
System Programming

Lecture Note 7.
IA: History and Features

November 7, 2021

Jongmoo Choi
Dept. of Software

Dankook University
http://embedded.dankook.ac.kr/~choijm

(Copyright © 2020 by Jongmoo Choi, All Rights Reserved. Distribution requires permission)

Objectives

Discuss Issues on ISA (Instruction Set Architecture)
ü Opcode and operand addressing modes

Apprehend how ISA affects system program
ü Context switch, memory alignment, stack overflow (buffer overflow)

Describe the history of IA (Intel Architecture)
Grasp the key technologies in recent IA
ü Pipeline and Moore’s law

Refer to Chapter 3, 4 in the CSAPP and Intel SW Developer
Manual

2

Issues on ISA (1/2)

Consideration on ISA (Instruction Set Architecture)

ü opcode issues
§ how many? (add vs. inc è RISC vs. CISC)
§ multi functions? (SISD vs. SIMD vs. MIMD …)

ü operand issues
§ fixed vs. variable operands
§ fixed: how many?
§ operand addressing modes

ü performance issues
§ pipeline
§ superscalar
§ multicore

3

opcode operand 1
f bits n bits

operand 2
n bits

operand 3
n bits

opcode operand 1
f bits n bits n bits

opcode operand 1
f bits n bits

operand 2

asm_sum: addl $1, %ecx
movl -4(%ebx, %ebp, 4), %eax
call func1
leave

4

Issues on ISA (2/2)

Features of IA (Intel Architecture)
ü Basically CISC (Complex Instruction Set Computing)

§ Variable length instruction
§ Variable number of operands (0~3)
§ Diverse operand addressing modes
§ Stack based function call
§ Supporting SIMD (Single Instruction Multiple Data)

ü Try to take advantage of RISC (Reduced Instruction Set Computing)
§ Micro-operations (for instance, an instruction of “add %eax, a” is divided

into three u-ops, and each u-op is executed in a pipeline manner)
§ Load-store architecture
§ Independent multi-units
§ Out-of-order execution
§ Register based function call on x64
§ Register renaming
§ …

RISC and CISC summary

5(Source: CSAPP Chapter 4)

6

Operand addressing modes (1/5)

Addressing modes
ü Immediate addressing

ü Register addressing
ü Register Indirect addressing

ü Direct (Absolute) addressing
ü Indirect addressing

ü Base plus Offset addressing
ü Base plus Index addressing
ü Base plus Scaled Index addressing
ü Base plus Scaled Index plus Offset addressing
ü Stack addressing

7

Operand addressing modes (2/5)
Subtle differences in operand

When we add $ in front of a?

When we use 12, instead of $12?

When we use (%eax), instead of %eax?

8

Operand addressing modes (3/5)

Operand Addressing in IA
ü immediate operand

ü register operand

ü Memory operand
§ direct addressing

§ register indirect addressing

§ Base plus offset addressing

§ Base plus Scaled index plus offset addressing

addl $0x12, %eaxaddl $0x12, %eax

addl %esp, %ebpaddl %esp, %ebp

addl 0x8049384, %eaxaddl 0x8049384, %eax

addl (%ebp), %eaxaddl (%ebp), %eax

addl 4(%ebp, %eax, 4), %ebxaddl 4(%ebp, %eax, 4), %ebx

displacement(base, index, scale)

addl 4(%ebp), %eaxaddl 4(%ebp), %eax

9

Operand addressing modes (4/5)

Example
ü Base plus Scaled index plus offset

if 4(%ebx, %ecx, 4) ?

10

Operand addressing modes (5/5)

Summary

(Source: CSAPP Chapter 3)

Impact of ISA on system program: Multitasking (1/5)

Time sharing system
ü Tasks run interchangeable
ü Need to remember where to start è Context

§ Context: registers, address space, opened files, IPCs, …
ü Context switch

§ When: timeout(time quantum expired), sleep, blocking I/O, …
§ How

• Context save: CPU registers è task structure (memory)
• Context restore: task structure (memory) è CPU registers

time

A

B

11

12

Impact of ISA on system program: Multitasking (2/5)

Virtual CPU: running A

text

stack

data

Address space
for Task A

heap

movl $2, %eax
pushl %eax
addl %eax, %ebx
…

2

EIP

ESP

EAX

...

registers

2

F Time quantum is expired, system program (scheduler) selects a Task B to run next.

13

Impact of ISA on system program: Multitasking (3/5)

Virtual CPU: switch to B

text

stack

data

Address space
for Task A

heap

movl $2, %eax
pushl %eax
addl %eax, %ebx
…

2

text

stack

data

Address space
for Task B

heap

movl $10, %eax
call func1
…

EIP

ESP

EAX

...

registers

210

F Time quantum is expired, again. Task A is scheduled. Then where to start?
F Context Switch è save/restore context (architectural state or thread)

F Time quantum is expired, system program (scheduler) selects a Task B to run next.

Impact of ISA on system program: Multitasking (4/5)

Virtual CPU: how to switch back to A

text

stack

data

Address space
for Task A

heap

movl $2, %eax
pushl %eax
addl %eax, %ebx
…

2

text

stack

data

Address space
for Task B

heap

movl $10, %eax
call func1
…

EIP
ESP
EAX

...

registers

F IA’s Hyper Threading
supports context switch at
hardware level.

EIP

ESP

EAX

...

virtual CPU in
task structure B
(thread)

EIP

ESP

EAX

...

virtual CPU in
task structure A
(thread)

14

Impact of ISA on system program: Multitasking (5/5)

Time sharing system
ü Tasks run interchangeable
ü Need to remember where to start è Context

§ Context: registers, address space, opened files, IPCs, …
ü Context switch

§ When: timeout(time quantum expired), sleep, blocking I/O, …
§ How

• Context save: CPU registers è task structure (memory)
• Context restore: task structure (memory) è CPU registers

time

A

B

Context save

Context restore Context save

Context restore Context save

Context restore Context save

Context restore …

…
15

Quiz for 11th-Week 1st-Lesson

Quiz
ü 1. Explain the differences between “movl $array, %ebx” and “movl

array, %ebx” in operand addressing modes.
ü 2. Assume that a student reads three books (called A, B, C) in a

library. Also assume that he/she reads a book for 10 minutes and
turns to a next book. Explain the context save and context restore in
this scenario. What are the CPU registers and task structure in this
scenario?

ü Due: until 6 PM Friday of this week (19th, November)

16

(Source: www.analyticsvidhya.com/blog/2019/01/27-amazing-data-science-books-every-data-scientist-should-read/)

A

B

C

17

Impact of ISA on system program: Memory Usage (1/5)

Little Endian vs. Big Endian

18

Impact of ISA on system program: Memory Usage (2/5)
Little Endian vs. Big Endian

(Source: CSAPP)

19

Impact of ISA on system program: Memory Usage (3/5)

Where can we see the little endian?
ü readelf command

20

Impact of ISA on system program: Memory Usage (4/5)
Memory Alignment in data structure
ü To reduce memory fetch numbers (and atomicity)
ü To consider cache line boundary (and false sharing)

F Depend on compiler and CPU
F “__attribute__ ((packed)) ”

21

Impact of ISA on system program: Memory Usage (5/5)
Memory Alignment in stack
ü Need 16 bytes (8 for local variables and 8 for arguments) è

But allocate 24 bytes for 16 bytes alignment in a frame
(recommended by IA)

(Source: CSAPP)
21

Revisit the stack in LN 6

Another way for 16 bytes alignment in gcc

22
22

2’s complement

Impact of ISA on system program: Buffer Overflow (1/3)

Buffer overflow
ü Due to the no boundary check
ü How to thwart buffer overflow

§ Stack randomization
• One step further: ASLR (Address Space Layout Randomization)

è even code, data and heap
§ Stack guard (e.g. Canary)

23

Stack randomization

24

Impact of ISA on system program: Buffer Overflow (2/3)

Stack protector
ü Typical example: canary
ü Included as default in modern gcc

25

Impact of ISA on system program: Buffer Overflow (3/3)

26

Intel CPU History (1/9)

8080 (1974)
ü 8bit register, 8bit bus, 64KB memory support

8086 (1978)
ü 16bit register, 16bit data bus, 20bit address bus (8088: 8bit data bus for

backward compatibility, others are same as 8086), 1st generation of x86 ISA
ü Segmentation (real addressing mode, 1MB memory support)

80286 (1982)
ü 16bit, 24bit address bus
ü Segmentation (use segment descriptors, 16MB memory support)
ü 4 privilege level

80386 (1985)
ü 32bit register and bus (80386 SX: 16bit bus for backward compatibility)
ü First 32bit addressing (4GB memory support)
ü Paging with a fixed 4-KBytes page size

27

Intel CPU History (2/9)
80486 (1989)
ü Pipelining support (3 stages of execution, introduce u-op)
ü Use L1 cache (keep recently used instruction, 8KB)
ü An integrated x87 FPU (no FPU in 486SX)
ü power saving support, system management mode for notebook (486SL)

Pentium (1993, 5th generation)
ü 5-stage pipeline, Superscalar support (two pipelines (u and v), which allows

to execute at most two u-ops at a cycle in parallel)
ü L1 cache is divided into D-Cache, I-Cache, Use L2 cache, write back

protocol (MESI protocol)
ü Introduce Branch Prediction
ü APIC for multiple processor

ü Pentium with MMX Technology
§ Equip Multimedia Accelerator.
§ SIMD(Single Instruction Multiple Data): High performance for Matrix processing

(one of the big changes in x86 ISA, CISC flavor)

F Why not the 80586?

28

Intel CPU History (3/9)
P6 family (1995~1999, 6th generation)
ü P6 Microarchitecture: Dynamic execution

• Out-of-order execution
• Branch prediction
• Speculative execution: decouple execution and commitment (retirement unit)
• Data flow analysis: detect independent instructions on real time
• Register renaming

ü Pentium Pro
§ Three instructions per clock cycle (3-way superscalar), 256KB L2 cache
§ Even though its name is similar to Pentium, its internal is quite novel (eg. employ

diverse RICS features such as first out-of-order execution)
ü Pentium II

§ MMX enhancement, 16KB L1 cache, 1MB L2 cache
§ Multiple low power state (Autohalt, Stop-grant, sleep, deep sleep)
§ Pentium II Xeon: Premium Pentium II (for server, large cache and scalability)
§ Pentium II Cerelon: For lower system cost (for cost-optimization, no L2 or small)

ü Pentium III
§ SSE (Streaming SIMD Extension): 128bit register(XMM), FPU support ,

Multimedia specialized instruction (around 70), Coopermine, Tualatin, …
§ Pentium III Xeon: Premium Pentium III

Quiz for 11th-Week 2nd-Lesson

Quiz
ü 1. Explain the key techniques of the dynamic execution in the Intel

P6 microarchitecture (5 techniques)
ü 2. What is the “exit” and how it can stop servers?
ü Due: until 6 PM Friday of this week (19th, November)

29

(source: https://www.geeksforgeeks.org/
microarchitecture-and-instruction-set-architecture/) (source: https://chosun.com/)

30

Intel CPU History (4/9)
Pentium 4 Processor Family (2000~2006, also release Itanium)
ü NetBurst microarchitecture

§ Deep pipelining (Hyper Pipelining: 20~31 stages u-op, expected up to 10GHz)
§ Wider design: Rapid Execution (ALU 2X), System Bus (4X)
§ Advanced Dynamic Execution

• Deep, out-of-order execution engine, Enhanced branch prediction
§ New cache system (Advanced Trace Cache for decoded instructions)

ü Hyper-Threading: support Multithread at the CPU level (AS)
ü Pentium 4 with SSE2, SSE3
ü Pentium D (Smithfield, beginning of the dual core era)
ü Intel 64 (IA64, x86-64)
ü Virtualization technology

ü Market Name
§ Pentium 4

• Northwood, Prescott, Cedermill, Smithfield, Willamette, …
§ Pentium M: low power, high performance mobile CPU
§ Intel Xeon Processor: Premium Pentium 4

• 64-bit Xeon MP: 3.3GHz, 16KB L1, 1MB L2, 8MB L3
§ Intel Pentium Processor Extreme Edition (Gallatin)

• For High performance PC

31

Intel CPU History (5/9)
Intel Core Processor Family (2006 ~)
ü Intel Core microarchitecture

§ NetBurst problem: high power consumption, pipeline inefficiency
§ Reengineering based on P6 Microarchitecture (14 stage of pipeline)
§ Increased L2 cache (6MB), 4 way superscalar, combine u-ops
§ Native Dualcore: not just packaging two cores, but integrating as the design

stage (eg. Advanced Smart Cache (L2 sharing), Enhanced prefetcher)
ü Marketing name: use Core, not Pentium

§ Core Solo/Duo (32 bit)
• Yonah (laptop), actually based on P6 microarchitecture

§ Core 2 Solo/Duo/Quad (64 bit)
• Merom, Penryn (laptop), Conroe, Kentsfield, Yorkfield (desktop), Woodcrest,

Clovertown(Server)
• Develop rapidly to multiple cores

(source: http://motoc.tistory.com/)

32

Intel CPU History (6/9)
Intel Core i3/i5/i7 Family (2009 ~)
ü Nehalem microarchitecture (and it’s tick version Westmere)

§ Quickpath interconnect(for competing AMD’s hyper-transport, supporting
NUMA), IMC (Integrated Memory Controller), SMT, 45nm

§ Turbo mode, 256KB L2 cache/core, 12MB L3 cache, Intel Core 1st generation
ü Sandy Bridge, Haswell, Sky lake, Sunny Cove microarchitecture

§ Successor of Nehalem, <= 32 nm, Integrated GPU, AVX (Advanced Vector
extensions, 256 bit SSE), HW-supported video transcoding/encryption,

§ Tick-Tock strategy
ü Marketing name: Core i3, i5, i7 (From mid-range (i3) to high-end (i7))

§ Lynnfield, Sandy bridge(Laptop), Gulftown, Sandy bridge-E(P) (Server),
Arrandale, Sandy bridge-M (Mobile)

Intel CPU History (7/9)

Intel tick-tock model
ü Tick: innovations in manufacturing process technology
ü Tock: innovations in processor microarchitecture

(Source: http://www.intel.com/content/www/us/en/
silicon-innovations/intel-tick-tock-model-general.html)

(Intel Logo for Sandy Bridge, Haswell, and Sky lake. Source: http://namu.wiki)
33

Intel CPU History (8/9)
Intel CPU microarchitecture
ü From https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures
ü Pre-P5: 1) 8086: first x86 processor, 2) 286: protected mode, 3) 386: 32-

bit CPU, paging, 4) 486: FPU, pipeline, L1 cache
ü P5: Advanced pipeline, Superscalar, MMX
ü P6 (Pentium Pro, II, III): O3, SSE (Quite novel)
ü Netburst (Pentium 4, Xeon): Deep pipeline

ü Core (Core, Xeon): Mar. 2006, reengineered P6-based
microarchitecture, 65nm, Multicore, (Tock è Penryn: 45nm)

ü Nehalem (i3, i5, i7): 2008, 45nm, Integrated Memory Controller, QPI,
(Tick è Westmere: 32nm)

ü Sandy Bridge: 2011, 32nm, AVX, HW-support for video encoding and
decoding, Encryption instruction set.(Tick è Ivy Bridge: 22nm)

ü Haswell: 2013, 22nm, Integrated GPU, advanced power-saving (Tick è
Broadwell: 14nm)

ü Skylake: 2015, 14nm, DDR4 (64GB), PCI-e 3.0 (20 lane)
(Optimizationè kaby lake, Tick è Cannon lake, 2018)

ü Sunny Cove (Ice lake): 2019, 10nm (Optimization è Willow Cove (Tiger
Lake), HW-accelerator such as SHA hash, security and AI features

34

Intel CPU History (9/9)
Intel CPU microarchitecture: summary

(source: en.wikipedia.org/wiki/
List_of_Intel_CPU_microarchitectures)

36

Technologies of Intel CPU (1/12)

What processor do?

Instruction type Dynamic usage

Data movement 43%
Control flow 23%
Arithmetic operations 15%
Comparisons 13%
Logic operations 5%
Other 1%

ü Data movement needs to be optimized
è CPU cache, write buffer

ü Some components are idle while executing instruction
è Pipelining
è Superscalar

37

Technologies of Intel CPU (2/12)

Pipeline
ü Execution of an instruction is divided into multiple stages
ü Overlapping execution of multiple instructions

Dec Dfet Exe ResIfet
Dec Dfet Exe ResIfet

Dec Dfet Exe ResIfet

è latency vs. throughput

Dec Dfet Exe ResIfet
Dec Dfet Exe ResIfet

Dec Dfet Exe ResIfet

Abbreviation
•Ifet: Instruction fetch
•Dec: Decode
•Dfet: Data fetch
•Exe: Execution
•Res: Results write

38

Technologies of Intel CPU (3/12)

For the efficiency of Pipelining (no free lunch)

Dec Dfet Exe ResIfet

Dec Dfet Exe ResIfet

ü All instructions should have similar execution time (simple format)
§ RISC (addl a, b vs. movl a, %eax; addl b, %eax; movl %eax, b)

ü CPU components are independent each other è I/D cache
ü No resource conflict (sharing at the same time) è dual component
ü Overcome pipeline hazard (data, control)

39

Technologies of Intel CPU (3/12)

For the efficiency of Pipelining (no free lunch)

Dec Dfet Exe ResIfet

Dec Dfet Exe ResIfet

Dec Dfet Exe ResIfet
Dec Dfet Exe ResIfet

Dec Dfet Exe ResIfet
Dec Dfet Exe ResIfet

Dec Dfet Exe ResIfet

ü All instructions should have similar execution time (simple format)
§ RISC (addl a, b vs. movl a, %eax; addl b, %eax; movl %eax, b)

ü CPU components are independent each other è I/D cache
ü No resource conflict (sharing at the same time) è dual component
ü Overcome pipeline hazard (data, control)

40

Technologies of Intel CPU (4/12)

Techniques for overcome pipeline hazard
ü Compiler optimization

§ Instruction reordering
§ Loop unrolling

ü Branch prediction
§ Static prediction
§ Dynamic prediction

ü Out of order execution
§ Dynamic reordering with data flow analysis

ü Speculative execution and retirement
ü Register renaming

41

Technologies of Intel CPU (5/12)

P6 microarchitecture revisit
ü Dynamic execution

§ Out-of-order execution
§ Branch prediction
§ Speculative execution: decouple execution and commitment

(retirement unit)
§ Data flow analysis: detect independent instructions on real time
§ Register renaming

ü Pipelined (12 stage) architecture, 3-way superscalar
ü L1 cache and L2 cache

Quiz for 12th-Week 1st-Lesson

Quiz
ü 1. Discuss what pipeline hazard can be occurred in the left below

figure (from LN6) and how to overcome that hazard.
ü 2. What are the Spectre vulnerabilities (or Meltdown) ? Explain it

using the Intel technologies learned in this LN.
ü Due: until 6 PM Friday of this week (26th, November)

42

(source: https://jmoon.co.kr/173)

43

Technologies of Intel CPU (6/12)

Moore’s law

(Source: https://en.wikipedia.org/wiki/Moore%27s_law)

44

Technologies of Intel CPU (7/12)

Trend
ü Increasing available transistors: multi components, multi channels
ü Superscalar
ü Multimedia support: SIMD

§ MMX technology
§ SSE
§ SSE2/3, AVX

ü Hyper threading
ü 64-bit Supporting

§ IA64 (EPIC)
§ Intel 64

ü Multicore
ü Virtualization

(From http://en.wikipedia.org/wiki/File:Intel_Core2_arch.svg)

45

Technologies of Intel CPU (8/12)
SIMD instructions
ü A group of instructions can be performed in parallel
ü Using MMX (64), XMM(128), YMM(256) registers

ü MMX
§ integer

ü SSE (Pentium 3)
§ Streaming SIMD Extension
§ Single precision floating point

ü SSE2 (Pentium 4)
§ Double precision floating point

ü SSE3 (Pentium 4)
§ HT support
§ 13 new SIMD instructions

ü AVX (Sandy Bridge)
§ Advanced Vector Extension
§ From Sandy Bridge, 256 bit (YMM)

46

Technologies of Intel CPU (9/12)
Hyper threading Technology
ü Support multi-threading at CPU level
ü 2 or more separated code streams using shared execution

resources

47

Technologies of Intel CPU (10/12)
Multi core Technology
ü Intel Pentium D: dual core based on two Pentium 4 (without HT)
ü Intel Core Duo, Core 2 Duo: dual core with shared bus interface

(dual core performance with low cost)
ü Intel Core 2 Quad Processor: Duplicated Core Duo, Core 2 Duo

§ Extreme edition: multi-core with multi architectural states (with HT)
ü Intel Core i7: Quick Path Interconnect, L3, IMC,

48

Technologies of Intel CPU (11/12)
Intel 64
ü Support 64bit address extension: EM64T (Extended Memory 64

Technology), x86-64, IA-32e

ü new operation modes
ü new/enhanced register sets
ü new/enhanced instruction sets
ü 64bit address translation

IA-32e ModeIA-32e Mode Legacy IA-32 ModeLegacy IA-32 Mode

Compatibility
Mode
Compatibility
Mode

64-bit
Mode
64-bit
Mode

System Management Mode (SMM)

49

Technologies of Intel CPU (12/12)
VT (Virtualization Technology)
ü VMX (Virtual Machine Extension)

§ Direct execution
§ New privilege level

Virtual machine

APP

Guest OS

APP

Virtual machine

APP

Guest OS

APP

VMM

CPU information in Linux

lscpu

50

x86-64: extending IA-32 to 64-bit CPU (1/4)

From IA-32 to Intel 64 (a.k.a. x86 and x86-64, respectively)
ü Intel traditional ISA: called as IA-32

§ Start at 1985 (80386)
§ Evolution: add new instructions (e.g. conditional move), also keep

backward compatibility
ü New Intel ISA for 64-bit CPU: called as IA-64

§ Totally new ISAs called EPIC (Explicitly Parallel Instruction Computing)
è MIMD

§ Market name: Itanium (2001)
ü AMD ISA for 64-bit CPU

§ Compatible with IA-32 è win at the market
§ Intel follows: Intel 64 (This is why SW developer manual is named as

Intel 64 and IA-32 …)
§ AMD renames AMD 64 (but x86-64 “persists as a favored name”)

51
(Source: https://www.extremetech.com/extreme/167168-the-chip-that-changed-the-world
-amds-64-bit-fx-51-ten-years-later/2)

x86-64: extending IA-32 to 64-bit CPU (2/4)

Features of x86-64
ü New data type

§ Pointer becomes 8 bytes
ü Make use of RISC techniques

§ 8 GPR è 16 GPR
§ Register based arguments passing

ü 264 address space (248 in practical)
ü Backward compatible

§ Can run existing SW in compatible mode

52

x86-64: extending IA-32 to 64-bit CPU (3/4)

Assembly code example1
ü Syntax: 1) rax instead of eax, 2) movq instead of movl, 3) argument

passing using registers, 4) No stack frame if possible, 5) make use of
PIC (Position Independent Code), …
§ Register passing è7 memory references vs. 3 memory references

53

x86-64: extending IA-32 to 64-bit CPU (4/4)

Assembly code example2

54

55

Summary

Discuss the issues of ISA
Grasp several operand addressing modes
Understand how context switch works, memory alignment, …
Apprehend the technologies of IA
ü Pipelining
ü Dynamic execution
ü Cache (L1, L2, L3)
ü Superscalar
ü MMX
ü Hyper-threading
ü Multi core
ü Intel 64
ü Virtualization Technology

Quiz for 12th-Week 2nd-Lesson

Quiz
ü 1. Discuss the differences between x86 (32-bit) and x86-64 (64-bit) in

an assembly code (at least 3)
ü 2. Explain information that we can observe using the “lscpu”

command. Among them, what is the NUMA?
ü Due: until 6 PM Friday of this week (26th, November)

56

(source: https://www.slideshare.net/tommylee98229/shak-larryjederperfandtuningsummit14part1final)

