
2022.05.23
Presented by Chu Xin

chuxin@dankook.ac.kr

CheckFreq: Frequent, Fine-Grained
DNN Checkpointing

Jayashree Mohan, UT Austin; Amar Phanishayee, Microsoft Research;
Vijay Chidambaram, UT Austin and VMware research
FAST 2021

1

Deep Neural Networks (DNNs)

• DNNs are widely used （ Classification , Object detection , Language
Translation)

2

DNN Checkpointing

• Due to the huge amount of data and model size for training DNNs, it usually takes tens of hours
or even days to train a large DNN model.

• For the sake of training speed, the latest model parameter updates are stored in the GPU
cache

• When there is an abnormality during the training process, or the training machine hangs up, the
system has to start the training from scratch, wasting time and money

Solution: People periodically back up the
intermediate state of the model in training to disk
after certain batches of training are completed
(checkpointing)

3

DNN Training
• DNN training is compute-intensive and time-consuming

Image is from : https://www.usenix.org/conference/fast21/presentation/mohan 4

DNN Checkpointing

No Checkpoint

Use Checkpoint

5

DNN Checkpointing

Ø The most common checkpointing mostly adopts synchronous mode

1. When the model has finished training the nth batch,
2. The framework needs to pause the training of batch n+1
3. Then the model in the GPU's cache is synchronously flushed to the local or remote disk.
4. When the model checkpoint is completed, the training of batch n+1 can continue

6

DNN Checkpointing

Ø The most common checkpointing mostly adopts synchronous mode

1. When the model has finished training the nth batch
2. The framework needs to pause the training of batch n+1
3. Then the model in the GPU's cache is synchronously flushed to the local or remote disk.
4. When the model checkpoint is completed, the training of batch n+1 can continue

ü Need fine-grained, iteration-level checkpointing

7

Ineffective

CheckFreq

• Frequency: How often to checkpoint?
• Low-Cost: How to minimize the cost of a checkpoint?
• Invariant: How to resume correctly from a checkpoint?

CheckFreq: Provide an automated, frequent checkpointing framework for DNN training

8

CheckFreq

9

2-Phase Checkpointing

Ø Synchronous checkpointing introduces checkpoint stalls => Runtime
overhead
Ø Low-cost checkpointing mechanism that is split into a pipelined
snapshot() and persist() phase

Snapshot() : Serialize and copy into a user-space buffer
Persist() : Write out the serialized contents to disk

10

2-Phase Checkpointing

• Assuming that the first batch passes through the parameters forward and backward,
and finally the weights of the model parameters are updated,

• At this time, the synchronous checkpointing process will first copy the model in the
GPU cache to DRAM (called snapshotting in the figure), and then fsync to disk
through the file system (called Disk IO in the figure).

• The system needs to wait for both snapshotting and Disk IO to finish before starting
the second batch of training. 11

• Because checkpointing needs to save the value of each parameter of the
model after the first batch training, the parameters of the model cannot be
changed during snapshotting.

12

2-Phase Checkpointing

• So pause the training of the second batch, but when we copy the model data
from GPU cache to DRAM(Snapshotting), this time the model has two
separate copies in GPU and DRAM(CPU)

• That is to say, in the Disk IO stage, the model in the GPU can be changed and
continue to be trained.

13

2-Phase Checkpointing

So : training is only paused during snapshotting, and the second
batch can be trained in parallel while the system copies the batch
1 model in DRAM to disk.

2-Phase Checkpointing

14

2-Phase Checkpointing

When the second batch is executed to the weight update
stage, if the snapshotting has not ended, the system will
suspend the training at this time

15

When to checkpoint?
• Systematic Online Profiling

Ø CheckFreq’s data iterator automatically profiles several iteration-level and
checkpoint-specific metrics

Algorithmically determines the checkpointing frequency such that:
• Overhead due to checkpoint stalls is within the user-given limit

16

Experimental setup

• Checkfreq is integrated with PyTorch

• Uses the state-of-the-art NVIDIA DALI data loading library
to support resumability

• Experiments are performed on two different servers from
an internal GPU cluster at Microsoft

1. Conf-Volta : Server with eight V100 GPUs (32GiB), with a SSD
2. Conf-Pascal : Server with eight 1080Ti GPUs (11GiB), with a HDD

17

Experimental setup

Evaluate CheckFreq on 7 different DNNs :

• ResNet18, ResNet50, ResNext101, DenseNet121, VGG16,InceptionV3 on Imagenet-1k
• Bert-Large pretraining on Wikipedia & BookCorpus dataset

18

Evaluation

19

Evaluation

20

Conclusion

• CheckFreq provides an automatic, fine-grained
checkpointing framework for DNN training

• CheckFreq allows frequent checkpointing while incurring a
low cost

• When the job is interrupted, CheckFreq reduces recovery
time for popular DNNs from hours to seconds

21

