System Programming D

Lecture Note 1.
What is System Programming

August 27, 2021

Jongmoo Choi
Dept. of Software

Dankook University
http://embedded.dankook.ac.kr/~choijm

(Copyright © 2021 by Jongmoo Choi, All Rights Reserved. Distribution requires permission)

DANKODK UNIVERSITY

Objectives

Understand the definition of system program
Describe the types of system program

v Compilation system
v Operating system
v Runtime system

Hardware consideration
Realize the concept of abstraction

Reference: Chapter 1 in the CSAPP

CHAPTER 1

A Tour of Computer Systems

Information Is Bits + Context 3

1.2 Programs Are Translated by Other Programs into Different Forms 4
i It Pays to Understand How Compilation Systems Work 6
4 Processors Read and Interpret Instructions Stored in Memory 7
1.5 Caches Matter 12
& Storage Devices Form a Hierarchy 13
1.7 The Operating System Manages the Hardware 14
I8 Systems Communicate with Other Systems Using Networks 20
' Important Themes 21
110 Summary 25

Bibliographic Notes 26

(Source: CSAPP)

Definition of System Program (1/8)

s Computer organization

—
20 omvie

Definition of System Program (2/8)

s Hardware components: PC

Secondary storage

Definition of System Program (3/8)

s Hardware components: DRAM vs. Disk

v 1. Speed
v 2. Capacity
= Memory Hierarchy

v 3. Volatility: Volatile vs. Non-volatile
» Need to write data into disk explicitly for persistency (file 1/0)

v 4. Interface: Byte-unit interface vs. Sector-unit interface
» Need to load a program from disk to RAM before execution (loading)

CPU registers hold words

&
Smallar,
faster, retrieved from cache memory.
and
castier L1 cache holds cache lines
{per byte) ratrigvad from L2 cacha.
storage Lo :
Hertioes A L2 cache holds cache lines Disk Memory
L2 19 cache refrieved from L3 cache. Secondary Memory
(SRAM) _ Operating System Loads

Larger, L3 cache holds cache lines Program Into RAM
slowar, ; refrieved from memory. E

and L Main mamory

chaaper ket Main memory holds disk biocks *

(per byie) retrieved from local disks. . o o g
storage L5: Local sscondary storage 3
devices (local disks) Local disks hold filas ./—).

retrisved from disks on (intel ;
L8: Remote socondary storage remote network saver.
{distributed file systams, Wab servars) WESEEEES bl Miliiiiid CPU
Primary Memory s e — |
Main Memory
RAM Processor CPU
Google Image)

(Source:

Figure 1.9 An example of a memory hierarchy.
(Source: CSAPP)
5 -~

Definition of System Program (4/8)

Hardware components: Smart Phone
CPU: ARM based Multicore

Memory: LPDDR, SRAM

Storage: NAND flash

Input: Touch Screen, Sensors, Voice, Iris, ...
Output: LCD, LED, Sound, Buzzer, ...

Communication
= \WLAN
= | TE, CDMA, GSM
= |[rDA, Bluetooth, NFC
= UART, USB

DN N N N N

(Source: Google Image)

6 -~

Definition of System Program (5/8)

s Hardware components: Requirements for Mobile devices

v Power Saving

= Make use of RICS CPU instead of CISC CPU

RISC: Reduced Instruction Set Computing = Small Instructions = Compact
CPU internal = Consume less Power

» Make use of LPDDR (Low-Power DDR) instead of General DRAM
LPDDR: Reduce power by using lower voltage and less refreshing

v Portability

» Make use of Flash memory instead of Disk
Lightweight, Shock resistance

v User friendliness
= Make use of diverse input, output and communication devices

DDR3/DDR3L

el Fel 1.5VA1.35V 1.2V

Configurations xd, =8, x16 =16, x32

sSDR DoR
Address:;:;)mmand Comman d 2t Address ping| Commanrs cl/ Address
= =2|=|0] 2. ping 27
Data 1 pingt 2133 1866*
E|CH V& = (Mbps) (spec.2 21337%| Ha|)
Ml 22| LHS 2 My /= WS

Refreshi#@ Z} bank P -
ofl PR e = == (PASRK) IR 7= (optional) x|z

Deep Power Down 2= 2SS US

(Source: http://egloos.zum.com/donghyun53/v/4125772) _
I -—

/ ~

Definition of System Program (6/8)

s Software components

v Application program vs. System program
= Application program: how to do a specific job
#include <stdio.h>

int main()

{
}

printf(“hello, worldWn”);

= System program: address the following issues
How to run this application program on CPU?
What is the role of printf()?
How the string is displayed on Monitor?
How this program can be executed with other programs concurrently?
What are the differences between local and global variables?
What kinds of techniques can be applied to enhance the performance of this
program?

Definition of System Program (7/8)

s Software components: System program

v How to run a program on CPU?
= object, binary, compiler, assembler, loader, ...
v What is the role of printf()?
= library, linker, ...
v How the string is displayed on Monitor?
= device driver, file system, ...
v How a program can be executed with other programs
concurrently?

= process, scheduler, context switch, IPC (Inter process
communication), ...

v What are the differences between local and global memory?
» data, stack, heap, virtual memory, buddy system, ...

v What kind of techniques can be applied to enhance the
performance of a program?

= compiler optimization (loop unrolling, reordering), CPU optimization

(pipeline, superscalar, out-of-order execution), ...)5 - Seros]

9

Definition of System Program (8/8)

s Software components: System program

v Supporting computing environments for application programs
(Support Interfaces such as commands, library functions and
system calls)

v Strongly related to hardware (hardware management)

v Abstraction
» CPU and Task (Process)
= DRAM and Virtual memory
» Disk and File
= Device and Driver
= Machine level language and High level language
» Untrusted and Trusted Domain

10

Types of System Program

s Classification

Runtime systein

11 o

Compilation System (1/5)

s Concept: Language Hierarchy

High-level Language

Assembly Language

Machine Language
(Binary code)

Compilation System (2/5)

s Overall structure and 6 key components

@—' C File Other Object File & library

Executable Object

ASM File File (binary)

l

Error Msg Relocatable Loader
Object File

Input Data Results

13 .

Ir@@—gZjl Quiz for 1st-Week 2n9-Lesson

TIME]

s Quiz

v 1. Explain why loader is required in a computer system. (hint: using
the difference between Disk and DRAM).

v 2. Discuss why the hardware components of Smartphone are
different from those of PC even though they are same with the
viewpoint of computer architecture (3 reasons).

v Due: until 6 PM Friday of this week(3", September)

@-‘ C File Other Object File & library

- Executable Object
ASMl File File (binary)

Error Msg Relocatable
Object File

Input Data |— o Results

Debugger N>

I -
14 ~

Compilation System (3/5)

= Relation between Language Hierarchy and Overall Structure

PR

|

Other Object File & library

ASM File

Error Msg

(Language hierarchy)

15

|

Assembler

.

Executable Object
File (binary)

Object File

Relocatable Loader

Results

\j;:-
Input Data —"N- o)

Debugger ©

(Compilation system) _

Compilation System (4/5)

s Example in Linux

choijmiembedded: ~/ayspro/chapls
choijmBembedded: ~/sysprofchapls uname -a

Linux embedded 4.13.0-3¢-generic #40~16.04.1-Ubuntu SMP Fri Feb 16

2012 x86 64 x86 64 %86 64 G
choijnfenbedded: ~/syspro/cha @ choijm@embedded: ~/syspro/chapl

(oo G

Compiler

‘ Other Object File & library ‘

Executable Object
File (binary)

Relocatable
Object File

Assembler

(g
A

) —{resits]

choijmBenbedded: ~/syspro/fcha
enpls2s Link encap:Etherne
inet addr:220.14%.
inet& addr: fedo::
UP BROADCRAST RUNNIY
EX packets:E8576625
TX packets:17405%4
collizsions:0 txguel
BX bytes:1061175%18
Interrupt:1l6e Memor
1o Link encap:Local L
inet addr:127.0.0.
inet& addr: ::1/12
UP LCOOPBACE RUNMNING
E¥ packets:
TX packets:
collizions:d txgqueq
R¥ bytes:T0246 (70

820 exx
820 exx

choijimEembedded: ~/syspro/chay

choiim@embedded:
cholim@enbedded:
cholim@enbedded:
choiim@enbedded:
choiim@enbedded:
cholim@enbedded:
cholim@enbedded:
#include <stdio.

int main{)
{

Debugger
~faysprofchapls

~faysprofchapls 1s

~faysprofchapls

~faysprofchafpls

~f5yspx-:u.fch£15 vi hello.c]
~faysprofchapls

~faysprofchaplf cat hello.c

h>

printf ("Hello DEU Worldiyn™):

¥
choiim@embedded:
choiim@Eembedded:
hello.c
choiim@embedded:
choiim@Eembedded:
choiim@embedded:
hello.c

choiim@embedded:
choiim@enbedded:
Hello DEU World
choiim@enbedded:
choiim@enbedded:

~fsysprofchapl$

~fsysprofchapl{ 13

~f5yspxnfch4é}5 gcc hello.c]
~fayspro/chalTs

~faysprofchapls

is

~fsyspro/chdpls
~faysprofchapls ./ a.out

~faysprofchapls
~faysprofchapls I

16

\\.

Compilation System (5/5)

s Example in Linux: details D

v Location of collect2, crt1.0, ... depend on gcc

Linker

Relocatable
Object File

e
Input Data |— R:f)
o)

Assembler

§' choijm@embedded: ~/syspro/chap2

choijm@embedded: ~/syspro/chap2y >
choijm@embedded:~/syspro/chap2} vi hello.c
choijm@embedded: ~/syspro/chap23—=s

hello.c

choijm@embedded:~/syspro/chap2¥ ~

Debugger

choijm@embedded: ~/syspro/chap2$ gcc -S hello.c
choijm@embedded: ~/syspro/chap23—=
hello.c hello.s
choijm@embedded: ~/syspro/chap?2 3
choijm@embedded: ~/syspro/chap2$ as -o hello.o hello.s
choijm@embedded: ~/syspro/chap25 1s
hello.c hellc.o hello.s
choijm@embedded: ~/syspro/chap2
choijm@embedded: ~/syspro/chap2f /usr/lib/gcc/i486-1inux-gnu/3.4.6/collect2 /usy/1lib/i
B6-linux-gnu/crtl.o /usr/lib/iB86-linux-gnu/crti.o /usr/1lib/i386-linux-gnu/crtiy.o /us
/1lib/gcc/i1486-1linux-gnu/3.4.6/¢rtbegin.o /usr/lib/gcc/id86-1inux-gnu/3.4.6/crtgnd.o h
1llo.0 -1lc -dynamic-linker /libf1d-linux.so.2
choijm@embedded: ~/syspro/chap2Xlds

hello.c hello.o hello.s
choijm@embedded: ~/syspro/chap2$
choijm@embedded: ~/syspro/chap2$| ./a.out]
Hello DKU World
choijml@embedded: ~/syspro/chap2$
choijm@embedded: ~/syspro/chap2$ I v

= What are the differences btw hello.c and hello.s?
= What are the differences btw hello.o and a.out? _

| —_

17 .

Operating System (1/15)

s Overall structure and 7 key components

process 1 process 2 process 3 Y process n User Space
[I System Call Interface I]
File system < » Process Manager
Ext4 proc VFAT . Task Management
P D P » Virtual Memory D R »! Ty g
LFS nfs NTFS — Memory Management Signaling
A A A A A
Buffer Cache Kernel Space
4 v :
. : A 4
Device Manager »| Network Manager

block |character Socket TCP/IP

Console KBD SCSI | ¢ * I'DA
CD—-ROM PCI ethernet
| |
[Hardware Interface (HAL)]
devl’ dev2 dev3 dev4 eoeo devn

I
18

(Source: Linux Kernel Internals) _

Operating System (2/15)

s Relation between hardware component and overall structure
v OS: a resource manager = abstract HW resources into logical ones

5 Secondary storage . process 1 l pmr.esszl pms&’l Y User Space

Svstem Call Interface

ook Virtudl Memory s
hemory Mansgem

Edd poc WAT

w*

FS nfs NIFS

O\
-

H
...............................

| : Hardware Interface (HAL
: . . dev] dev2 dev3 devd iee w
Communication Device — u u u u .

(Physical resources) (Logical resources) —

19

Operating System (3/15)

s Behaviors: 1) initial state

OS
/D_kQ S
Q/
R

20

Operating System (4/15)

s Behaviors: 2) create a file (user’s viewpoint)

vi test.c
int sum = 0;

int main()
inti;

for (i=0; i<10;i++)
sum +=i;

printf(“%d”, sum);

......... ‘cpu
\Diik//
w

21

Memoa

Operating System (5/15)

s Behaviors: 2) create a file (system’s viewpoint)

/ Vi test.c # 4 o ¢ 1 u d e «pr < 8 & 4 i o

: . 35 105 110 99 108 117 100 1014 32 60 115 116 100 106 111 46

int sum = 0;

. . h > M\ i Bt <sp> m a i =mn () o {

int main() 104 62 10 10 4105 110 416 32 1089 97 4105 410 40 41 10 123
inti; \n <sp> <8p> <sp> <8p> P r i n T i { " h [1

10 32 32 32 32 117 1314 106 110 11 102 a4l 34 104 101 108
for (i=0; i<10;i++)

=i 1 o , <Ep> W o vy i d \ n !) : \n %

sum +=1, 108 111 44 32 1159 411 144 408 100 82 410 34 41 B3 10 136
printf(“%d” sum)' Figure 1.2 The ASCII text representation of hello.c.
(Source: CSAPP)

Memo

22 o

Operating System (6/15)

s Behaviors: 3) compile the file (user’'s viewpoint)

/ Vitest.c

int sum = 0;
int main()
inti;

for (i=0; i<10;i++)
sum +=i;

printf(“%d”, sum);

compile

a.out

.data
.align 4
.type sum,@object
.size sum,4
ext
.global main
.type main, @func
main:
pushl %ebp

H{ovl -4(%ebp), %eax

addl %eax, sum

Memo

23

Operating System (7/15)

s Behaviors: 3) compile the file (system’s viewpoint)

/ Vitest.c a.out
int sum = 0; .data
. . .align 4
int main() .type sum,@obiject
N .size sum,4
inti; text
for (i=0; i<10;i++) e m
=0; ; : .type main, @func
UM 4 i compile P
hl %eb
printf(“%d”, sumy; pus eop
movl —4(%ebp), %eax

/ addl %eax, sum

Memory]

Operating System (8/15)

s Behaviors: 4) execute the a.out (user’s viewpoint)

/ Vitest.c

int sum = 0;
int main()
inti;

for (i=0; i<10;i++)
sum +=i;

printf(“%d”, sumy;

compile

/

a.out

.data
.align 4
.type sum,@object
.size sum,4
ext
.global main
.type main, @func
main:
pushl %ebp
movl —4(%ebp), %eax
addl %eax, sum

execute

run a.out =»
We can see 45
on the Monitor

Operating System (9/13)

s Behaviors: 4) execute the a.out (system’s viewpoint)

v To run a.out, OS first loads it into memory
Ve vi test.c

}

int sum = 0;

int main()

inti;

for (i=0; i<10;i++)
sum +=i;

printf(“%d”, sumy;

compile

/

a.out

.data
.align 4
.type sum,@object
.size sum,4
text
.global main
.type main, @func
main:
pushl %ebp
movl
addl %eax, sum

—4(%ebp), %eax

execute

Memoa

page

run a.out =
We can see 45
on the Monitor

Operating System (10/13)

s Behaviors: 4) execute the a.out (system’s viewpoint)

v Then, OS makes a new process (active object)

Ve vi test.c

}

int sum = 0;

int main()

inti;

for (i=0; i<10;i++)
sum +=i;

printf(“%d”, sumy;

/

a.out

.al
compile

.data

.align 4
.type sum,@object
.size sum,4

text

obal main
.type main, @func

main:

pushl %ebp

movl
addl %eax, sum

—4(%ebp), %eax

execute

OS

‘cpu MemoF;I

- P

A

run a.out =
We can see 45
on the Monitor

A

page

segment/page table

Operating System (11/13)

s Behaviors: 4) execute the a.out (system’s viewpoint)
v Then, OS schedule the process

Ve vi test.c

int sum = 0;
int main()
inti;

for (i=0; i<10;i++)
sum +=i;

printf(“%d”, sumy;

}

/

compile

a.out

.data
.align 4

.type sum,@object

.size
text
.global main

sum,4

.type main, @func

main:

pushl %ebp

movl
addl %eax, sum

—4(%ebp), %eax

execute

OS

|

A A 7
..................... iia?ﬁ;;ﬁ]

- P

A

run a.out =
We can see 45
on the Monitor

CPU

A

scheduling

segment/page table

Operating System (12/13)

s Behaviors: 4) execute the a.out (system’s viewpoint)

v Actually there are multiple processes managed by scheduler
s Vitest.c

}

int sum = 0;

int main()

inti;

for (i=0; i<10;i++)
sum +=i;

printf(“%d”, sumy;

/

compile

a.out

.data

.align 4

.type sum,@obje

.size sum,4
text
.global main

.type main, @fun
main:

pushl %ebp

movl

addl %eax, sum

—4(%ebp), %eax

ct

J

c execute

prev process

prev process

]

new process

run a.out =
We can see 45
on the Monitor

Time=Sharing system

segment/page table

Operating System (13/13)

s Operating system: summary

v Process manager (Task manager): CPU
= process manipulation, schedule, IPC, signal, context switch
= fork, exec, wait, getpid, (pthread_create) , ...
v Virtual Memory: Main memory
" page, segment, address translation, buddy, LRU
» brk, (malloc, free), ...
v File system: Storage
= file, directory, disk scheduling, FAT
» open, read, write, mknod, pipe, (fopen, fwrite, printf), ...
v Device driver: Device
= |O port management, interrupt, DMA
= open, read, write, ioctl, module, ...

Procassas
A

v Network protocol: Network amie e | TR
= connection, routing, fragmentation | - |
. L] . I r—
u SOCket, blnd, ||Sten, Send, recelve, Processor Main memory 1D davicaes
[v

30

Quiz for 2nd-Week 1st-Lesson

s Quiz

v 1. Describe the names of Linux command for editor, compiler,

assembler, linker and loader (5 names).
v 2. Discuss the role of 1) inode, 2) page table and 3) scheduler.

v Due: until 6 PM Friday of this week (10, September)

&

i test.c
S =
: dign4
Aype sum,@ohject |
fun a.out 2

o .Sz amd
| ledt
“globd main I:> We can see 45

dpe man @R eyecute” o the Monitor

Other Object File & library

|

CFile

int main(}
{

int _
for(Q KIies)

: Executable Object am = ! s
ASM File File (binary) g%, um B ey
| I il

|

Relocatable Loader
Object File

Tnput Data | — NI

31

U

|

Error Msg

}

s
- — Time=anaring system

segment/page table

Runtime System (1/5)

= Command
v file related: Is, cat, more, cp, mkdir, cd, ...
v task related: ps, Kill, jobs, ...
v utility: vi, gcc, as, make, tar, patch, debugger, ..
v management: adduser, passwd, ifconfig, mount, fsck, shutdown, ..
v others: man, file, readelf, grep, wc, ...

= shell
v command interpreter

v pipe, redirection, background processing,
v shell script programming

command
user |:> shell
command
processing

32

Runtime System (2/5)

= library

v A collection of functions, invoked frequently by a lot of users
» Relocatable objects

» Most languages have standard libraries (also programmers can make
their own custom libraries using ar, ranlib and libtool.)

v Type
» Static: 1).a, 2) statically linked (compile time), 3) simple
» Shared: 1) .so, 2) dynamically linked (runtime), 3) memory efficient

User program
Library funciions
printf())
write() agent user space
write() system call kernel space
I _

33

Runtime System (3/5)

s Framework (also called as Platform)

v A set of functionalities such as windows, database, graphics,
multimedia, web, RPC, protocal, ...

v Mobile framework (e.g. Android), Machine learning (e.g. Tensorflow)
and Bigdata framework (e.g. MapReduce or Hadoop)

APPLICATIONS Shuffling Reducer

bad , 1 bad , 1
Centacts Phene 1 ™
Input Splits Mapping
APPLICATION FRAMEWORK Class,1 e Class i
' ' Final
Activity Manser Window Content View Netification i R Output
= Manager Providers System Manager
good,1 good,1
Pisiase Madizer Telephony Resource Location YMPP Sorvice Input ™
i Manager Manager Manager GRS)
Class Hadoop is
1 Welcome to Hadoop
LIBRARIES \ ANDROID RUNTIME Class Hadoop is Hadoop . 1
‘ good Hadoop is bad Hadoop , 1 | Hadoop , 3
Surface Manager Fmrujg?q & SQLie Core Libraries good s HAdoup
OperGLIES FreaType il o, ol 5, 2
is. 1 5
SSL bad
e | 0.1
LiNuX KERNEL
ey Bluetooth Flash Memery Binder (IPC)
Camera Drfver Driver Driver Driver Welcome ;1 = Welcome 1
(@gurn99.com

USE Driver Keypad Driver WiF Driver o

awel
Drivers Management

MapReduce Architecture
(Source: google image) (Source: https:llwww.quru99.comlintroduction-to-mml)

| -—
34 -

Runtime System (4/5)

s Virtual machine and Docker
v Virtual machine: make virtual devices from Hypervisor (or Host OS)
» Run GuestOS on the virtual devices

v Docker: make a container (an isolated environment) using
namespace and cgroup

» Docker commands are quite similar to Linux (UNIX) command

[root@docker ~1# docker images

ot [l A2

Bins/Lib [Bins/Lib

App 3

TG MAGE 1D CREATED

latest G cfa2dl 2 weeks ago
'] ¥ibosignage/xibo-mr release 1.8.1 ecife 2 weeks ago
Bins/Lib

ubuntu 16.04 eh cafl 2 weeks ago

ubuntu 14,04 2 ;! 2 weeks ago

App1 App2 App3
Bins/Lib | Bins/Lib [Bins/Lib

Container Engine

centos ! f { 2 weeks ago
myaql 5.6 Bt 3 weeks ago

mysql) i TH 3 weeks ago

debian latest 3 weeks ago
xibosignage/xibo-cms latest 18 5 weeks ago
¥ihoais ibo-cms release 1.8.1 c2767fdcT262 5 weeks ago
[root@docker ~1#

Hvoervicor
VYDREIrvISor
'lf:'?:'.d{.:!;_‘ﬂ.&_ 2

AR

ker ~]1# docker run -it -p 3000:80 —name=debian containerl debian
e(1fadad: /¢

Infrastructure

Infrastructure

[rootfdocker ~]# docker ps

Machine Virtualization Containers

35 2

Runtime System (5/5)

s Key-Value Store

v Bigdata =» un-structured =» need new database =» Key-value store
(or Document store or Graph store)

» E.g. Google’s LevelDB, Facebook’s RocksDB, Amazon’s Dynamo, ...
v Key data structure: LSM-tree, Skipped-list, Bloom filter, ...

Amazon

Google - Dynamo, SimpleDB ORACLE
- Bigtable, Level DB, Hbase For E-commerce OWI:";QM o
- For Web ind d 051, berkeley
n::@:“ e an[amazon Com For Configurable |
Microsoft
O)8 e - Azure, Cosmos DB
Facebook . - _For E-commerce
- Haystack, RocksDB,
Casandra aCEbOOI M I C rO S Oﬁ:
- For social network and
photo store Baidu

Basho

Atlas
VAHOO For Cl““d‘fl@t" Cl kdlstrlhuted KV

Linked([[}] Yahoo
- PNUTS Open source

LinkedIn
- Voldemort = FOr AdverhsB&@EE Redis, Memcached
- For Scalability - Forin-memory DB, cache

36

) e !l ﬂu ‘
disk disk 4)
Cl Q L0 (8MB) D O ||
g
0 A merge sort

Y

(2) LSM-tree

L2,100vg) D 00 D
wm 000000

sm QQQQ00

D SSTable files D memtable ' immutable

(b) LevelDB

Hardware consideration (1/6)

s Computer organization
v CPU: registers (include PC), ALU, cache, ...
v Memory: “address, content” pair
v Device: controller + device itself
v Bus: hierarchical

Figure 1.4 CPU
Hardware organization Register file
of a typical system.
CPU: Central

Processing Unit, ALU: ALU
Arithmetic/Logic Unit, PC: System bus Memory bus
Program Counter, USB:
Universal Serial Bus.

Bus interface

| | . Expansion slots for
. g other devices such
usB Graphics Disk as network adapters

controller adapter controller
F

T 1 ! i
Mouse Keyboard Display hello executable
@ stored on disk

(Source: CSAPP) P)

I
37

Hardware consideration (2/6)

s Computer organization
v When a program load

Figure 1.4

Hardware organization
of a typical system.

CPU: Central

Processing Unit, ALU:
Arithmetic/Logic Unit, PC:
Program Counter, USB:
Universal Serial Bus.

CPU

Register file

_Pc]

System bus

& process (task)

Memory bus

Expansion slots for
other devices such

usB

Graphics

as network adapters

controller adapter
Mouse Keyboard Display

L
38

Digk
controller

() hello executable

stored on disk

program (binary)

Hardware consideration (3/6)

s Computer organization
v When printf(“Hello World\n”) is invoked

Figure 1.4 CPU
Hardware organization Register file
of a typical system.

CPU: Central [—El

Processing Unit, ALU: -
Arithmetic/Logic Unit, PC: ju System bus Memolry bus

Program Counter, USB:
Universal Serial Bus.

T e i 2
.......

| Expansion slots for
b 4 . A8 other devices such
usB Graphics Disk as network adapters

controller adapter controller
¥ 3

Mouse Keyboard Display hello executable
w stored on disk

L
39

Hardware consideration (4/6)

= Memory matters
v array programming example

/* program A */
int a[1000][1000];
inti, j;

for (i=0; i<1000; i++)
for (j=0; j<1000; j++)
ali]llj] ++;

VS

/* program B */
int a[1000][1000];
inti, j;

for (i=0; i<1000; i++)
for (j=0; j<1000; j++)
a[jIfi] ++;

40

Hardware consideration (5/6)

s Memory matters

v Memory layout of the array programming example
v Note that, in limited memory, some data are swapped out and in

A[0][0]
A[0][1]
A[0][2]
A[0][3]
A[0][4]

A[0][999]
A[1][0]
A[1][1]
A[1][2]

A[1][999]
A[2][0]
A[2][1]
A[2][2]

A[2][999]
A[3][0]
A[3][1]
A[3][2]

A[999][996]
A[999][997]
A[999][998]

e 4 1

em bus Memory bus

l-k}__ .-'-'r;-':;-_l..: e Main
bridge | st memory

dl
S S l_}.Ll LI
IO bus f
Expansion sh
other devices

I Disk
| controller

as network ai

helle executabh
stored on disk

Hardware consideration (6/6)

s CPU also matters

v Loop unrolling example

» Two programs show different resource utilization in CPU (= See
Chapter 5 in CSAPP)

void combine4(vec_ptr v, data_t *dest) ‘{’Oid combine5(vec_ptr v, data_t *dest)
{
inti;
int length = vec_length(v);
data_t *data = get_vec_start(v);
data_tx =0; VS

inti;

int length = vec_length(v);
data_t *data = get_vec_start(v);
data_tx =0;

int limit = length — 2;

for (i = 0; i < length; i++) {

X = x + data[i]; for(i=0;i<limit; i +=3) {

X = x + data[i] + data[i+1] + data[i+2];

Zdest = X; by
¥ for (;i <length; i++) {
X = x + data[i];
by
*dest = x;
be

42

Abstraction (1/9)

s Key of System Program: Abstraction

v Abstraction is the process of generalization by reducing the
information content of a concept or an observable phenomenon,
typically in order to retain only information which is relevant for a
particular purpose.

v In computer science, abstraction tries to reduce and factor out details
so that the programmer can focus on a few concepts at a time. A
system can have several abstraction layers whereby different
meanings and amounts of detail are exposed to the programmer.

Abstraction (2/9)

s CPU

Compilation system

EAX [| JJ

. cMP r0,#5 if(01=5){
AND Gate ADDNE L, 1,10 ; rli=rl+r0-r;

Carnyln SUME"'I'ﬂ'ﬂ '}
A T‘l{ _.

44 7%

Abstraction (3/9)

= Multitasking

e —

Scheduler

Physical CPUs

45

Abstraction (4/9)

= Memory management

virtual memory

Fixed Limited Memory Space

46

Abstraction (5/9)

s File system

Abstraction (6/9)

s Device driver

S —

device driver

48

!
l

Abstraction (7/9)

s Data representation

S —

data manipulation

49

Abstraction (8/9)

= Security and reliability

Real World

50

Abstraction (9/9)

s Software layers (Layered architecture)

Importance of System Program

s Compact Flash Storage Card Internals

TF

4 SAMSUNG

128MB

CompactFilash

AENNNNNNNNNE Data

PCMCIA-ATA ARM)| [SRAM| [NOR INOUT |

16KB| |48KB
HOST Interface core | |

DMA Flash | _Control |
01 | Controller

INTNNNNNRNNN

NAND Flash

Memory
(32Mb-256Mb)

<= Knowledge about how HW and SW are cooperated becomes indispensable
in recent computing industry (HW/SW Co-design)

52 o

Summary

s Definition of System Program
v Supporting computing environments
v Managing hardware directly

s 3 Types of System Program

v Compilation system, operating system, runtime system
v Hardware consideration

s Concept of Abstraction
v Information hiding
v Layered architecture

= Homework 1: Read the Chapter 1, “A Tour of Computer Systems” and summarize it.
v" Requirement: 1) From the beginning to the Section 1.7 (at most 9 pages, 10
font (can be larger for section or subsection title), discuss about “process,
thread, virtual memory and file”), 2) What is the purpose of studying System
Programming? (1~2 page)
v Deadline: 6 PM Friday of the next week (17th, September)
v Caution: Do not copy!!

53 o

Quiz for 2nd-Week 2"9-Lesson

I uiz

v Describe an example of abstraction in your life and discuss the
features of abstraction in your chosen example (e.g. information
hiding, focusing on what you are interested in).

= |f it is funny, better grade :-)
v Due: until 6 PM Friday of this week (10", September)

= Bl g

W Abstraction (computer scie X+

13 C & enwikiediaorg/wiki/Abstraction (computer science) * =0 »>@: IIM THE

& ot Isgged in Talk Contributions Create sezount Log in

e PERFECT
ide Tak Fead | Ect View oy [SoacVikeeda @ AQSTP ACT’ON MAYBE AQE you

WlkiI-’EDIA Abstraction (computer science) OF A DUCK! SLIGHTLY TOO

The Free Encyclopedia

From Wikipedia, the fiee encyclopedia

(Red rected from Adstraction (sofware ergireating)) ABS Tp AC
J '

Maln page
Contents This article needs additional citations for verification. Please help improve this article by
Current events @ adding citations to reliable sources, Unsourced material may be challenged and removed.
Bandom srice Sind sources: " Astiaction” comautr scence = e « nevispapers - books « scholar + JSTOR. lure 2077)
About Wikipedia

i {L2ar bow and when to remove this template message)
Centact us =
Danate

In software engineering and computer science, abstraction is: " -
2 z The essence of abstractions is

Contribute o the process of removing physical, spatial, or temporal detzils?! or attributes in the study of | presenving information that is

Help bjets or systEms to faeus attention 6 detals of graiter tpbrtancel it Silar in relevant Ir gven context ard
; ; forgeitng information that is

Commurity portal rature tc the process of generalization; forgettng

Recent changes irrelavant in that context.

« the creation of abstract concept-obects by mirtoring common features o attr butes of

Uplocd fle ! ! e
various non-abstract objects or systems of study™! - the result of the process of s

Tools abstraction.

What links here Abstraction, in general, is a fundamental cenespt in computer scierce ard software development.*] The process cf abstraction can

Related changes
Spedal pages
Permanen: link

also be referred to as modeling and is closely related to the concepts of thearyand design!® Macels can also be considered
types of abstractions per their generalizaticn of aspects of reality.

Fage irforration Abstraction in computer science is closaly related to abstraction in mathematics due to their common focus on building
5\)‘:;“‘: ﬁagg abstractions as objects,? but is also related to other notions of abstraction used in other fields such as art.”!
kidata trem
Abstractions may a'so refer to real-werd objects and systems, rules of computational systems or rules of pragramming languages
Prini/export that carry or utilize features of abstract'cn itself, such as:

DNawnlas as POF
https'”/“/’gr:zvi‘:;:edid org/wiki/Main_Page age of data types tc perform data abstraction to separate usage from working representations of data structures within

(Source: https://thevaluable.dev/abstraction-type-software-example/) S - Seroo)

54 p

Appendix

s RISC vs. CISC

v assembly language example

= a=b+c;

load b, eax
add C, eax
store eax, a
VS
add b, c a

v Instruction execution

CruU
SBystern
== [naam | i
[e | [mamswr |
[0 Ax |
R =
L/ Maodule
W
. e -
Bullers e =
MEAR =
MEBE R =
B AR =
L BR —

b
»
e =
»
et e tEeT e
Trask ruciioa »
s ruactior

Program oountenr

Instruction register

Nlcnory adddress registes
Aenrory buffer remister
Inpuifoutpul ackd ress register
Enputifoutput bufTer regist e

Figmre 1.1 Computer Components: Top-Tevel Wieww

(Source: W. Stalling, “Operating Systems: Internals and Design Principles”)

55

