
PipeDream: Generalized Pipeline 
Parallelism for DNN Training
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• DNN is widely used, but the model needs to be 
trained before it can be deployed on the device

• Model training is time and compute intensive!

• So we need to speed up model training through 
parallel computing
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perceptron model：

• A linear relationship is learned between 
output and input, and intermediate output 
results are obtained

• Next is a neuron 
activation function 
(activation functions 
such as sign, sigmoid, )
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DNN: input layer，hidden layer and output layer

• Use full connections between each layer

BACKGROUND
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DNN forward propagation:

• Use the output of the previous layer to 
calculate the output of the next layer

DNN Backward propagation:

• Iterative optimization of DNN loss 
function with gradient descent 
method to find the minimum 
value,and get W

BACKGROUND
activations

gradients
Weight parameters W

• w optimized using standard iterative optimization procedures
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• intra-batch Parallelism
Data Parallelism
model parallelism

• Inter-batch Parallelism
GPipe 

Ø Intra-batch batches mainly focuses on how to complete the training of 
multiple batches faster.and Inter-batch parallelism focuses on how to 
complete a batch of training faster

BACKGROUND
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Data Parallelism

1. The input data is divided into 
different parts and sent to different 
workers

2. These computing nodes save the 
latest copy of the model locally

3. Model synchronization between 
nodes through periodic synchronization
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• Despite many performance optimizations, communication overhead high!

ReNet-50 has a compact weight representation, which enables it to scale well for parallel data

Data Parallelism

8



1. Divide the model into different parts to 
different computing nodes, each computing 
node is responsible for computing a part of the 
model

2. After each computing node completes the 
calculation, it needs to send the intermediate 
calculation result to the node responsible for 
the subsequent layers

Model Parallelism

9



Inter-batch Parallelism:

GPipe：Split a batch of data again into some 
smaller micro-batches • In the figure, a batch is divided 

into four micro-batches, 
denoted by 1, 2, 3, and 4.

• The synchronous training 
method is also used in GPipe

6
4

• worker 4 is idle for 6 periods after the 
reverse calculation process is over
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• PipeDream is an approach to pipeline parallelism

Ø PipeDream divides the DNN model into 
different stages, each stage can contain one 
or more layers, and different computing nodes 
(mainly a GPU here) calculate different stages 
(including forward calculation and reverse 
calculation) respectively. to calculate)

PipeDream
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• PipeDream is an approach to pipeline parallelism
PipeDream

Ø Differences from GPipe
1. After getting the gradient of a certain stage 

(layer), update it immediately(asynchronous)

2. Communication and computation are parallel
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• Advantages of PipeDream

Ø PipeDream's pipeline communication is greatly 
reduced

Ø The computation and communication in 
PipeDream overlap in time,this greatly improves 
efficiency

PipeDream
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PipeDream Workflow

1. Using the structure of the DNN model as input, 
get the basic parameter information of the 
model,(For example, the size of the parameters 
of each layer, the calculation time, the size of 
the activation value, etc.)

2. According to the result calculated in the first 
step, combined with other information,Calculate 
an optimal model segmentation method (the 
model is divided into multiple stages)

3. Use PipeDream runtime (runtime) combined 
with input data to train the DNN model after 
segmentation optimization

PipeDream
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PipeDream: 

• Problems to be solved in PipeDream

1 How  should the operators in a DNN model be 
patitioned into pipeline stages?

2 How should forward and backward passes of 
differnt inputs be scheduled?

3 How should weight and activation versions be 
managed? 
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PipeDream-Work Scheduling
 
• The paper proposes a very simple and practical scheduling scheme - 1F1B(one 

forward one backward)

1F1B：the pipeline in the steady 
state. A backpropagation calculation 
is performed every time a forward 
calculation is performed

1. Backpropagation computations with 
lower numbers are inserted before 
forward computations in subsequent 
micro-batches

Ø The difference from Gpipe pipeline is:
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PipeDream-Work Scheduling
 
• The paper proposes a very simple and practical scheduling scheme - 1F1B(one 

forward one backward)

2  After a batch calculation is completed, 
it no longer waits for other micro-batch 
calculations to complete and 
synchronizes all calculation results, but 
directly updates the model after 
backpropagation calculates a gradient 
(asynchronous)

Ø The difference from Gpipe pipeline is:
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PipeDream-Work Scheduling
 
• The paper proposes a very simple and practical scheduling scheme - 1F1B(one 

forward one backward)

• It can be clearly seen that the 
utilization of computing resources is 
improved

• In the steady state of the pipeline, the 
theoretical computing resource 
utilization rate reaches 100%
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PipeDream- Effective Learning
 

Problem: PipeDream uses asynchronous calculation. If no processing is done, it will 
cause some batches to use different model parameters during forward and backward 
propagation
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• Weight stashing

Ø Propose to cache the previous 
version of the model before each 
update  

Ø Versioning these cached models

PipeDream- Effective Learning
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Evaluation Setup
 

• Integrated PipeDream with PyTorch in ~3000 lines of Python code

• Integrated with PyTorch’s communication library
• NCCL backend for Data Parallelism baselines
• Gloo backend for PipeDream

• Experiments run on three different server types
• Cluster A: 4xV100 GPUS,PCIe intra-server,and 10Gbps inter-server 

(Azure)
• Cluster B: 8xV100 GPUs, NVLink intra-server,and 25Gbps inter-

server(AWS)
• Cluster C: 1xTian X, and 40 Gbps inter-server(private)
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Evaluation Setup
 

Table 1: Summary of results comparing PipeDream with data parallelism (DP) when training models to advertised final accuracy. A PipeDream 
config of “2-1-1” means the model is split into three stages with the first stage replicated across 2 workers,
and a “straight“ configuration is a pipeline with no replicated stages—e.g., “1-1-1-1” on 4 workers. Batch sizes used to train
these models are reported in § 5.1.
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• Each circle or triangle represents two 
epochs of training.

5.28x faster

2.46x faster

• Accuracy vs. time for 
VGG-16 using 16 GPUs.

• For many models , intermediate activations and 
gradients order of magnitude smaller than 
communication with Data Parallelism(DP)
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Conclusion

• Model and data parallelism often suffer from high communication 
overhead and low resource utilization for certain models and 
deployments

• PipeDream shows pipelining can be used to accelerate DNN training

• Pipelining , when combined with data and model parallelism in a 
principled way , achieves end-to-end speedups of up to 5.3x
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