging

§ Virtual memory: divided into a fixed size unit called page
§ Physical memory: also divided into a fixed size unit called page frame
§ Address translation: using page table

6

J. Choi, DKU

18.1 A simple example and overview

Example of Paging
ü Virtual memory

§ Tiny address space of a process: 64B total size, page size: 16B è 4
pages in an address space

ü Physical memory
§ Tiny physical memory: 128B, page frame size: 16B è total 8 frames

• Frame 0 for OS itself
• Frame 2, 3, 5 and 7 for the process (Note that they are not contiguous and

not in order)
• Other frames are managed by a free list (a bitmap or list is enough)

7

J. Choi, DKU

18.1 A simple example and overview

Page table
ü A data structure that records where each page is placed in physical

memory (which frame): same role as segment table
ü Per-process data structure
ü Used for address translation

§ Virtual address: 4 è physical address: 3 x 16B + 4 = 52
§ Virtual address: 44 è physical address: 5 x 16B + 12 = 92
§ Virtual address: 21 è physical address: 7 x 16B + 5 = 117

8

3
7
5
2

Page table for process

F Note: all pages are not required to locate in physical memory è demand paging (chap. 21)

J. Choi, DKU

18.1 A simple example and overview

Address translation in formal
ü Address size

§ Address space size: 64B è virtual address size: 6-bit (26 = 64B)
• c.f.) Address space size of 32-bit CPU: 4GB è address size: 32-bit (232 = 4GB)

§ Physical memory size: 128B è physical address size: 7-bit (27 = 128B)
ü Virtual address: consists of VPN (virtual page number) and offset

§ Page (and frame) size: 16B è offset size: 4-bit. As the result, the remaining 2-
bit becomes VPN (note that there are 4 pages (22))

§ VPN is used for searching page table: VPN è PFN (Physical Frame Number)
ü Physical address

§ PFN x page size + offset (VPN is translated while offset is not)
ü Example

§ Virtual address: 21 è bit: 01 0101 è VPN: 01, offset: 0101 è PFN: 111 è
111*16B + 0101 è physical address: 117

9

J. Choi, DKU

18.2 Where Are Page Table Stored?

Address translation summary
ü 1. Virtual address is divided in two parts: page number(p) and offset(d)

§ Page number: used as an index into a page table
§ Offset: used to locate the physical address within a frame

ü 2. Each entry of the PT contains the starting address of the frame.
ü 3. Combining the starting address with the offset è physical address

How to manage page table?
ü Per process data structure
ü Stored in PCB (or separated data structure linked with PCB) in kernel

space è in memory

10

(Source: A. Silberschatz, “Operating System Concept”)

J. Choi, DKU

18.2 Where Are Page Table Stored?

Why in memory? (instead of CPU)
ü Note that the base/limit register is in CPU.
ü Since the page table is too large.

§ 32-bit CPU, page: 4KB è offset: 12-bit, VPN: 20-bit
§ 220 entries in a page table è PTE (Page Table Entry)
§ Usually 4B per PTE è 220 x 4B = 4MB size

ü Assume that there are 100 processes
§ 100 x 4MB = 400MB for page tables
§ Too big to fit in a CPU è place them in memory

Two Issues
ü Each memory access requires address translation è translation

needs to access a page table è page table is in memory è Does
this mean that each memory access actually requires two memory
accesses? è TLB (Translation Lookaside Buffer) è chapter 19

ü Even though they are in memory, they are still big è fixed size
chopping requires a large amount of mapping information è multi-
level page table or inverted page table è chapter 20

11

… 220

J. Choi, DKU

18.3 What’s actually in the Page Table?

Page table
ü Consists of PTEs(Page Table Entries), where each maps a page into a

page frame (map a virtual address into a physical address)
§ like an array where each entry is indexed by VPN, having PFN as the value

of each entry
ü In addition, each PTE has several information bits

§ P (Present bit): whether this page is in physical memory or on disk (swap
out)

§ R/W (Read/Write bit): Whether writes are allowed to this page
§ U/S (User/Supervisor bit): if user-mode processes can access the page
§ A (Access bit, a.k.a. reference bit): for replacement
§ D (Dirty bit): whether the page has been modified
§ Others

• G, PAT, PCD, PWT: determine how HW caching works for the page
• Valid bit: used or unused (e.g. space between stack and heap which is not used)
• Various Protection bits

12

F What is the difference between page fault (P bit) and segmentation fault (Valid bit)?

…

J. Choi, DKU

18.4 Paging: Also Too Slow

To access memory (e.g. mov 21, %eax)
ü Find PTE address

§ PTBR: Page table base register
ü Fetch PTE /* access memory */
ü Check bits
ü Fetch physical address /* access memory again */

13

J. Choi, DKU

18.5 A Memory Trace

High-level viewpoint

Assembly viewpoint

Memory trace
ü Assumption

§ Page/frame size: 1KB (1024B)
§ Code: VPN:1, PFN:4 (PA = 4*1024)
§ Array: VPN:39, PFN:7 (PA = 7*1024)
§ PT: located in PA 1024

ü Figure 18.7: first five loop
§ PT[1] for instruction address
§ Instruction fetch
§ PT[39] for data address
§ Data fetch
§ 10 memory accesses per each loop (4 for instruction, 1 for data, 5 for PT)

14

J. Choi, DKU

Quiz for 13th-Week 2nd-Lesson

Quiz
ü 1. Discuss the differences among 1) contiguous allocation, 2)

segmentation and 3) paging.
ü 2. Assume that

§ Size of virtual memory = 64B, Size of physical memory = 128B, and Size
of page and page frame = 16B (same as 7 page)

§ Frame 3, 6, 1 are used for page 0, 1, 2 (different compared to 7 page)
§ What are the physical addresses for virtual addresses of 4, 21 and 60?

Explain the answers using the VPN, PFN and offset.
ü Due: until 6 PM Friday of this week (28th, May)

15

3
6
1

Not P

Page table for this quiz

J. Choi, DKU

Chap. 19 Paging: Faster Translations (TLBs)

TLB (Translation Lookaside Buffer)
ü A part of MMU (Memory Management Unit) for faster translation
ü Cache of recent used PTEs (popular virtual-to-physical pairs) è a

better name would be an address-translation cache
ü Translation step: 1) HW first check TLB, 2) if (hit), translation

performs quickly without having to consult PT, 3) otherwise, access
PT, 4) update TLB to cache the recently used PTE

16

(Source: A. Silberschatz, “Operating system Concept”)(Source: Google Image)

J. Choi, DKU

19.1 TLB Basic Algorithm

How HW might handle an address translation?
ü Hit è only one memory access (line 7)
ü Miss è two accesses, one for PTE (line 12) and the other for read

data access (line 7 via line 19) + TLB update (line 18)
ü Locality: most accesses hit in TLB

17

J. Choi, DKU

19.2 Example: Accessing an Array

Example code
ü int a[10] è 4B x 10
ü Page size: 16B è 4 array entries at most è Assume Figure 19.2 layout
ü Memory access behavior

§ Access a[0] è TLB miss è two memory accesses
§ Access a[1],a[2] è TLB hit è one memory access
§ Access a[3],a[7] è TLB miss, Access a[4/5/6], a[8/9] è TLB hit
§ TLB hit ratio: 70% (usually > 99% in general)

18

F If the page size is 32B, how is TLB miss ratio?
F What about if there exists an outer loop? (e.g. “for (j=0; j<2; j++)”)

J. Choi, DKU

19.2 Example: Accessing An Array

Use caching when possible

19

J. Choi, DKU

19.3 Who Handles the TLB Miss?

Two approaches
ü HW-managed TLB

§ HW has a logic to manipulate TLB including TLB update
§ HW must exactly know the PT format, address format, …
§ E.g.) Intel CPU è CISC

ü SW-managed TLB
§ HW simply raises an exception
§ OS (TLB trap handler) explicitly manages TLB è more flexible
§ E.g.) MIPS, Sun SPARC v9 è RISC

20

J. Choi, DKU

19.4 TLB Contents: What’s in There?

A TLB entry
ü VPN + PFN + bits (32 or 64 or 128 bits)

ü Bits
§ Valid bit: whether the entry has a valid translation or not
§ Protection bits: R/W/E
§ Others: ASID (Address-Space IDentifier), dirty bit, …

ü Fully-associative
§ Can place any entry

ü Search in parallel

21

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

19.5 TLB Issue: Context Switches

TLB
ü Contains virtual-to-physical mapping
ü Only valid for current-running process

§ Context Switch è need to invalid or distinguish TLB entries btw processes
ü Example

§ P1: VPN 10 à PFN 100, P2: VPN 10 à PFN 170
§ P1 run è P1 accesses VPN 10 è CS from P1 to P2 è P2 accesses VPN

10 è Case 1: cause problem
§ Solution: 1) flush before CS (set all valid bit as 0) è case 2, 2) ASID

(Address Space IDentifier) è case 3
• TLB flush is a heavy operation è causing high TLB misses

22

Case 1) Case 2) Case 3)

0

J. Choi, DKU

Chap. 20 Paging: Smaller Tables

Page table
ü Locate in main memory

§ 1) Increase the number of memory accesses è TLB (chapter 19)
§ 2) Space overhead è this chapter

ü How large it is?
§ 32-bit address space (232), 4KB page size (212) è PTEs in PT = 220

§ PTE size = 4B è 4MB for a PT (read page 1 of chapter 20 in OSTEP)
§ Note that PT is managed per a process (400MB if there are 100

processes) è May cause a memory shortage
ü How to make smaller PT?

§ Bigger pages (page size: 4KB è 2MB, called huge page)
§ Hybrid approach: segmentation + paging
§ Multi-level page table
§ Inverted page table

23

J. Choi, DKU

20.1 Simple Solution: Bigger Pages

Bigger pages
ü 32-bit address space (232), 4B for PTE

§ 4KB Page size (212) è PTEs in PT = 220 è PT size = 4MB
§ 8KB Page size (213) è PTEs in PT = 219 è PT size = 2MB
§ 4MB Page size (222) è PTEs in PT = 210 è PT size = 4KB

ü Pros): Simple, positive effect on TLB hit
ü Cons): Internal fragmentation (waste of memory), heavy loading time
ü How about multiple sizes for page?

§ Support 4KB, 16KB and 4MB at the same time (like huge page + base
page in Intel)

§ Pros): Flexible, less internal fragmentation
§ Cons): Complexity in OS (still in progress)

24

J. Choi, DKU

20.2 Hybrid Approach: Paging and Segments

Hybrid approach
ü Idea: Limit information in a segment can reduce PT size
ü Simple example: 16KB address space, 1KB page size

§ Use 4 pages (1 for code, 1 for heap and 2 for stack) è Fig. 20.1 (note: non-contiguous)
§ Place in page frame 10, 23, 28 and 4 respectively
§ Paging only: Fig. 20.2

• 16 PTES, most PTEs are invalid
§ Hybrid approach

• Code: base = 0, limit = 1K è 1 PTE for code, Heap: base=4K, limit = 5K è 1 PTE for
heap, Stack: base=14K, limit = 16K è 2 PTE for stack

• The limit register holds the maximum valid pages è access above the limit generates
the segmentation fault è PT can hold valid page only

• E.g. Intel) Virtual addr. è segmentation è Linear addr. è Paging è Physical addr.

25
(Source: Intel 64 and IA32 Architectures SW Developer’s
Manual, Volume 3: System Programming Guide)

J. Choi, DKU

20.3 Multi-level Page Table

Idea
ü Using structural PTs (instead of linear table) è multi-level table

§ Page directory: each entry represents related PT
§ Can reduce a large number of unallocated page tables using valid bits in

the page directory

26

J. Choi, DKU

20.3 Multi-level Page Table

Example: how much memory space for PT can be reduced?
ü Address space: 16KB (14bit), page size: 64B (6bit) è 256 PTEs (8bit)

§ Assume 6 pages (0, 1, 4, 5, 254, 255) are used for code, heap and
stackè Figure 20.4

§ Pages are allocated in frames 10, 23, 80, 59, 55 and 45, respectively
ü How many frames are needed for PT in the linear approach?

§ Total 256 PTEs è 16 PTE (64B/4B) in a frame è 16 frames
ü How about in the multi-level approach?

§ 1 directory + 2 last-level PTs è 3 frames (around 20%)

27

code

heap

stack

0
128

256
384

16384

16256

J. Choi, DKU

20.3 Multi-level Page Table

Address translation
ü Virtual address is divided into three parts: Directory index, PT index

and offset (instead of two parts: VPN, offset)
§ Virtual memory size: 16KB è address : 14bit
§ Page size: 64B è offset bit: 6bit
§ PTEs in a frame: 16 è PT index: 4bit
§ PTEs in a directory: 16 è Directory index: 4bit

28

• E.g. 1) VA = 100 è 00 0000 0110 0100 è Directory: 0000,
PT index: 0001, Offset: 100100 è PA = 23 * 64B + 32 + 4

• E.g. 2) VA= 300 è 00 0001 0010 1100 è Directory: 0000,
PT index: 0100, offset: 101100 è PA = 80* 64B + 32+8+4

• E.g. 3) 16257 = 11 1111 1000 0001 è Directory: 1111, PT
index: 1110, offset: 000001 è PA = 55 x 64B + 1

• E.g. 4) VA= 200 è 00 0000 1100 1000 è Directory: 0000,
PT index: 0011, offset: 001000 è invalid in PT

• E.g. 5) VA= 1030 è 00 0100 0000 0110 è Directory:
0001, PT index: 0000, offset: 000110 è invalid in directory

J. Choi, DKU

20.3 Multi-level Page Table

Address translation in Pseudo-code
ü Concerns of the Multi-level PT

§ Address translation requires two accesses to PTs (vs. one access in the
linear approach)

§ Increased HW complexity for multi-level translation
ü Remember TLB è It can hide them

29

J. Choi, DKU

20.3 Multi-level Page Table

More than two levels
ü Virtual address: 30-bit, page size: 512B

§ Address: 30bit, offset: 9bit è VPN: 21bit, PTEs in a page: 128 (512/4)
§ 2-level: left figure

• PT index = 7 bit (27 = 128), Page directory: need to cover remaining 14-bits
è 214 PTEs è 128 pages for Page directory

§ 3-level: right figure
• PT index = 7 bit, PD index0 = 7 bit (upper-level), PD index1 = 7 bit è one

page for PD index0, PD index1 and PT needed only for valid PTEs è save
memory

30
(Source: Intel 64 and IA32 Architectures SW Developer’s Manual, Volume 3: System Programming Guide, Chapter 4)

J. Choi, DKU

20.4 Inverted Page Tables

Page table
ü VPN è PFN, One per process in a system

Inverted Page Table
ü PFN è VPN, Only one in a system (hence reduce memory for PT)

§ Page table index: physical frame number (one entry per physical page)
§ PTE: virtual page number, process ID that maps the physical page

ü Address Translation
§ Need search: 1) linear scan, 2) hash

31

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

Quiz for 14th-Week 1st-Lesson

Quiz
ü 1. Explain the definition of 1) MMU, 2) TLB, 3) page directory and 4)

inverted page table.
ü 2. In page 18, we calculate that the TLB hit ratio for accessing a[] is

70%. 1) What is the TLB hit ratio when the page size is 32B (instead
of 16B)? 2) What if there exists an outer loop like “for (j=0; j<2;
j++)” above the “for (i=0; i<10; i++)”

ü Due: until 6 PM Friday of this week (4th, June)

32

int sum = 0;
for (j=0; j<2; j++)

for (i=0; i<10; i++) {
sum += a[i];

}

int sum = 0;
for (i=0; i<10; i++) {

sum += a[i];
}

J. Choi, DKU

Chap. 21 Beyond Physical Memory: Mechanisms

Memory hierarchy
ü Register, Cache, Memory, Disk (or SSD), Sever, …
ü VM (Virtual Memory) focus on Memory and Disk

§ Memory: relatively fast but small
§ Disk: relatively slow but large

ü OS wants to execute multiple processes at the same time
§ Frequently accessed data è place in memory
§ Seldom accessed data è place in disk, bring into memory if necessary (

demand loading or demand paging)

33

J. Choi, DKU

21.1 Swap space

Swap definition
ü Space in disk for moving pages back and forth

§ To migrate data from memory to disk when available memory space is
insufficient

§ Moving granularity: page vs. process
• When: light vs heavy memory hungry condition
• How: replacement policy (LRU pages, low-priority processes)

§ E.g.) 4 frames and 8-page swap space
• Proc 0/1/2 è ready or running, Proc 3 è suspended (swap out)

Benefit
ü Allow to support the illusion of a large virtual memory for a process

(usually larger than physical memory)
ü Transparent to programmers (vs. memory overlay)

34

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

21.2 Present Bit / 21.3 Page Fault

Present bit in PTE
ü To identify whether a page is in memory or swap out

§ Present bit == 1, access the page
§ Present bit == 0, è page fault

Page fault
ü Trigger page fault handler that bring the page from disk to memory
ü From swap space or from a file (e.g. demand loading)

35

(Source: A. Silberschatz, “Operating system Concept”)

F Load a page in virtual memory èRead a disk block in file system (using inode) è VM
and FS works together in an integrated manner.

F Features of paging: easy to support demand loading (fast execution), HW friendly, fixed, ..

J. Choi, DKU

21.4 Page Fault Control Flow

HW control flow

SW control flow

36

F What are the differences between the page fault and segmentation fault?
F What if there is no free frame? è Evict (see Chapter 22)

J. Choi, DKU

Chap. 22 Beyond Physical Memory: Policies

Demand paging (a.k.a. demand loading)
ü Make mapping information without actual loading (fast execution)
ü Start running è occur page faults è loading in a lazy manner (we

can load pages that are actually used)
ü Life is easy where there are a lot of free frames

When little memory is free
ü Memory pressure forces OS for paging out to make room
ü Replacement policy: decide which page (or pages) to evict

37

J. Choi, DKU

22.1 Cache Management

Goal
ü Maximize cache hit (minimize cache miss)

Model
ü Average memory access time (AMAT)

§ Where
• TM: memory access latency
• TD: disk access latency
• Phit: probability of finding data in the cache (Pmiss = 1 – Phit)

§ Example (Details can be found in the page 2 of chapter 22 in OSTEP)
• Assume that TM= 100ns, TD= 10ms (10,000,000ns)
• Phit= 50% è AMAT = 0.5 x 100 + 0.5 x 10,000,000 = 5,000,050 = 5ms
• Phit= 90% è AMAT = 0.9 x 100 + 0.1 x 10,000,000 = 1,000,090 = 1ms
• Phit= 99% è AMAT = 0.99 x 100 + 0.01 x 10,000,000 = 100,099 = 0.1ms

§ Hit ratio is quite important
• Expected hit ratio = SM /SD if an access pattern is the uniform distribution
• Remember locality which makes it feasible to obtain high hit ratio

38

J. Choi, DKU

22.2 Optimal Replacement Policy

Optimal replacement policy (known as MIN)
ü Evict a page that will be accessed furthest in the future

§ Best replacement policy
§ Not implementable (comparison purpose, quite useful)

ü Example
§ Reference string: 0 1 2 0 1 3 0 3 1 2 1
§ Cache size: 3 frames
§ Hit ratio = 6/11 = 54.5%
§ Compulsory miss (Cold-start miss), Capacity miss, Conflict miss (Direct

mapping or set-associative case)

39

J. Choi, DKU

22.3 A Simple Policy: FIFO

FIFO (First In First Out)
ü Evict a page that was brought into memory for the first time

§ Like the FCFS scheduling policy (first-in page in a queue)
ü Example with same reference string (0 1 2 0 1 3 0 3 1 2 1)

§ hit ratio = 4/11 = 36.4%

ü Pros) Simple
ü Cons) Not considering locality, Belady’s anomaly (less hit ratio with

larger cache)
§ Anomaly example: 1,2,3,4,1,2,5,1,2,3,4,5 with 3 and 4 frames

40

J. Choi, DKU

22.4 Another Simple Policy: Random

Random
ü Evict a page chosen randomly
ü Example: same reference string (0 1 2 0 1 3 0 3 1 2 1)

§ hit ratio = 5/11 = 45.4% è Figure 22.3
§ Different at each trial è Figure 22.4

ü Pros) Simple
ü Cons) Not considering locality, unpredictable

41

J. Choi, DKU

22.5 Using History: LRU

LRU (Least Recently Used)
ü Evict a page that was accessed oldest in the past
ü Example: same reference string (0 1 2 0 1 3 0 3 1 2 1)

§ hit ratio = 6/11 = 54.5%
ü Pros) Considering locality (temporal locality)
ü Cons) Not good for the looping reference

ü History based policies
§ Use history as our guide (like Multi-level feedback queue)
§ LRU, LFU (Least Frequently Used), LRFU, MRU, ARC, 2Q, …

42

J. Choi, DKU

22.6 Workload Examples

Workload analysis
ü Workload: amount of work, characteristics of references in this case
ü 3 types in this slide

§ No-locality: LRU == FIFO == RAND
§ 80-20 workload (hot/cold): LRU > FIFO == RAND
§ Loop workload: LRU == FIFO < RAND

ü Most applications show strong locality è LRU employed popularly
ü Large cache size: close to optimal

43

J. Choi, DKU

22.7 Implementing Historical Algorithms

How to implement LRU?
ü Usually linked list
ü Pages access

§ Insert it to the head of the list (MRU position)
§ Move down all pages to the next position
§ Remove the page in the LRU position if necessary (miss case)

ü Need to monitor all memory accesses
§ Feasible in the file cache or server cache
§ May degrade performance in the memory cache è utilize HW supports

such as reference bit and dirty bit

44

J. Choi, DKU

22.8 Approximating LRU

Clock algorithm
ü FIFO with Reference bit (also called as Access bit, see 12 page)

§ HW: set reference bit as 1 when an associated page is accessed
§ OS: manage a pointer for next victim

• if (ref_bit == 1), clear it to 0 and give second chance (check the next page)
• if (ref_bit == 0), evict it and move the victim pointer to the next page

§ Approximate LRU well

ü Advanced version
§ Periodic clearing
§ Utilizing two HW bits: reference and dirty bit

45

J. Choi, DKU

22.11 Thrashing

Thrashing
ü A situation where the page fault rate is extremely high as each

process does not have enough frames
§ A page fault triggers to replace a page that will be referenced soon,

which eventually making another page fault immediately
ü A process is spending more time paging than executing

46

J. Choi, DKU

22.11 Thrashing

Working set
ü WS(t): a set of pages referenced between t-D and t

§ To estimate how much memory a process needs
ü Application of working set

§ Detect thrashing or Find a chance for new process initiation
§ Mechanism: D > mÞ Thrashing

• WSSi : Working Set Size of Process Pi
• D = SWSSi (D: the total demand of frames for all process)
• m: total # of available frames in a system

§ Working-set Strategy
• If (D > m), suspend some of the processes
• If (D < m), another process can be initiated
• è Prevent thrashing while keeping multiprogramming degree as high as possible.

47

J. Choi, DKU

Summary

Virtual memory concept
ü Separation of virtual memory from physical memory

§ Virtual memory: user’s (or programmer’s) viewpoint,
exclusive

§ Physical memory: system’s viewpoint, shared by multiple
processes

ü Allow the execution of a process that are not completely
in memory
§ Logical address space can therefore be much larger than

physical address space.
§ Allows more programs running

Virtual memory can be implemented via:
ü 1) Address translation: paging, segmentation, TLB
ü 2) Demand paging: page fault, integration FS and VM
ü 3) Replacement: LRU, FIFO, Clock, Working set, …

48

J. Choi, DKU

Quiz for 14th-Week 2nd-Lesson

Quiz
ü 1. Discuss the terms of 1) demand paging, 2) page fault, 3) thrashing

and 4) working set.
ü 2. Calculate the hit ratio under the FIFO, LRU and Optimal (MIN)

policies when there are three frames and the page reference string is
“1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5”. What about when there are four
frames?

ü Bonus) Explain the Belady’s anomaly using the Quiz 2.
ü Due: until 6 PM Friday of this week (4th, June)

49

(Source: https://slidetodoc.com/ch-10-operating-system-ch-10-v-m/)

J. Choi, DKU

Lab4 : LRU simulator

E Lab4:
ü Make a LRU simulator (see 42 and 44 page)

§ Queue + Hash
ü Requirement

§ 1) report: Introduction, Design (data structure/function), Results (at least
two outputs), Discussion, 2) Source code

ü Submission: 1) upload e-learning campus (report only), 2) email to
TA (both report and source code)

ü Environment: See Lab. 0 in the lecture site
ü Due: Not actual homework in this semester
ü Bonus: Analysis with different cache size and workload (No locality,

locality, loop: 43 page)

50

J. Choi, DKU

Appendix 1

Linux implementation for segmentation and paging

pid
mm
files
signals
sem
thread
name
…

task_struct

vm_area_struct

vm_end
vm_start
vm_flag

…
vm_file
vm_offset
vm_ops
vm_next

mm_struct
map_count

pgd

vm_area_struct

vm_end
vm_start
vm_flag

…
vm_file
vm_offset
vm_ops
vm_nextmmap

31 11 0

page directory

PFN

text

data

:
:

rlim

files_struct

fs_struct

signal_struct

thread_struct

fd

inode

mode
link
time
…
direct
indirect

eip
eflags
eax
ebx
…
esp
ss
…

stack

thread

sem_list

sched_entity

a.out

CPU

J. Choi, DKU

Appendix 1

Copy-on-Write (COW)
ü Allow both processes can share pages even though they are not

actually shared pages (set the copy-on-write bit in page table)
ü If either process modifies a shared page, the page is copied
ü Good for fork() and exec()

§ Allow both parent and child processes to initially share the same pages
in memory

§ More efficient for process creation

52

(Before process 1 modified page C) (After process 1 modified page C)

J. Choi, DKU

Appendix 2

19.7 A Real TLB Entry
ü Real TLB example: MIPS R4000

§ SW-managed TLB, 4KB page/frame size
§ 32 or 64 entries in TLB (related to TLB coverage)
§ Bit description

• VPN: 19-bits è we expect 20-bits. But, user addresses will only come from
half of the address space (2GB for user, 2GB for kernel) è 19-bits are
enough

• PFN: 24-bits è support up to 64GB physical memory (224 x 4KB)
• ASID: 8-bits, to identify which process own the VNP-PFN pair
• G: global bit è shared among processes (ASID is ignored)
• C: coherence bit è for coherence protocol
• D: dirty bit
• V: valid bit
• Page mask: for supporting multiple page sizes

53

J. Choi, DKU

Appendix 2

21.6 When Replacements Really Occur
ü OS actually prepares free memory proactively, not wait until memory

is full
§ Background thread: swap daemon or page daemon
§ When free memory is below the low watermark, it begins to evict pages

until free memory becomes above the high watermark
ü Group a number of pages and write them out at once (to make

sequential writes for better performance)

Summary of Swapping
ü Larger than physical memory

§ Present bit in PT
§ Page fault handler in OS

ü Transparent to user
§ Sometimes not (stuck)

54

J. Choi, DKU

Chap. 24 Summary Dialogue on Memory Virtualization

55

