
PipeDream: Generalized Pipeline
Parallelism for DNN Training

1

츄씬 72220689

• DNN is widely used, but the model needs to be
trained before it can be deployed on the device

• Model training is time and compute intensive!

• So we need to speed up model training through
parallel computing

2

perceptron model：

• A linear relationship is learned between
output and input, and intermediate output
results are obtained

• Next is a neuron
activation function
(activation functions
such as sign, sigmoid,)

BACKGROUND

W1
W2

W3

3

DNN: input layer，hidden layer and output layer

• Use full connections between each layer

BACKGROUND

4

DNN forward propagation:

• Use the output of the previous layer to
calculate the output of the next layer

DNN Backward propagation:

• Iterative optimization of DNN loss
function with gradient descent
method to find the minimum
value,and get W

BACKGROUND
activations

gradients
Weight parameters W

• w optimized using standard iterative optimization procedures

5

• intra-batch Parallelism
Data Parallelism
model parallelism

• Inter-batch Parallelism
GPipe

Ø Intra-batch batches mainly focuses on how to complete the training of
multiple batches faster.and Inter-batch parallelism focuses on how to
complete a batch of training faster

BACKGROUND

6

Data Parallelism

1. The input data is divided into
different parts and sent to different
workers

2. These computing nodes save the
latest copy of the model locally

3. Model synchronization between
nodes through periodic synchronization

7

• Despite many performance optimizations, communication overhead high!

ReNet-50 has a compact weight representation, which enables it to scale well for parallel data

Data Parallelism

8

1. Divide the model into different parts to
different computing nodes, each computing
node is responsible for computing a part of the
model

2. After each computing node completes the
calculation, it needs to send the intermediate
calculation result to the node responsible for
the subsequent layers

Model Parallelism

9

Inter-batch Parallelism:

GPipe：Split a batch of data again into some
smaller micro-batches • In the figure, a batch is divided

into four micro-batches,
denoted by 1, 2, 3, and 4.

• The synchronous training
method is also used in GPipe

6
4

• worker 4 is idle for 6 periods after the
reverse calculation process is over

10

• PipeDream is an approach to pipeline parallelism

Ø PipeDream divides the DNN model into
different stages, each stage can contain one
or more layers, and different computing nodes
(mainly a GPU here) calculate different stages
(including forward calculation and reverse
calculation) respectively. to calculate)

PipeDream

11

• PipeDream is an approach to pipeline parallelism
PipeDream

Ø Differences from GPipe
1. After getting the gradient of a certain stage

(layer), update it immediately(asynchronous)

2. Communication and computation are parallel

12

• Advantages of PipeDream

Ø PipeDream's pipeline communication is greatly
reduced

Ø The computation and communication in
PipeDream overlap in time,this greatly improves
efficiency

PipeDream

13

PipeDream Workflow

1. Using the structure of the DNN model as input,
get the basic parameter information of the
model,(For example, the size of the parameters
of each layer, the calculation time, the size of
the activation value, etc.)

2. According to the result calculated in the first
step, combined with other information,Calculate
an optimal model segmentation method (the
model is divided into multiple stages)

3. Use PipeDream runtime (runtime) combined
with input data to train the DNN model after
segmentation optimization

PipeDream

14

PipeDream:

• Problems to be solved in PipeDream

1 How should the operators in a DNN model be
patitioned into pipeline stages?

2 How should forward and backward passes of
differnt inputs be scheduled?

3 How should weight and activation versions be
managed?

15

PipeDream-Work Scheduling

• The paper proposes a very simple and practical scheduling scheme - 1F1B(one

forward one backward)

1F1B：the pipeline in the steady
state. A backpropagation calculation
is performed every time a forward
calculation is performed

1. Backpropagation computations with
lower numbers are inserted before
forward computations in subsequent
micro-batches

Ø The difference from Gpipe pipeline is:

16

PipeDream-Work Scheduling

• The paper proposes a very simple and practical scheduling scheme - 1F1B(one

forward one backward)

2 After a batch calculation is completed,
it no longer waits for other micro-batch
calculations to complete and
synchronizes all calculation results, but
directly updates the model after
backpropagation calculates a gradient
(asynchronous)

Ø The difference from Gpipe pipeline is:

17

PipeDream-Work Scheduling

• The paper proposes a very simple and practical scheduling scheme - 1F1B(one

forward one backward)

• It can be clearly seen that the
utilization of computing resources is
improved

• In the steady state of the pipeline, the
theoretical computing resource
utilization rate reaches 100%

18

PipeDream- Effective Learning

Problem: PipeDream uses asynchronous calculation. If no processing is done, it will
cause some batches to use different model parameters during forward and backward
propagation

19

• Weight stashing

Ø Propose to cache the previous
version of the model before each
update

Ø Versioning these cached models

PipeDream- Effective Learning

20

Store multiple<weight,activation> versions

Evaluation Setup

• Integrated PipeDream with PyTorch in ~3000 lines of Python code

• Integrated with PyTorch’s communication library
• NCCL backend for Data Parallelism baselines
• Gloo backend for PipeDream

• Experiments run on three different server types
• Cluster A: 4xV100 GPUS,PCIe intra-server,and 10Gbps inter-server

(Azure)
• Cluster B: 8xV100 GPUs, NVLink intra-server,and 25Gbps inter-

server(AWS)
• Cluster C: 1xTian X, and 40 Gbps inter-server(private)

21

Evaluation Setup

Table 1: Summary of results comparing PipeDream with data parallelism (DP) when training models to advertised final accuracy. A PipeDream
config of “2-1-1” means the model is split into three stages with the first stage replicated across 2 workers,
and a “straight“ configuration is a pipeline with no replicated stages—e.g., “1-1-1-1” on 4 workers. Batch sizes used to train
these models are reported in § 5.1.

22

• Each circle or triangle represents two
epochs of training.

5.28x faster

2.46x faster

• Accuracy vs. time for
VGG-16 using 16 GPUs.

• For many models , intermediate activations and
gradients order of magnitude smaller than
communication with Data Parallelism(DP)

23

Conclusion

• Model and data parallelism often suffer from high communication
overhead and low resource utilization for certain models and
deployments

• PipeDream shows pipelining can be used to accelerate DNN training

• Pipelining , when combined with data and model parallelism in a
principled way , achieves end-to-end speedups of up to 5.3x

24

