Refurbish Your Training Data
: Reusing Partially Augmented Samples for Faster
Deep Neural Network Training

« Submitted conference/journel name/years: Published as a conference paper at USENIX, 2021.

« Author: Gyewon Lee, Irene Lee, Hyeonmin Ha et al.

« Presented date: 2022.05.09.

Presented by: JunYeong Park
Student ID: 72220216

Content

. Introduction

Il. Data Refurbishing

[ll. Revamper

V. Evaluation

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

Introduction

1. Generalization and Augmentation

- Generalization: model's ability to adapt properly to new, previously unseen data, drawn from the same

distribution as the one used to create the model.

- Data augmentation has been used in DNN training to improve generalization of DL models in many domains.

It provides additional samples to model training = improve model generalization

People telling me Al is going
to destroy the world My neural network

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

Introduction

2. Training Pipeline and CPU Overhead

- Storage (Data store) = CPU (Data Preprocessing) = GPU (Gradient Computation)

1.Raw data is ‘Zh CPU.p(r‘oiesse: 3. Processed 4.GPU performs
streamed from o T .al faan data is passed forward and
storage to CPU PISPATEs 108 into GPU backward pass
fee_dl.ng tothe memory on input batch
- ~ training loop SN
m
5. In case of data ‘

20l distribution over UpStream ‘ UpStream

Storage multiple GPUs
P i :
gradients are Downstream Downstream

shared between

\/

<
<%

Y 7.CPU may optionally 6.Graph GPUs tim
8 process data from outputs/loss/metrics/ e
Statistics/summaries/ GPU and generate T weights are
checkpoints are statistics/summaries/ periodically passed to
passed to storage checkpoints CPU

- Data augmentation consists of a sequence of transformation layers - Computational expensive

- The GPU/TPU is getting faster, but the CPU's data processing speed cannot keep up with the gradient calculation
speed of the accelerators.

=>» GPU idle time = CPU bottleneck(overhead)

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

Introduction

3. Limitations of Existing Approaches

1) HW Accelerators

- HW Accelerators are optimized for massive parallel execution of homogenous operations.

(like gradient computation, identical and deterministic computations to each training samples)

- However, Data augmentation is stochastic operations to each sample in a random fashion.

- Data augmentation and gradient computation may not be parallelized.

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

v_l_lm:’

Introduction IMLPA

ern Analysis laboratory

3. Limitations of Existing Approaches

2) Data Echoing

- Split the pipeline into upstream and downstream based on the expensive part of the calculation
and reusing the data generated by the upstream a certain number of times in order to reclaim idle capacity.

=>» Contribution: Reduces model training time by converging the same model performance with less fresh data.

Augmentation

Read and Shuffle Apply) \ Batch ‘ Apply SGD ‘ Reuse Factor =3 Cached
decode augmentation update
[Image X]—-| i l—-[Image X1] Epoch 1

Image X1 Epoch 2
Upstream Upstream Upstream Upstream
‘ Downstream Downstream | Downstream | Downstream | Downstream Image X1 Epoch 3
time time

- (Re-augmentation overhead) If a sample is reused before augmentation, the reused sample needs to be re-augmented,

and thus the overhead from data augmentation remains the same.

- (Diversity problem, lack of unique sample) When fully augmented samples are simply reused for gradient computation,

the # of unique augmented samples significantly decreases and it degrades the model performance.

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

v_IJL"n?’

Data Refurbishing lM'—PA

attern Analysis laboratory

1. Partial Augmentation + Final Augmentation = Full Augmentation

- Partial Augmentation: the first few transformations in the full augmentation pipeline
- Final Augmentation: the rest of the augmentation pipeline

2. Two Configuration

Reused factor ‘r’: how many times to reuse each cached sample (typically smaller than 5)

Split Policy: how to split the full augmentation pipeline into the partial and final augmentations

(# of strategies = # of augmentation layers, not exceed 20 even in extreme cases)

Data Preparation D :on CPU . :on DL accelerator

N
' A

Gradient
Read [~ Decode [+ Format [~ Augment || Collate > re |en.
Computation

=i .
£

Random Random

andLAaugp"e”t andlgug:nent Padded Horizontal
y Y Crop Flip

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

Data Refurbishing o

Aﬂﬂ\,b\ﬁ laboratory

Reuse Factor =3 Cached

[Image X |—' Augmentation —-‘ Image X1] Epoch 1 { AMagein]_’ AUSmEnEation _{ geeys] Epoch 1

[Image X]—' Augmentation Image X2 Epoch 2 Image X1 Epoch 2

[Image X]—> Augmentation Image X3 Epoch 3 Image X1 Epoch 3

Standard data augmentation .
Data echoing

Partial Augmentation . Final Augmentation
: Random Random
Randé;g:nent — RandLAasg:nent — Padded —{ Horizontal
Crop Flip In data refurbishing,
partial augmented samples are cached, reused r-times
Cached Reuse Factor=3

and renewed to preserve sample diversity.

[Image X]—> Partial Aug —{ Image X’ Final Aug —'[Image X1] Epoch 1
Final Aug MFECP. ¢ Epoch 2
Final Aug —-[mage X3] Epoch 3

: Computation saved by caching

Data Refurbishing

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

v_l_lm:’

Data Refurbishing }M'—PA

& Pattern Analysis laboratory

3. Problem Formulation (Mathematically explanation of preserving sample diversity)

- Z and 2" : the sample space before and after augmentation, respectively

- Augmentation A: a finite set of functions A :={f1, f2,..., fia } for Vi fi : & - Z".

_ Pal’tial Aug A_P, Fil’la| Aug A_F OfA Satisfy {fF ofP|fP e AP,fF E AF} :A‘ Read | Decode [~ Format -TAugment-T Collate [*| Transfer

RA. RA. Random Randont
g | Horizontal

Layer 1 N Layer 2 Crop Flip

4. Assumption Yy
L & _/
Figure 2: An illustration of a RandAugment [15] augmenta-

- Discrete Uniform Distribution: For all augmentation A, the probability of choosing tion pipline in a typical data preparation pipeline. R.A. Layer
stands for a RandAugment layer.

o 1
feA isuniform Vyea P(f) = i

- Balanced Eviction: All the cached samples are reused exactly rtimes before being evicted from the cache.

- Uniqueness of Composed Augmentation: Any composition of partial and final augmentation functions always produces a uniq

ue fully augmented sample.

va,gP €Ap vfF 8FEAF Viexr

((fe # gp) or (fr # gF)) = (fro fp)(x) # (gr o gp)(x) A(z) = {fi(z), .-, fla ()}

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

v_IJL"n?’

Data Refurbishing IMLPA

| & Pattern Ana\ysws laboratory

« Uniqueness of Composed Augmentation: Any composition of partial and final augmentation functions always produces a uniq

ue fully augmented sample.

A={f1,fo....fia} forV fi: & = Z"'
va,gP €Ap va,gF €EAF Viea

((fp# gp) or (fr # gr)) = (fro fp)(x) # (grogp)(x) {frofelfe e AP,fF €A} =A

- A(x): the set of all possible augmented samples produced by an augmentation A

given an input sample. A(z) ={fi(2),..., fia ()}

. . |Ap[x |Ap| = |A] = |A(z)|] _
- Data refurbishing for k epochs with reuse tactor r to an augmentation A for an input

sample x
= sampling process such that samples are taken r times from A_F(y) for every y

sampled k/r times from A_P(x)

(r;)_ L ePOCl’I"—tD) Ylﬁa Hom Af(v Read [~ Decode ~| Format —~Augment~ Collate | Transfer
2 -
| pr ry | 1 ! ”eﬁC’AP—\ yan &b
) —|—|—> ey epoch 1 - B
50/~ [W * ! e RA. || Ra || Random || Fandom
=k e 2 Layer 1 Layer 2 Crop Flip
sumplma
fom T~ ____ fecA __/
Figure 2: An illustration of a RandAugment [15] augmenta-

B ’
l @ —Pzﬁﬂ) Fe® | efoch A tion pipline in a typical data preparation pipeline. R.A. Layer
eFacl,, 0 stands for a RandAugment layer.

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

G

Data Refurbishing IMLPA

| & Pattern Analysis laboratory

- We can save computation without significant loss of the model generalization as long as the final augmentation provides sufficient

sample diversity.

- Split policy goals:
-~ standard

1. Final augmentation has enough diversity. —— data echoing

2. Final augmentation has low computation data refurbishing

overhead.

- Example:

RandAugment layer vs. Random Crop layer E(U)

E(U*)
Partial Augmentation . Final Augmentation
Random Random
Rand@ug:nent — Randlgugrrnent > Padded — Horizontal
y ¥ Crop Flip

5 0.0 log|A|

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

Revamper

earning

Analysis laboratory

- Cache misses may fluctuate in the CPU processing time because non-cached samples require both partial and

final augmentation whereas cached sample only need final augmentation.

- Overcome: keeping the # of cache misses constant both across epochs and within each epoch.

Data Store Data Store
I 0 [1 | N 5 R T I — ——
| Original I Original | S | Original | ‘ Original ‘ Original ‘ 25ty ‘ Original ‘

[Read & Decode
™

& Formatting
Worker Process ResTRDEsds Worker Process {} (6) (s) Collafe
Mini-bat & Formatting e Miss L [[1] AuSrent [Djm..-...——
Indi Mini-batch Sczigg;i o Pertidhy Augmeme: Fully Augmented
Request Indices Request Som Samples
.— — ples
. Augment — Collate Cached
Original Fully Augmented Sai H o
Samples Samples o Hit .
Augment
Main Process © dne=, oi/‘
Satch Gradient U
— Shuftier Calculator Cache Store
0 1 N-1
Partially OEW cled Partially

| Augmented | 7T """ | Augmented |

Indices
Figure 5: The architecture of a traditional data loading system Main Process To be evlctsd .
s Gradient
(PyTorch dataloader). L Batch Evict Calculator
Shuffler Shuffler

Figure 6: The architecture of Revamper and its end-to-end
data preparation procedures.

- The cache store: added to store partially augmented samples.

- The evict shuffler: added in the main process, to select the indices to be evicted from the cache store accordin

g to the balanced eviction.

- The batch shuffler: modified to sample mini-batch indices according to the cache-aware shuffle.

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

v_l_ll%i’

Revamper lM'—P A

| & Pattern Analysis laboratory

Balanced Eviction

- Cache eviction policy to address inter-epoch computation skew

I:' Cached index D Non-Cached index
- At the start of each training epoch, the evict shuffler samples Epoch1 [2]2]2]2]2]2] Epocnt [[[T [] [|
N/r indices to be evicted. Epoch2 [A] 4 fa]afa]| Epoch2 [[1]]]
(N: the # of training samples) Epoch 3 [o]ofojofofo| Epochs [[P] |
Epoch4|2|2|2|2|2|2| Epoch4| I I rl rl
- The balanced eviction evenly distributes the computation overhead tpocn 5 (IR =5 (T T

across epochs, by evicting the same amount of partially augmented -

(a) Reference Count (b) Balanced Eviction

samples in each epoch.
Figure 7: An example distribution of cache misses with (a)
reference count algorithm and (b) the balanced eviction.

Cache Aware Shuffle

To address intra-epoch computation skew

Each mini-batch has the same ratio of cached to non-cached samples.

Makes the processing time for all mini-batches stable.

Ensure the randomness of the mini-batch indices by randomly sampling from both non-cached indices and cached indices.

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

Evaluation

G

IMLPA

| Machine Learning
& Pattern Analy

g 95.5 * 96.5 b, 94.0 93.5

) A X *

® 95.0 ¥4 96.0 93.5 93.0 *

3 ® X ®

Q X []

< 9451 s standard S 95.5 93.0 92.5

g Revamper >;

S 94.01 @ Simplified 95.0 o 92.5 92.0 €]

g X Echoing P

© 935 94.5 92.0 91.5

> 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Training Throughput (images/sec) Training Throughput (images/sec)

(a) VGG16

(b) ResNet-18

Training Throughput (images/sec)

(c) MobileNet-V1

(d) EfficientNet-BO

Training Throughput (images/sec)

Figure 10: Training throughput and top-1 validation accuracy of DNN models trained on CIFAR-10 using RandAugment.

Different points of the same setting represent measurements under different reuse factors (2 or 3) for Revamper and data echoing
and under different numbers of removed transformation layers (1 or 2) for the simplified setting.

K950 96.0 93.5 93.0

> *

3 *

e * A X *

5 94.5 X 95.5 93.0 92.5

I} X X

< Y Standard X °

S94.0{ A Revamper X 95.0 5] 92.5 92.0]

= ® Simplified X

g X Echoing PY

© 935 94.5 92.0 91.5

> 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Training Throughput (images/sec)

Training Throughput (images/sec)

Training Throughput (images/sec)
(b) ResNet-18

Training Throughput (images/sec)
(c) MobileNet-V1

(d) EfficientNet-BO

(a) VGG16

Figure 11: Training throughput and top-1 validation accuracy of DNN models trained on CIFAR-10 using AutoAugment.
Different points of the same setting represent the results under different reuse factors (2 or 3).

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

Evaluation

65001 937
6000 -
93.61
5500
93.51
5000
93.4
4500 -
93.31
4000- T T T T T T T T T T
0 1 2 a3 4 0 1 2 S 3

of Layers in the Final Augmentation
(a) Training Throughput(img/sec) (b) Validation Accuracy(%)

Figure 12: The training throughput and the top-1 validation
accuracy for different split policies (MobileNet-V1 on CIFAR-
10).

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

Reference

* Data Augmentation: https://hoya012.github.io/blog/Image-Data-Augmentation-Overview/

* Training Pipeline and basic concept of CPU overhead in data preprocessing: https://towardsdatascience.com/overco
ming-data-preprocessing-bottlenecks-with-tensorflow-data-service-nvidia-dali-and-other-d6321917f851

* Choi, Dami, et al. "Faster neural network training with data echoing." arXiv preprint arXiv:1907.05550 (2019).

* Lee, Gyewon, et al. "Refurbish Your Training Data: Reusing Partially Augmented Samples for Faster Deep Neural Net
work Training." 2021 USENIX Annual Technical Conference (USENIX ATC 21). 2021.

Copyright 2016. @ Machine Learning & Pattern Analysis lab., Dankook Uni., all rights reserved.

https://hoya012.github.io/blog/Image-Data-Augmentation-Overview/
https://towardsdatascience.com/overcoming-data-preprocessing-bottlenecks-with-tensorflow-data-service-nvidia-dali-and-other-d6321917f851

Thank You For Listening

17

