DANKOOK UNIVERSITY

Lecture Note 1: OS Introduction

March 7, 2022
Jongmoo Choi

Dept. of software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)
[J. Choi, DKU

Contents

s From Chap 1~2 of the OSTEP
s Chap 1. A Dialogue on the Book

s Chap 2. Introduction to Operating System

Virtualizing the CPU

Virtualizing Memory

Concurrency 2

Persistence Introduction to Operating Systems
Design Goals
If you are taking an undergraduate operating systems course, you should

1 already have some idea of what a computer program does when it runs.

Ome IS Ory If not, this book (and the corresponding course) is going to be difficult
— so0 vou should probably stop reading this book, or run to the near-

est bookstore and quickly consume the necessary background material

Refe rences before continuing (both Patt & Patel [PP03] and Bryant & O'Hallaron
[BOH10] are pretty great books).

So what happens when a program runs?

Well, a running program does one very simple thing: it executes in-
structions. Many millions {(and these days, even billions) of times ev-
ery second, the processor fetches an instruction from memory, decodes
it (Le., figures out which instruction this is), and executes it {i.e., it does
the thing that it is supposed to do, like add two numbers together, access
memory, check a condition, jump to a function, and so forth). After it is
done with this instruction, the processor moves on to the next instruction,
and so on, and so on, until the program finally completes'.

Thus, we have just described the basics of the Von Neumann model of
:c:mpul:i.n;,_r_;:_ Sounds simple, right? But in this class, we will be leaming
that while a program runs, a lot of other wild things are going on with
the primary goal of making the systermn easy to use.

There is a body of software, in fact, that is responsible for making it
casy o ron eoerams feven alloswine voar i seeminebe moam many ar the

D D N N N N N N

DMLY s J. Choi, DKU

DANKOOK UNIVERSITY 2

Chap 1. A Dialog on the Book

s OSTEP

v Operating Systems: Three Easy Pieces
v Homage to the Feynman'’s famous “Six Easy Pieces on Physics”

= OS is about half as hard as Physics:

SIXEAS
DIECE

-

RICHARD P
FEYNMAN

_BHG>

DANKODK UMIVERSITY

Introduction by Paul Davies
Author of The Mind of God

CONTENTS

Publishers Note vii
Introduction by Paul Davies ix
Special Preface xix

Feynman’s Pﬂ:ﬁ!ﬂ(o

ONE: Atoms in Motion 1

Introduction 1

Marrer is made of atoms 4
Atomic processes 10
Chemical reactions 15

Two: Basic Physics 23

Introduction 23
Physics before 1920 27
Quantum physics 33
Nuclei and particles 38

THREE: The Relation of Physics to Other Sciences 47

Introduction 47

Chemistry 48

Biology 49

Astronomy 59

Geology 61

Psychology 63

How did it ger that way? 64

3

from Six to Three Pieces

V1

Contents

rour: Conservation of Energy 69

What is energy? 69
Gravitational potential energy 72
Kinetic energy 80

Other forms of energy 81

FIVE: The Theory of Gravitation 89

Planetary motions 89
Kepler's laws 90
Development of dynamics 92
Newron's law of gravitation 94
Universal gravitation 98
Cavendish's experiment 104
What is gravity? 107
Gravity and relativity 112

six: Quantum Behavior 115
Aromic mechanics 115
An experiment with bullets 117
An experiment with waves 120
An experiment with clectrons 122
The interference of electron waves 124
Warching the electrons 127
First principles of quantum mechanics 133
The uncertainty principle 136

Index 139

ource: https://www.amazon.com/Six-Easy-Pieces-Essentials-Explained/dp/0465025277)
J. Choi,

DKU

Chap 1. A Dialog on the Book

= OSTEP

v What are Three Pieces: Virtualization, Concurrency, Persistence

Intro
Preface

1 Dialogue

2 Introduction
code

(Source: http://pages.cs.wisc.edu/~remzi/OSTEP/)
J. Choi, DKU

Chap 1. A Dialog on the Book

s OSTEP
v What to study?

Professor: They are the three key ideas we're going to learn about: virtualiza-
tion, concurrency, arnd persistence. In learning about these ideas, we'll learn
all about how an operating system works, including how it decides what program
to run next on g CPLL how it handles memory overload in a virtual memory sys-
ter, how wvirtual machine monitors work, how to manage imformation on disks,
and even a little about how to build a distributed system that works when parts
hawve failed. That sort of stuff.

Student: [have no idea what you're talking about, really.

Professor: Good! That mears you are in the right class.

v How to study?

Student: | have another question: what's the best way to learn this stuff?

Professor: Excellent query! Well, each person needs to figure this out on their
owmn, of course, but here is what I would do: go to class, to hear the professor
introduce the material. Then, at the end of every week, read these notes, to help
the ideas sink into your head @ bif better. UJ cOlrse, SOMie tinie later (hirit: before
the exam!), read the notes again to firm up your knowledge. Of course, your pro-
fessor will nno doubt assign some homeworks and projects, so you should do those;
inn particular, doing projects wohere you write real code o solve real problems is
the best way to put the ideas within these notes into action. As Confucius said...

Student: Oh, I kniow! 'I hear and I forget. I see and I remember. I do and 1
understand.” Or something like that.

Frotessor: (surprised) How did you kKnow what 1 was going ro say:s!

M Student: It seemed to follow. Also, I am a big fan of Confucius, and an even
e Diger fan of Xunzi, who actually 1‘55'.' better source for this :;i.fﬂtf‘. hoi, DKU

Chap 2. Introduction to Operating Systems

s 2.1 Virtualizing CPU

s 2.2 Virtualizing Memory
s 2.3 Concurrency

s 2.4 Persistence

s 2.5 Design Goals

s 2.6 Some history

s 2.7 Summary

s References

J. Choi, DKU

Introduction

s Layered structure of a computer system

system and application programs

operating system

user user user user
1 2 3 n
F 9
v
compiler assembler text editor database
system

computer hardware

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

Introduction

= What happens when a program runs?
v 1. Simple view about running a program

CPU Main Memory

Ll
System ¥

W
PC MAR Bus

Tnst raction
Instructian
Inst rucition

¥
¥

'O AR &

=
VO BR —

Dt
Datn

o W o P -

IR MBR

i]
/O Module 5 nD2

¥
nbi

¥
z = Program counter
Bulfers IR = Instruction register
=

Memory mildress register
Memory buffer register

YO AR = Inputfoutput address register
O RR = Inputfoutputl hufTer regist er

Figure 1.1 Computer Components: Top-Level View

(Source: W. Stalling, “Operating Systems: Internals and Design Principles”)
= |1 T
[

DANKOOK UNIVERSITY 8

J. Choi, DKU

Introduction

= What happens when a program runs?

v Details: execute instructions
= Fetch and Execute

Fetch Stage Execute Stage thnrr CcPu Rﬁﬁlﬂfﬂ Mﬂ'mr} CPU Rﬂﬂlﬂlﬂ'ﬁ
30001 940 300/PC 300{1 940 301|pPC
| 3(]159411 AC| 30115 9 4 1 0003 AC
e (294 1 194 0]IR|302{2 9 4 1 [1 940
940l0 D D 3
<Instruction cycle> 24! (RS
Step |
2 — 3|"‘ — ‘5| Memory CPU Reglsters
= 300[1 940 30 1|PC
(a) Instruction format 30115 9 4 1—1’ D00 3 AC
am_g 94 1 5941 IR
L]
]
0 1 15
: S940|0 0 D 3
Ls| Bsniwi 941[0 0 0 2
(b) Integer format Sten 3 Step 4
Program Counter (PC) = Address of instruction SNy CEL Register: Memocy LFL Regaters
Instruction Register (IR) = Instruction being executed 0011 940 30 2; C 300{1 940 30 BIP{:
Accumulator (AC) = Temporary storage 015941 0 00SIACE30115 9 4 1] 000 35|AC
302|129 4 1 »2 9 4 1|IR|302(2 9 4 | 294 1[IR
(c) Internal CPU registers T T
L 1L
M0lD DO 3 94010 0 0 3
0001 = Load AC from Memory 9410 0D O 2 941|000 0 8
0010 = Store AC to Memory
0101 = Add to AC from Memory Step 5 Step 6

(d) Partial list of opcodes
<Hypothetical machine>

. (Source: W. Stalling, “Operating Systems: Internals and Design Principles”)
M [J. Choi, DKU

DANKOOK UNIVERSITY 9

<Run example>

Introduction

= What happens when a program runs?

v 2. A lot of stuff for running a program
» Loading, memory management, scheduling, context switching, I/O

processing, file management, IPC, ...

= QOperating system: 1) make it easy to run programs, 2) operate a system

correctly and efficiently

Figure 1.4 CPU
Hardware organization Register file
of a typical system. :
CPU: Central
| PG |
Processing Unit, ALU:
System bus Memory bus

Arithmetic/Logic Unit, PC:
Program Counter, USB:
Universal Serial Bus.

Bus interface

Expansion slots for
= e other devices such
uss Graphics Disk as network adapters

controller adapter controller

-~

T 1 l i
Mouse Keyboard Display hello executable
w stored on disk

(Source: computer systems: a programmer perspective)

M I
10

DANKODK UMIVERSITY

J. Choi, DKU

Introduction

s Definition of operating system

v Resource manager
» Physical resources: CPU (core), DRAM, Disk, Flash, KBD, Network, ...

= Virtual resources: Process, Thread, Virtual memory, Page, File,
Directory, Driver, Protocol, Access control, Security, ...

v Virtualization (Abstraction)

» Transform a physical resource into a more general, powerful, and easy-
to-use virtual form

The System Call interface

S A e A A A O

Pm{:&s.s M mu-nr Filezystems
{::Bnl i

Concurrency, = Virtua Files and dirs: Tiys &
multitasking rrm-rnur].r the WFS dewi

CPFU Memory Disks & CDs Consoles, Metwork
[i fa

D rEAtE S IMDISRTEREE 45 MOGUIES

(Source: Linux Device Driver, O’Reilly)

M _1 1 J. Choi, DKU

Introduction

s System call

v Interfaces (APIs) provided by OS

Process
Control

File

Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Windows

CreateProcess ()
ExitProcess{)
WaitForSingleObject ()

CreateFile ()
ReadFile ()
WriteFile{)
CloseHandle ()

SetConsocleMode
ReadConscle ()
WriteConsole()

GetCurrentProcessID{)
SetTimer)
Sleep ()

CreatePipe ()
CreateFileMapping ()
MapViewOfFile ()

SetFileSecurity ()
InitlializeSecurityDescriptor ()
SetSecurityDescriptorGroup()

(Source: A. Silberschatz, “Operating system Concept”)

DY e

DANKODK UMIVERSITY

12

Unix

forlk{)
exit{)
wait (D

open{)
read{)
write ()
close ()

ioctl ()
read ()
write()

getpid (O
alarm ()
sleep()

pipe O
shmget ()
mmap)

chmod ()
umaslk ()
chown ()

J. Choi, DKU

Introduction

s System call
v Standard (e.g.. POSIX, Win32, ...)
v Mode switch (user mode, kernel mode)

EXAMPLE OF STANDARD API

As an example of a standard AP, consider the read() function that is user app”CElﬂon
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read open ()
on the command line. A description of this API appears below:

user

mode
goize t read(int fd, wvoid *buf, size_t count) sys’[em call interface

| I | | | kernel
return function parameters m ode A
value name

#include =<unistd.h>

A program that uses the read () function must include the unistd.h header
file, as this file defines the ssize t and size t data types (among other % ¢ open ()
things). The parameters passed to Tead () are as follows: '

® int fd—the file descriptor to be read |mp|ementat|0n

: : : | » of open()
® vyoid *buf—a buffer where the data will be read into

system call
® size t count—the maximum number of bytes to be read into the ¢
buffer ' '
| []
On a successful read, the number of bytes read is returned. A return value of '
0 indicates end of file. If an error occurs, read () returns —1. retumn

(Source: A. Silberschatz, “Operating system Concept”)
DXy e J. Choi, DKU

pAROoK BRrER=IT 13

2.1 Virtualizing CPU

= A program for the discussion of virtualizing CPU

v call Spin (busy waiting and return when it has run for a second)

v print out a string passed in on the command line

-
=N = I = < I (N L ; B " % R 5 I

—_—
[

T T T [T o A S = 1
WMo =] o ks W

=
=

#include <stdio.h>
$include <stdlib.h>
#include <sys/time.h>
#include <assert.h>
#include "common.h"™

int

main (int argc, char wxargvl[])

{
i

Figure 2.1: Simple Example: Code That Loops and Prints (cpu. c)

if (argec != 2) {

fprintf (stderr, "usage:

exit (1);
}
char +«str = argvl[l];
while (1) {
Spin(l);
priantf{"%=\n", B2Ltr);
}

return 0;

cpu <string>\n");

DMy oeessss—

DANKODK UMIVERSITY

14

J. Choi, DKU

2.1 Virtualizing CPU

s Execute the CPU program

prompbt> goo —o cpu cpu.go —Wall
prompt> JJ/cpua "™AT

AN

A

A

AN

gt

Prompkt>

s Execute the program in parallel

prompt> ./cpua A & JJopun B & J.Jfoepn C & Acpid D&
[[17] 7353
[2] 7354
[2T #3255
[4] 7356
AN
B
D
C
A
B
- * Process, Scheduling, ...
A
Figure 2.2: Running Many Programs At Once

DMLY s J. Choi, DKU
nnnnnnnnn 15

2.1 Virtualizing CPU

s Issues for Virtualizing CPU

v

D R N N N N NN

How to run a new program? =» process

How to make a new process? =» fork()

How to stop a process? = exit()

How to execute a new process? = exec()

How to block a process? = sleep(), pause(), lock(), ...
How to select a process to run next? =» scheduling
How to run multiple processes? = context switch

How to manage multiple cores (CPUs)? =» multi-processor
scheduling, cache affinity, load balancing

How to communicate among processes? = IPC (Inter-Process
Communication), socket

How to notify an event to a process? = signal (e.g. *C)

< Tllusion: A process has its own CPU even though there are less CPUs than processes

M I J. Choi, DKU

DANKODK UMIVERSITY

16

Quiz for 1th-Week 2st-Lesson

L QUiZ
v 1. OS is defined as a resource manager. \What kinds of virtual
resources are managed by OS for CPU, DRAM, and disk?

v 2. What is the role of “&” in the below example? (I do this experiment
using virtualbox + ubuntu in my laptop.)

v Due: until 6 PM Frlday of thls week (111, March)

T

Ubuntu-20.04.choijm [&] - Oracle VM VirtualBox =
s Q Operating Systems: Three Easy X +

choljm@choijm-VirtualBox: ~f0S/chap2

E & =5 (C 8 pagescswiscedu/~remzi/OSTER/

choljmiichoijm-VirtualBox:~f05/chap2s 1s =
common.h cpu.c g @B & =

jm-VirtualBox:~f05/chap2$

3 jm-VirtualBox:~f0S/chap2s cat .h i i TRy
(oot b 1o JhRES A o e @ And now, the free online form of the book, in chapter-by-chapter form (now w

#define __common_h__
J e . Intro
M#include <sys/time.h> 1 EI < E

#include <sys/stat.h>

#include <assert.h> PT'EfﬂCE

double GetTime() { ‘
struct timeval t; TOC
1 trc = ge tti ofday(&t, NULL); @ g
ert(r 8);
n (do b'L) t.tv_ + (double) t.tv_usec/ie6; i
} hs o 1 Dialogue
void Spin(lnt howlong) { A
siopegt e 2 Introductio
h le ((GetTime() - t) < (double) howlong)
; /] do nothing in loop) code
ndif // __common_h__
ijm@choijm-virtualBox:~f0S/chap25 gcc -0 cpu cpu.c
ijm@choijm-VirtualBox:~/0S/chap2s [
1im@cholin-virtualBox:~f0S/chap2$./cpu A kY 4
|
|

choijm@cheijm-VirtualBox:~f05/chap2S ./cpu A & .fcpu B & .J/cpu C &

[2] 21113
(3] 21114
choijm@choljm-virtualBox :~f05/chap2s B

C
A
C
A
B

2.2 Virtualizing Memory

= Memory
v Can be considered as an array of bytes

= Another program example
v Allocate a portion of memory and access it

L=R - S .

e o e e N TR~ T~ Y = U = S |
o 8 e N W e WM = D

#include
#include
#include
#include

Tk
main (int
{

<unistd.h>
sstdip.h
<stdlib.h>
Tcommon .h™

argc,; char

*argv|[])

int *p = malloc(sizeof (int));

assert (p
peintE (" (3d)

getpid(),
*p = 0;
while (1) {
gpindl);

}

*Pp = *xp + 1;
princE (" (3d)

return 0;

}

= NULL) ;
address pointed to by p: %$p\n",

P);

pr 3d\n", getpid(), =p);

Figure 2.3: A Program That Accesses Memory (mem. c)

//

i
bl

al

az
a3l

ad

DMLY oeessss——

DANKODK UMIVERSITY

18

J. Choi, DKU

2.2 Virtualizing Memory

s Execute the Mem program

c

prompt>
(2134)
(2134)
(Z2134)
(2134)
(Z1.34)
(2134

. /mem
address pointed to by p:

P
P
P-
P=
BP-:

Uk W

0x200000

s Execute the program in parallel

Eerompit>

. Smem &;

[1] 24113
2] 247114

(24113)
(24114)
(24113)
(24114)
(Z24114)
(24113)
(Z4113)
(24114)
(24113)
(24114)

- - -

Figure 2.4: Running The Memory Program Multiple Times

address pointed to by p
address pointed to byv p

P

TTTTTT

BB WWNNEF

- Smem &

Ox200000
0200000

o Same address but independent

DANKODK UMIVERSITY

19

J. Choi, DKU

2.2 Virtualizing Memory

s Issues for Virtualizing Memory

v

D N N N N Y N NN

How to manage the address space of a process? = text, data, stack,
heap, ...

How to allocate memory to a process? = malloc(), calloc(), brk(), ...
How to deallocate memory from a process? = free()

How to manage free space? =» buddy, slab, ...

How to protect memory among processes? =» virtual memory

How to implement virtual memory? = page, segment

How to reduce the overhead of virtual memory? = TLB

How to share memory among processes? = shared memory

How to exploit memory to hide the storage latency? =» page cache,
buffer cache, ...

How to manage NUMA? = |ocal/remote memory

< Jllusion: A process has its own unlimited and independent memory even though
several processes are sharing limited memory in reality

M I J. Choi, DKU

DANKODK UMIVERSITY

20

2.3 Concurrency

s Background: how to create a new scheduling entity?
v Two programming model: process (task) and thread

v Key difference: data sharing

// fork example (Refer to the Chapter 5 in OSTEP)
// by J. Choi (choijm@dku.edu)

#include <stdio.h>

#include <stdlib.h>

int a =10;

void *func()

{
a++;
printf("pid = %d\n", getpid());
}
int main()
{
int pid;
if ((pid = fork()) == 0) { //need exception handle
func();
exit(0);
}
wait();
printf("a = %d by pid = %d\n", a, getpid());
I

..nwafu(-sgme‘:"Syste"m"'p‘rn‘g'ramm‘i‘n‘g"'Ie"ctu'ré"'si'té‘,‘"‘http‘:l'/enﬂqe

// thread example (Refer to the Chapter 27 in OSTEP)
// by J. Choi (choijm@dku.edu)

#include <stdio.h>

#include <stdlib.h>

int a =10;

void *func()

{
a++;
printf("pid = %d\n", getpid());
}
int main()
{

pthread_t p_thread,;

if ((pthread_create(&p_thread, NULL, func, (void *)NULL))
<0){

exit(0);

}

pthread_join(p_thread, (void *)NULL);

printf("a = %d by pid = %d\n", a, getpid());
}

dded.dankook.ac.kr/~choijm/course/course202102.htmi)

2.3 Concurrency

s Concurrency
v Problems arise when working on many things simultaneously on the

same data

s A program for discussing concurrency

1 #include <stdio.h:>

e #include <stdlib.h>

= #include "common.-bh™

4

5 wvolatile 1nt counter = O;

= int loops;

-

E= wold =worker {(wvoid warqg) i

=} Ik dop

10 for {3 = s 3> = loops;: B e B | 4

11 counter+;

12 F

1= retiagrmn MNUOLIL;

14 }

15

16 int

17 main (int argc, char wargwl[]1)

18 £

19 if (argcs = 2) E

20 Ffprrintf (stderr, Tusacge : threads <wvalus=>Sni™) »
21 exit (1) 7

22 bt

23 loops = atoi{largw 1 1) 7

24 pthread © pi, 22

25 printf ("Initial waluae = ZdN\ni™ , counnmtaer)
26

27 Pthread create(&pl, M1, worker, ML)y ;
25 Pthread create{&s&sp2, M1, wWworkexr, NULI.) ;
20 Pthread “Join(pl, MNUIL.T.) ;

30 Pthread —gJoini({pZ, MIIFI.I.) ;

31 printf ("Final waluae 23 ZdAdN\n"™ , connter) ;
32 retwurn O

33 i

Figure 2.5: A Multi-threaded Program (threads. c)

i | | 1} g

DANKODK UMIVERSITY

22

J. Choi, DKU

2.3 Concurrency

s Execute the multi-thread program

Final walue

prompt> gcc —o thread thread.c -Wall —pthread
prompt> ./thread 1000
Initial value :

0
2000

Initial wvalue :
Final wvalue

Initial wvalue :
Final wvalue

prompt> ./thread 100000

143012 // huh??
prompt> ./thread 100000

137298 // what the??

v Programing model

» thread model: share data section (a.k.a data segment)
= process model: independent, need explicit IPC for sharing

v Reason for the odd results for the large loop
» Lack of atomicity, scheduling effect, ... = need concurrency control

DM s

DANKODK UMIVERSITY

23

J. Choi, DKU

2.3 Concurrency

= Issues for Concurrency
v How to support concurrency correctly? =» lock(), semaphore()
How to implement atomicity in hardware? = test _and_set(), swap()
What is the semaphore?
What is the monitor?

How to solve the traditional concurrent problems such as producer-
consumer, readers-writers and dining philosophers?

What is a deadlock?

How to deal with the deadlock?
How to handle the timing bug?
What is the asynchronous 1/0s?

D N N NN

AN N N RN

< Tllusion: Multiple processes run in a cooperative manner on shared resources even
though they actually race with each other on the resources

M I J. Choi, DKU
“““““““““““““““ 24

2.4 Persistence

s Background: DRAM vs. Disk

VS

¥
v Capacity, Speed, ... i

v Access granularity: Byte vs. Sector ‘

v Durability: Volatile vs. Non-volatile
Magnetic Disk

Optical Disk

Source: Google |
N4 e (Source: Google Image) | i, pKU

““““““““““ 25

Inboard Memory

Outhoard Storage

2.4 Persistence

s Persistence
v Users want to maintain data permanently (durability)

v DRAM is volatile, requiring write data into storage (disk, SSD)
explicitly

s A program for discussing persistence
v Use the notion of a file (not handle disk directly)

#include <stdio.h>

1

2 #include <unistd.h>

3 #include <assert.h>

4 #include <fcntl . h>

5 f#include <sys/types.h>

[

7 int

8 main(int argc, char =argvl[])

9 {

10 int fd = open("/tmp/file", O WRONLY | O _CREAT | O_TRUNC, S5_TRWXU);
11 aggert {(fd > —-1);

i2 int rec = write(fd, "hello world\n", 13);
13 assert (rc == 13);

14 close (£d) ;

15 return 0;

164 }

Figure 2.6: A Program That Does I/O (io.c)

4I!-fﬂl I J. Choi, DKU
“““““““““““““““ 26

2.4 Persistence

s Issues for Persistence

v

v
v
v

<

How to access a file? =» open(), read(), write(), ...
How to manage a file? = inode, FAT, ...

How to manipulate a directory?

How to design a file system? = UFS, LFS, Ext2/3/4, FAT, F2FS,
NFS, AFS, ...

How to find a data in a disk?

v How to improve performance in a file system? =» cache, delayed

D N N NN

write, ...

How to handle a fault in a file system? =» journaling, copy-on-write
What is a role of a disk device driver?

What are the internals of a disk and SSD?

What is the RAID?

< [llusion: Data is always maintained in a reliable non-volatile area while it is often kept
in a volatile DRAM (for performance reason) and storage is broken from time to time.

M I J. Choi, DKU

DANKODK UMIVERSIT

2.5 Design Goals

s Abstraction

v Focusing on relevant issues only while hiding details
» E.g. Car, File system, Make a program without thinking of logic gates

v “Abstraction is fundamental to everything we do in computer science”
by Remzi

s Performance
v Minimize the overhead of the OS (both time and space)

s Protection
v |solate processes from one another
v Access control, security, ...

= Reliability
v Fault-tolerant

s Others

v Depend on the area where OS is employed
v Real time, Energy-efficiency, Mobility, Load balancing, Autonomous,

M I J. Choi, DKU

2.5 Design Goals

s Separation of Policy and Mechanism
v Policy: Which (or What) to do?
» e.g.) Which process should run next?

v Mechanism: How to do?
» e.g.) Multiple processes are managed by a scheduling queue or RB-tree

People

shouldn't drive i Eﬁéﬂ
that fast in my
neighborhood! ' U

That’s a policy

That’'s a different
type of mechanism

(Source: Security Principles and Policies CS 236 On-Line MS Program Networks and
Systems Security, Peter Reiher, Spring, 2008)

DMLY eeessss———— J. Choi, DKU
nnnnnnnnn 29

2.6 Some History

s Early Operating Systems: Just libraries
v Commonly-used functions such as low-level I/Os (e.g. MS-DQOS)
v Batch processing
= a number of jobs were set up and then run all together (Not interactive)
s Beyond Libraries: Protection
v Require OS to be treated differently than user applications
v Separation user/kernel mode, system call

v Use trap (special instruction, SW interrupt) to go into the kernel mode
» Transfer control to a pre-specific trap handler (system_call handler)

- LISer process
Least privileged st moqe
User process executing = calls system call return from system call (mode bit=1)
\ /
\ /
1 7
kartil frap retum
ost privilege: mode hit=0 mode hit = 1
Most priviieged kernel mode
exectte system cal (mode bit=)
e (Source: Google Image) (Source: A. Silberschatz, “Operating system Concept”)
M I J. Choi, DKU

DANKOOK UNIVERSITY 30

2.6 Some History

= [he Era of Multiprogramming (c.f. multitasking)

v Definition: OS load a number of applications into memory and switch
them rapidly

v Reason: Advanced hardware = Want to utilize machine resources
better = Multiple users share a system (workstation, minicomputer)
=» multiprogramming (and multitasking)

v Especially important due to the slow 1/O devices =» while doing I/O,
switch CPU to another process = enhancing CPU utilization

v Memory protection and concurrency become quite important = UNIX

Word . Web e
process D Seoteate E-mail Br =7 Antivirus

free memory

-
Cal
-
=
L

PROCEYS
WORCESS

process C

interpreter Operating System

process B l

kernel CPU Core

(Source: Google Image)
M I 3 J. Choi, DKU

2.6 Some History

iR UnvERETY (Source: VEiRipedia)

The Era of Multiprogramming (c.f. multitasking)

v UNIX
= By Ken Thompson and Dennis Ritche (Bell Labs), Influenced by Multics

» C language based, excellent features such as shell, pipe, inode, small,
everything is afile, ...

» Influence OSes such as BSD, SUNOS, AIX, HPUX, Nextstep and Linux

1353

2008 ta 2007

J. Choi, DKU

2.6 Some History

s [he Modern Era

v PC
= MS Windows, Mac OS X, Linux, ...
v Smartphone

ol Flu»
= Android, iOS, Windows Mobile, ... D IY 8 ARM bd:f*fﬁ“%\'
i) moe

v loT Linux robots

= What is the next?

Goog_!e Brillo OS " e W L Tha Cangapt of T (intermat of Things]
Operating System for Internet of Things : : o g
D

The Contiki
Operating System

&= (Jountu Core on the nternet Hhings

SR 1200 untu Core deliversbulecproof securty, rliableupdates and

enormous Uount ecosystem at your Fingertios,bringing the developer s avourte

Gevices and
e A4-0lt ARM and

waich05 s

OW%Z https://topgear-autoguide.com/category/traffic/car-operating-systems-from-tesla-google-daimler-bmw-or-vw1607935498)

I J. Choi, DKU
“““““““““““““““ 33

2.7 Summary

s OS

v Resource manager (Efficiency)
v Make systems easy to use (Convenience)

s Cover in this book
v Virtualization, Concurrency, Persistence

s Not being covered
v Network, Security, Graphics
v There are several excellent courses for them

= 2YHH(SW) 3R 2YHH(SW) 328

S2ANT

ClassMix

EE
Feynd

\\\\\

<+ Homework 1: Summarize the chap 2 of the OSTEP (personal assignment)
Requirement: 1) Summary of Chap 2, 2) Goal of your OS study

Recommendation: highlight key words or sentences (different size or font),

using figures and tables, using itemization or numbering
Due: until 6 PM, 25t March (Friday)
Format: pdf (for e-Campus)

Bonus: Snapshot of the results of example programs in a Linux system

(ubuntu on virtual box or wsl or Linux server)

* Any questions? Feel free to put questions at "= 2| H Al Zt"11 (at least one per a student)
DM e

DANKODK UMIVERSITY

34

J. Choi, DKU

@@@. Quiz for 2M-Week 1st-Lesson

TIME]
s Quiz

v 1.In today’s lecture, we executed two processes (whose pids are
24113 and 24114) and discussed the differences between physical
memory (PM) and virtual memory (VM). Explain the differences using
two these processes.

v 2. When we manage a disk, we need to consider the persistence
carefully. Explain why the persistence is considered for a disk using
the difference between disks and DRAM (one of three differences)?

v Due: until 6 PM Friday of this week (18™, March)

Wirtual Memory(4GB)

alqe adey

| =

virtual Memory{4GB)

(Source: https://anydifferencebetween.com/
difference-between-ram-and-hard-drive/)
KKKKKKKKKKKKKKKK a5 J. Choi, DKU

Appendix

s OS structure in General

user and other system programs User programs]
Libranes
GUI] batch | command ling 4
{ Systemn call interface]
user Interfaces TRl PO wy 5y Bh U SF 8 G m S5 My A Uy B mTes 4n oy 3 9D
ormad howed

calls [rvetwork | File management | _ -

system Process inter-process:

Communication

_FH EYElBMmS Control .

program lle] file G resource : S~ TR
execution operations systems communication allocation sccouniing Bufter cache ‘Scheduler ﬂ‘
5 o ;
protection Mebawork E Eha-a:er] Block
error and Device drivers
detection s security F ~
: Hardhware control
operating system ------_--.I _:_-_---_----_-_.I _________
MHardware bowf
hardware I Harcware I

(Source: Operating System Concepts) (Source: https://lwww.cs.rutgers.edu/~pxk/416/notes/03-concepts.html)

The System Call Interface I Process
e o B I S O e i p
rnanagerlmrt I ma‘rln.;:.a?rnyx;m I Filesystoms I l:nrﬂr.l I Networking I frp— USE’I’ prOgS.
aubsratens
S Mimn, Flpngide L Iwel comneosay e, [USOf
: mode <
Arch- 3 Memory Fil?‘!‘!‘“‘gm c:é’wi‘e‘:;’ s:‘m:m Serve;s
d i:od; t [y = ! Softerare
: Block devices | T A drivers O _ 4
: [| s [| i o3
R S S S S o
: : ooooo ’ SELL. raawars
Mmmony fisks & G0s i P Microkemel handles interrupts, @
[reatvees monemrenteo as mooures processes, scheduling, IPC
(Source: Modern Operating System)

(Source: Linux Device Driver)

= | T
36

DANKODK UMIVERSITY

J. Choi, DKU

