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1. Limitation of existing frameworks

- Optimize the tensor programs applying ‘Fully Equivalent Transformation’

- Tensor Program: direct acyclic computation graphs describing the operations applied to a set of tensors

- Fully Equivalent Transformation: the new subprogram is mathematically equivalent to the original 

subprogram for arbitrary inputs

è Miss opportunities to optimize tensor programs 

using transformation method

op1 op2
op3

originalI can do better
than you!

The same output but faster!
Then, go and finish my assignment.
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2. Partially Equivalent Transformation

- Transformation that do not preserve full equivalence on all elements of the output tensors.

- Example:

Changing the shape or linearization ordering of input tensors

Replacing less efficient operators with more optimized operators with similar mathematical behavior

Transforming the graph structure of a program

- Improve computational efficiency and optimize the performance



Machine Learning

& Pattern Analysis laboratory

5

Introduction

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

3. Challenges

- Directly applying partially equivalent transformation makes different output tensors from output tensors of 

original input program(applying only fully equivalent transformation).

- Different output tensors may adversely affect performance.

- So applying correction kernels is necessary. But it is difficult to examine the equivalence and generate correction 

kernels. 
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4. Contribution

- First attempt in tensor program optimization to exploit partially equivalent transformation with automated corrections.

- Theoretical foundations that simplify the equivalence examination and correction kernel generation.

- Efficient generation and optimization approaches to explore the large design space automatically with both fully and 

partially equivalent transformations.

- Implementation of new framework PET. (2.5x speedup)

5. PET architecture component

- Mutation Generator: generate mutants

- Mutation Corrector: examine the equivalence and automatically generates correction kernel

- Program Optimizer: identify mutant candidates with high performance and post-optimize them
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Design Overview
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1. MLTP (Multi-linear Tensor Program)

- A program p, in which all operators op are multi-linear.

- DNN subprogram

= Multi-linear tensor operator + non-linear operator

2. PET Overview

- Split input program to be optimized based on a non-linear 
operator.

- Mutation generator discovers partially equivalent transformation 
by generating mutants for MLTPs in the subprogram.

- Mutation corrector examines the equivalence between a mutant 
and its original MLTP, and generates correction kernels.

- Corrected mutants are sent to program optimizer.

- Program optimizer combines f.e.t with p.e.t and post-optimize it.
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Depth-first search algorithm & check the shape

- PET iteratively adds a new operator to current 

program p by enumerating the type of operator from 

O and the input tensors to the operator.

- Enumerates all potential MLTPs up to depth.

For each mutant p, PET checks whether p and p_0

have the same number and shapes of inputs/outputs.

p is a valid mutant if it passes this test.
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1. Why needs?

- Mutations resulted from partially equivalent transformations potentially leads to accuracy loss.

- Therefore, PET preserve the statistical behavior and guarantees the same model accuracy.

2. Specifically what does it do?

- Input: an MLTP p_0, mutant p

- Automatically generates correction kernels and applies them to the output tensors to maintain 

equivalence.

3. Challenges

- The output tensors may be very large. à infeasible to verify every single elements of the outputs.

- Numerically enumerating all possible values for many input variables is impractical.
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4. Proposal

- Only needs to verify a few representative output positions with a small number of randomly generated 

input values.

5. Theoretical Foundations

- Assumption: input MLTP p_0 and its mutant p each has one output.
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5-1. Example (3x3 convolution, zero padding)

(D: the number of channels, H: height, W: width, I_1: input image, I_2: kernel)

- Group the output positions with identical summation interval into a box

è A box is a region of an output tensor whose elements all have the same summation intervals (9 boxes)

- All output positions in the same box have an identical summation interval

and share similar mathematical properties.
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- We want to check the equivalence of two output tensors

à choose one random position for each box (v0) à compare p_0(v0~v(m+1)) == p(v0~v(m+1))

- If all position in the If the values in the m+1 positions are all the same, the values in the overlapping box ensure equivalence.

If 4 dimensional tensor

(batch, channel, width, height)

If,

One random position v0 = (1, 1, 3, 4)

v1 = (2, 1, 3, 4) v2= (1, 2, 3, 4)

v3 = (1, 1, 4, 4) v4 = (1, 1, 3, 5)

So check 5 position v0~v4 in 4 dim tensor

v0 v0
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- n/p =

(in t random integer)

- If program p and p_0 are not equivalent,

the probability that the output values of the two programs are the same when random inputs are inserted is very low.

- Examine the equivalence for each pair of overlapped boxes from the two MLTPs, using a small number of random 

tests
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6. Mutation Correction Algorithm

(1) Box Propagation

- Infer the split points of its output tensors based on the

split points of tis input tensors and the operator type

and hyper-parameter.

- a set of split points for each dimension of a tensor

à identify the boundaries of its boxes.

(2) Random testing for each box pair

- If two boxes do not have any overlapped region, the can be skipped. (not equivalent)

- Examines the equivalence of the two programs on m+1 positions identified by Theroem1

(4 dimensional output tensor à v0 ~ v5)

- For each of these m+1 positions, PET runs a set of random tests by assigning input tensors with values uniformly 

sampled from a finite field F.

- caching optimization: all random inputs for the tests are the same.
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6. Mutation Correction Algorithm

(3) Correction kernel generation

- For each box failing the random tests, PET generates correction kernels to maintain original statistical behavior

(mathematical equivalence)

- Correction kernel performs the same set of operations as the original MLTP but only on those boxes where the 

two input programs are not equivalent.

- Kernel generation leverage existing libraries and techniques.

- To reduce the correction overhead, PET opportunistically fuses the correction kernels with existing tensor 

operators.

correction
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7. Fusing Correction Kernels

- Launching the correction kernels à substantial overhead

à eliminate the advantage of partially equivalent transformation (performance gain)

- Opportunistically fuses correction kernels with other tensor operators.

fuse

concat
split
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1. Program splitting

- Splits an input program into multiple disjoint subprograms

with smaller sizes. (larger program à high complexity)

- Split point: non-linear operators (activation layers)

2. Subprogram optimization for best mutant

- Call mutation generator à keeping the top-K candidates

- Larger K à more memory and higher computation cost

- At each step, each of the obtained mutants replace its

corresponding subprogram in each of the current candidates(p)

to generate a new candidate(p_new)

- Apply a series of post-optimization
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3. Post Optimizations

- The optimized mutant for all subprograms need to be stitched together.

- Connecting their input and output tensors

à fuse R/T operators across subprograms

à fuse the non-linear operators

- [fuse R/T operators] Figure 7(b): Group reshape/transpose operators

between subprograms by reordering the R/T operators with non-linear

activations.

- [fuse non-linear operators] Figure 7(c): Conv+ReLU = Conv-ReLU

[3 post optimization]

- Inverse elimination: eliminate any pairs of R/T operators(called inverse group) that can be cancel out each other.

- Operator fusion:

Fuses remaining R/T operators into a single operator to reduce the kernel launch cost.

non-linear activations in a tensor program are fused with R/T or other linear operations.

- Preprocessing: preprocess any operator if all its input tensors are statically known.
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- 5 DNN Architectures: ResNet-18 (Image Classification), CSRNet (semantic segmentation), Inception-v3, BERT (language 

representation), Resnet3D-18 (video processing)

- Default mutation generation depth = 4 (Algorithm 1. DFS)

search rounds = 4 (Algorithm 2, Greedy search)

1. End-to-end inference performance

- Batch size under 1 and 16

- Larger batch

à relatively higher performance

2. Partial equivalent transformations discovered by PET

- Manually modify TASO as adding partial equivalent transformations and corresponding

correction kernels.

- Evaluate the end-to-end inference performance of TASO

compared to original TASO and PET.

- ‘TASO + PET’ transformations and corrections’ is relatively

faster than original TASO.



Machine Learning

& Pattern Analysis laboratory

20

Thank You For Listening


