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Deep Neural Networks ( DNNs )

Translation)

 DNNs are widely used ( Classification, Object detection , Language

Classification
Classification  _, o lization
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DNN Checkpointing

» Due to the huge amount of data and model size for training DNNs, it usually takes tens of hours

or even days to train a large DNN model.
» For the sake of training speed, the latest model parameter updates are stored in the GPU

cache
 When there is an abnormality during the training process, or the training machine hangs up, the

system has to start the training from scratch, wasting time and money

Solution: People periodically back up the
intermediate state of the model in training to disk
after certain batches of training are completed
(checkpointing)




DNN Training

* DNN training is compute-intensive and time-consuming
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Epoch = One complete pass over the dataset

Image is from : https://www.usenix.org/conference/fast21/presentation/mohan




DNN Checkpointing
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DNN Checkpointing

» The most common checkpointing mostly adopts synchronous mode

When the model has finished training the nth batch,

The framework needs to pause the training of batch n+1

Then the model in the GPU's cache is synchronously flushed to the local or remote disk.
When the model checkpoint is completed, the training of batch n+1 can continue
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DNN Checkpointing
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Ineffective

v Need fine-grained, iteration-level checkpointing




CheckFreq

 Low-Cost: How to minimize the cost of a checkpoint?

° * Frequency: How often to checkpoint?
* Invariant: How to resume correctly from a checkpoint?
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CheckFreq: Provide an automated, frequent checkpointing framework for DNN training




CheckFreq

DMN training job

next_batch{)

Technique Benefits

Checkpointing mechanism (How to checkpoint?)
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2-phase checkpointing Splits checkpointing into two phases
and pipelines them carefully with
compute to make checkpoints cheap

Recoverable data iterator Maintains data invariant, allows re-
suming training at iteration bound-
aries without affecting accuracy

Checkpointing policy (When to checkpoint?)
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Systematic online profiling Automatically determines check-
pointing frequency, cognizant of
model characteristics

Adaptive rate tuning Dynamically tunes checkpointing fre-
quency to reduce overhead due to in-
terference




2-Phase Checkpointing

» Synchronous checkpointing introduces checkpoint stalls => Runtime

overhead
» Low-cost checkpointing mechanism that is split into a pipelined

snapshot() and persist() phase

Snapshot() : Serialize and copy into a user-space buffer
Persist() : Write out the serialized contents to disk




2-Phase Checkpointing
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(a) Baseline : Synchronous checkpointing

| Backward passi_.! DiskIO
(] weight update Il Checkpoint stall

« Assuming that the first batch passes through the parameters forward and backward,
and finally the weights of the model parameters are updated,

‘D Forward pass =3 Snapshotting

« At this time, the synchronous checkpointing process will first copy the model in the
GPU cache to DRAM (called snapshotting in the figure), and then fsync to disk
through the file system (called Disk 10 in the figure).

« The system needs to wait for both snapshotting and Disk 10 to finish before starting
the second batch of training. N




2-Phase Checkpointing
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(a) Baseline : Synchronous checkpointing

O Forward pass ! Snapshotting
[] Backward pass___! Disk IO

(] weight update Il Checkpoint stall

« Because checkpointing needs to save the value of each parameter of the
model after the first batch training, the parameters of the model cannot be

changed during snapshotting.
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2-Phase Checkpointing

------------------------------------------------------------------
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Checkpoint (CPU)

(a) Baseline : Synchronous checkpointing

[ Forward pass ! Snapshotting
[} Backward pass___! Disk IO
(] weight update Il Checkpoint stall

« So pause the training of the second batch, but when we copy the model data
from GPU cache to DRAM(Snapshotting), this time the model has two
separate copies in GPU and DRAM(CPU)

« Thatis to say, in the Disk IO stage, the model in the GPU can be changed and
continue to be trained.
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2-Phase Checkpointing

Training (GPU) 1
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(b) Only persist() pipelining
(] Forward pass e Snapshotting
L] Backward pass___! DiskI0

(] weight update Il Checkpoint stall

So : training is only paused during snapshotting, and the second
batch can be trained in parallel while the system copies the batch
1 model in DRAM to disk.
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2-Phase Checkpointing
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(c) Snapshot() and persist() pipelining

When the second batch is executed to the weight update
stage, if the snapshotting has not ended, the system will
suspend the training at this time

)

] Forward pass =g Snapshotting
[] Backward pass___! Disk IO
(] weight update Il Checkpoint stall
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When to checkpoint?

« Systematic Online Profiling

» CheckFreq' s data iterator automatically profiles several iteration-level and
checkpoint-specific metrics

[Tlmefnrwe'ght [ Time for GPU ] [ Time for CPU

[ - — ] update snapshot() snapshot{)
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Algorithmically determines the checkpointing frequency such that:
» Overhead due to checkpoint stalls is within the user-given limit

16



Experimental setup

* Checkfreq is integrated with PyTorch

» Uses the state-of-the-art NVIDIA DALI data loading library
to support resumability

e Experiments are performed on two different servers from
an internal GPU cluster at Microsoft

1. Conf-Volta : Server with eight V100 GPUs (32GiB), with a SSD
2. Conf-Pascal : Server with eight 1080Ti GPUs (11GiB), with a HDD




Experimental setup

Evaluate CheckFreq on 7 different DNNs :

* ResNet18, ResNet50, ResNext101, DenseNet121, VGG16,InceptionV3 on Imagenet-1k
* Bert-Large pretraining on Wikipedia & BookCorpus dataset




Evaluation
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Figure 6: Impact of resumable data iterator on accuracy.
Performing iteration-level checkpointing with baseline non-
resumable data iterator violates the data invariant, results in
significant loss of accuracy if job is interrupted. However,
CheckFreq’s iterator does not affect the final accuracy.
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Figure 7: Runtime overhead for various models. At a fre-
quency chosen by CheckFreq, synchronous checkpointing
incurs upto 70% overhead while CheckFreq's pipelined check-
pointing reduces runtime overhead to under 3.5%
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Evaluation

Model Recovery (seconds)
Baseline CF

Recovery (seconds)
Baseline CF

ResNetl8 a4 5
ResNets(0 2100 24
VGG16 5700 25
ResNext101 TORO 32

DenseNetl2 1 2340 7
Inceptionv3 3000 27
BERT 4920 85

1 80 3
540 ]
1320 31
1680 14
600 4
T80 42
4500 43

(a) 1 GPU (V100)

(b) 8 GPU (1080T1)

Table 6: Average recovery time (CF - CheckFreq).
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Figure 8: End-to-end training. We train Resnet50 using a
Conf-Pascal GPU with interruptions every 5 hours. Check-
Freq trains to state-of-the-art accuracy (76.1%) 2x faster than
epoch-based checkpointing by reducing recovery time.
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Conclusion

 CheckFreq provides an automatic, fine-grained
checkpointing framework for DNN training

 CheckFreq allows frequent checkpointing while incurring a
low cost

* When the job is interrupted, CheckFreq reduces recovery
time for popular DNNs from hours to seconds




