DANKOOK UNIVERSITY

Lecture Note 2: Processes

March 14, 2022
Jongmoo Choi

Dept. of software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)
[J. Choi, DKU

Contents

From Chap 3~6 of the OSTEP
Chap 3. A Dialogue on Virtualization
Chap 4. The abstraction: The Process

v Process, Process API, Process States and Data Structure

Chap 5. Interlude: Process API

v System calls: fork(), wait(), exec(), kill() , ...

Chap 6. Mechanism: Limited Direct Execution
v Basic Technique: Limited Direct Execution
v Switch between Modes
v Switch between Processes

J. Choi, DKU

Chap 3. A Dialogue on Virtualization

s Virtualization

Student: But what is virtualization, oh noble professor?

Professor: Imagine we have a peach.

Student: A peach? (incredulous)

Professor: Yes, a peach. Let us call that the physical peach. But we have many
eaters who would like to eat this peach. What we would like to present to each
eater is thfzzr own peach, so that they can be happy. We call the peach we give

o create many of these virtual peaches out of
the one physical peach And the important thing: in this illusion, it looks to each
eater like they have a physical peach, but in reality they don’t.

Student: So you are sharing the peach, but you don’t even know it?
Professor: Right! Exactly.

Student: But there’s only one peach.

Professor: Yes. And...?

Student: Well, if I was sharing a peach with somebody else, I think I would
notice.

Professor: Ah yes! Good point. But that is the thing with many eaters; nost
of the time they are napping or doing something else, and thus, you can snatch
that peach away and give it to someone else for a while. And thus we create the
illusion of many virtual peaches, one peach for each person!

Student: Sounds like a bad campaign slogan. You are talking about computers,
right Professor?

Professor: Ah, young grasshopper, you wish to have a more concrete example.
Good idea! Let us take the most basic of resources, the CPU. Assume there is one

physical CPU in a system (though now there are often two or four or more). What
virtualization does is take that single CPU and make it look like many virtual | ;| choi DKU

CPUs to the applications running on the ystem. Thus, while each aﬁph’cafion

Chap 4. The Abstraction: The Process

s Process definition

v A running program
v Scheduling entity (CPU), has its memory (DRAM)
= c.f.) program: a lifeless thing, sit on the disk and waiting to spring into

action
v There exist multiple processes (e.g. ppt, browser, word, player, ...)
» Each process has its own memory (address space), virtual CPU, state, ...

Figure 1.4
Hardware organization
of a typical system.
CPU: Central
Processing Unit, ALU:
Arithmetic/Logic Unit, PC:
Program Counter, USB:
Universal Serial Bus.

Bus interface

Process (hlﬂ:ask

System bus emory bus

Expansion slots for
er devices such

usB Graphics Disk as| network adapters
controller adapter controller
Mouse Keyboard Disﬁlay . helle rgg‘fg}:‘
m stored on disk
(Source: computer systems: a programmer perspective)
J. Choi, DKU

I
4

Chap 4. The Abstraction: The Process

= How to virtualize CPU? Time sharing system

~ cpul ’ n '
N (initial)
~ Mechanism . (when chrome scheduled)

= context switch: an ability to stop running one program and start running
another on a given CPU

v Policy
» scheduling policy: based on historical information or workload knowledge
or performance metric. < Time sharing vs. Space sharing
I J. Choi, DKU

5

4.1 Process

s Process structure
v Need resources to run:

maxXx
= CPU stack
Registers such as PC, SP, .. l
= Memory (address space)
Text: program codes
Data: global variables 1
Stack: local variables, parameters, ... S
Heap: allocated dynamically data
= |/O information
Opened files (including devices) & e
v Prog ram vs. PrOCeSS (Source: A. Silberschatz, “Operating system Concept”)

» Program: passive entity, a file containing instructions stored on disk
(executable file or binary)

» Process: active entity, having CPU and memory, doing I/Os
= Execute a program twice =» result in creating two processes (from one

Erogram= = text is eﬂuivalent while others (data, stack) vary (1-to-n)

J. Choi, DKU
6

4.2 Process API

s Basic APIs for a process

Create: An operating system must include some method to cre-
ate new processes. When you type a command into the shell, or
double-click on an application icon, the OS is invoked to create a
new process to run the program you have indicated.

Destroy: As there is an interface for process creation, systems also

provide an interface to destroy processes forcefully. Of course, many

processes will run and just exit by themselves when complete; when
they don’t, however, the user may wish to kill them, and thus an in-
terface to halt a runaway process is quite useful.
Wait: Sometimes it is useful to wait for a process to stop running;
thus some kind of waiting interface is often provided.
Miscellaneous Control: Other than killing or waiting for a process,
there are sometimes other controls that are possible. For example,
most operating systems provide some kind of method to suspend a
process (stop it from running for a while) and then resume it (con-
tinue it running).
Status: There are usually interfaces to get some status information
about a process as well, such as how long it has run for, or what
state it is in.

< Refer to chapter 5 in OSTEP

7

J. Choi, DKU

4.3 Process Execution: A Little More Detall

s How to start a program

v Load

»= Bring code and static data into the address space
» Based on executable format (e.g. ELF, PE, BSD, ...)
» Eagerly vs. Lazily (paging, swapping)

v Dynamic allocation CPU Memory

u StaCk : sta(t:i(t): t?ata ;

heap

» |nitialize parameters (argc, argv)
» Heap if necessary
v Initialization
= file descriptors (0, 1, 2)
= |/O or signal related structure
v Jump to the entry point: main()

Program Loading:
g Takes on-disk program

/_ ‘"\ and reads it into the
Mo

address space of process

Figure 4.1: Loading: From Program To Process

I J. Choi, DKU

4.4 Process States

s State and transition

admitted timeout exit terminated

I/0O or event completion I/0O or event wait

(Source: A. Silberschatz, “Operating system Concept”)

v State
» new(created, embryo), ready, running, waiting(blocked), terminated (zombie)
v Transition

» admitted, dispatch (schedule), timeout (preemptive, descheduled), wait
(sleep, I/O initiate), wakeup (/O done), exit

= suspend and resume: to Disk (swap) or to RAM

I J. Choi, DKU
9

4.4 Process States

s Example

v Used resources: CPU only = Figure 4.3

v Used resources: CPU and I/O = Figure 4.4
* Note: I/O usually takes quite longer than CPU

Time Processy Process; Notes Time Processy Process; Notes

1 Running Ready 1 Running Ready
2 Running Ready - Running Ready
3 Running Ready 3 Running Ready Processy initiates I/O

: 4 Blocked Running Processg is blocked,
4 Running Ready Processp now done : .

; 5 Blocked Running so Processy runs
5 - Rmm%ng 6 Blocked Running
b = Rmmmg 7 Ready Running [/0O done
7 = Running 8 Ready = Running Process; now done
8 - Running Process; now done 9 Running -
10 Running - Processp now done

Figure 4.3: Tracing Process State: CPU Only

Figure 4.4: Tracing Process State: CPU and I/O

<+ At the end of time 6 in Figure 4.4, OS can decide to 1) continue running the
processl or 2) switch back to process 0. Which one is better? Discuss tradeoff.

10

J. Choi, DKU

4.5 Data Structure

PCB (Process Control Block)

v Information associated with each process
* Process state

= Process ID (pid) process state
» Program counter, CPU registers Drocess number
Used during context switch
. Architecture dependent program counter
» CPU scheduling information
» Memory-management information registers

= Opened files
= |/O status information
= Accounting information

memory limits

list of open files

v Managed in the kernel's data segment

(Source: A. Silberschatz, “Operating system Concept”)

I J. Choi, DKU

4.5 Data Structure

s PCB Implementation example in OSTEP

v OS is a program, implementing a process using data structure (e.g.

struct proc and struct context)

v All “proc” structures are manipulated using a list

A the
F i i =

and restore
restart a process

xwrE will
subsecguent 1y

registers
stop and

S awe

st rruct context {
ot edip;
it ese;
int ekbx;
int =occ;
int edsx;
int =si;
int =di;
it ebp;
|
S the different states a process can be in

enum proc sSstate { UMNUSED, EMBEY O, SI.EREP I NG,

RUNNABLE, RUNNING, A0OMB IR } ;7

A the inFformation =xvb tracks about each process

Y dncluding its register context and =state
struact proc i
char xmem; AV BStart of process memory
uint =sS=; SN Size of process memory
char «kstack; A Bottom of kernel stack
S For this process
enum proc _state state; S Process state
Fark gpmidi LS Process ID
struct proc =parent; SV Parent process
woilid »chang; A ITE nmnon—=ero, sleeping on chamn
Tt kKilled; Lr IE non—emexro, have been kKilled
st ruct File wofile[NOFILE] ; Y Open files
st ruact inods =x=ocwd; A Current directory
st ruact context context; A4 Switcech here to rrun process
struct trapframe «tf; AV Trap f£frame for the
S current interruapt

The xv6 Proc Structure

|

Figure 4.5:

. Choi, DKU

4.5 Data Structure (Optional)

s PCB inreal OS (task structure in Linux)

‘ G v | @ s | @ N

1 Zone |6 Don' ’& Goor [scx mm taSk_StﬂJCt

| € C & elixirbootlincom/linux/latest/source/include/linu... @,

fd P

J include / linux / sched.h WIS search dentifier Q flles_stnuct
dend | f
b

struct task struct |
#1fdef CONFIG_THREAD_INFO_IN_TASK

+ fFor re:
+ st be
i o/
LS T28 struct thread_info thread_info;
v5.16.10 a0 dend!f
v5.16.9 731 unsigned int rate
v5.16.8 i3z
V5.16.7 i #ifdef CONFIG_PREEMPT_RT
vEleE 734 S+ saved state for ‘spinfock sleepers" +/
V5165 738 unslaned Int saved_state
5164 ! #end| f
v5.16.3 "
v5.162 7 of task_struct. Oty
va.16.1 added above here
v5.16
v5.16-rc8 [randomized_struct_fields_start
v5.16-rc7
V5.16.1C6 vald +stack;
¥l 746 r’ifgfu n’t;_at« flags (FF_+), d,»i-“:'rreljis?gi’hes below! +/
va.16-4cd unglgned int flags:
v5.16-rC3 74 unslgned int ptrace;
v5.16-12 T4
v5.16-rc1 #ifdef CONFIG_SHP
int on_cpu;
struct __call_single_node wake entry;
1 unsigned Int wakee_flips
f54 unstaned long wakee_f | ip_decay_ts:
struct task_struct +last_wakee!
linux % v5.16.12 poweredty etz 4
<https://elixir.bootlin.com/linux/latest/source/include/linux/sched.h > (SOUI'CE. clsA g 2 _jF_)

I J. Choi, DKU
13

Chap 5. Interlude: Process API

s Comments for Interlude by Remzi

ASIDE: INTERLUDES
Interludes will cover more practical aspects of systems, including a par-
ticular focus on operating system APIs and how to use them. If you don’t
like practical things, vou could skip these interludes. But you should like
practical things, because, well, they are generally useful in real life; com-
panies, for example, don’t usually hire yvou for vour non-practical skills.

I J. Choi, DKU

5.1 fork() system call

n fork()

v Create a new process: parent, child

v Return two values: one for parent (>0) and the other for child (0)

v Non-determinism: not decide which one run first.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4

5 int

[main(int argc, char =argvl[])

7 {

8 printf("hello world (pid:%d)\n", (int) getpid());
9 int e = Fork():

10 if (ec < 0) { // fork failed; exit

11 fprintf (stdery, "fork failed\n");

12 exit (1);

13 } else if (re == 0) { // child (new process)

14 printf ("hello, I am child {(pid:%d)\n",

15 } else { // parent goes down this path (main)
16 printf ("hello, I am parent of 3d (pid:%d)\n",
17 rc, (int) getpid());

18 }

19 return 0;

20 1

Figure 5.1: Calling fork () (pl.c)

I
15

{int) getpid()};

J. Choi, DKU

5.2 wait() system call

H wait()

v Block a calling process until one of its children finishes

v Now, deterministic =» synchronization

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4 #include <sys/wait.h>

5

[int

7 main(int argec, char =argvl|[])

8 {

9 printf ("helilo world (pid:%d)\n", (int) getpid{()});
10 int re = fork():;

11 if (rc < 0) { // fork failled; exit
12 fprintf (stderr, "fork failed\n");

13 exit(l);

14 } else if (rec == 0) { // child (new process)
15 printf ("helloe, I am child (pid:%d)\n",
16 } else | // parent goes down this path
17 int we = wait (NULL) ;

18 printf ("hellc, I am parent of %d (wc:3d)
19 rc, we, {(int) getpid(}});

20 |

21 return 0;

22 }

Figure 5.2: Calling fork () And wait () (p2.c)

|
16

getpid());

(pads: Sd) \a";

J. choi, DKU

5.3 exec() system call

s exec()

v Load and overwrite code and static data, re-initialize stack and heap,
and execute it (never return) =» refer to 8 page

v 6 variations: execl, execlp, execle, execv, execvp, execve

1 #include <stdic.h:>
. #include <stdlib.h>
3 Finclude <unistd.h>
4 #include <string.h>
5 #include <sys/wait.h>
&
v ant
s main {int argec, char wargwvl])
9 i
10 printfF("hello world {(pid:2d)s\n", (int) getpidd()):
11 it e = FTorkd();
12 if {rc =< Q) { LS Tork failed; e=exit
13 fprintf (stderr, "forlk failedh\n"™) ;
14 exit (1) ;
15 ' =ls= a1f {re == 0) { // child (new process)
16 printf{"hello, T am child (pid:%$d)\xn", (int) getpidd{)):;
17 char »mvargs[3]:r
18 myargs[0] = strdup (™wc™) A4 program: "™ (word count)
19 myargsl[1l] = strdup("p3.c"); /) argumsent: file to count
zZ0 myargs[2] = NULL; S marks end of arravy
21 execvp (myargs [0, myargs); ALY ruans word count
e.ie printf{"this shouldn"it print ocut™) ;
23 } o elsse | SY parent goes down this path (main)
24 int wo = wait (NULL) ;
printf ({("hello, I am parent of %d (wc%d) (pid:2d) vn™,
26 Ty WC, {int) getpid ()) ;7
.o T
28 return 0f
29 }

Figure 5.3: Calling fork (), wait (), And exec () (p3.c)

* Comments from Remzi: Do it on a Linux system. “Type in the code and run it is better for understanding”

I J. Choi, DKU
17

5.4 Why”? Motivating the API (optional)

s Why separate fork() from exec()?
v Modular approach of UNIX, support extensibility

1 finclude <stdio.h> parent //P‘ resumes
2 #include <stdlib.h> » wai
3 finclude <unistd.h>

4 #include <string.h>

5 #include <fentl.h>

@ #include <sys/wait.h>

7

& int

Q main{int argc, char xargvli]}

10 {

11 int o = Torki) ;

2 if (re < Q) {§ fS fork failed; exit

13 Eprintt {stderr, "tork failed\n");

14 exit (1) ;

15 } else if fre == 0) ({ // child: redireet standard output to a file
16 close (STDOUT FILENG) ;

17 open (. /pd.ocutput™, O _CREAT|C WERONLY |O_TRUNC, S_TIRWXU);

18

19 S now exec "woe'.o oo

20 char smyargs[3];

21 myargs[0] = strdup("we"); LS4 program: "we" (word count)
22 myargslil] = strdup("pd4.c™); // argument: file to count

23 myargs[2] = NULL; S/ marks end of array

24 execvp (myargs[0], myargs); S/ runs word count

25 } else { S/ parent goes down this path {(main)

26 int we = wait (NULL) ;

27 ¥

25 return 0;

29 +

Figure 5.4: All Of The Above With Redirection (p4. c)

I J. Choi, DKU
18

5.5 Other parts of the API

s Other APIs
v getpid(): get process id
v Kill(): send a signal to a process
v signal(): register a signal catch function
v scheduling related
v

= Command and tool
v ps, top, perf,
v read the man pages for commands and tools

ASIDE: RTFM — READ THE MAN PAGES
Many times in this book, when referring to a particular system call or
library call, we’ll tell you to read the manual pages, or man pages for
short. Man pages are the original form of documentation that exist on
UNIX systems; realize that they were created before the thing called the
web existed.
Spending some time reading man pages is a key step in the growth of
a systems programmer; there are tons of useful tidbits hidden in those
pages. Some particularly useful pages to read are the man pages for
whichever shell you are using (e.g., tcsh, or bash), and certainly for any
system calls your program makes (in order to see what return values and
error conditions exist).
Finally, reading the man pages can save you some embarrassment. When
yvou ask colleagues about some intricacy of fork (), they may simply
reply: “"RTFM.” This is your colleagues” way of gently urging you to Read
The Man pages. The F in RTFM just adds a little color to the phrase...

I J. Choi, DKU
19

lf@@@'

Quiz for 2nd-\Week 2nd-esson

TIME]
s Quiz

v 1. Process is defined as a running program. Discuss what
information are managed in PCB (Process Control Block).

v 2. Discuss the state of the parent and child process in the below
program just after line 10, 15 and 18, respectively. (assume that the
parent is scheduled before the child)

v Due: until 6 PM Friday of this week (18™", March)

admittad

110 or event completion

interrupt

scheduler dispatch

Waifing

exit

terminated

/0 or event walt

20

#include <stdio.h>
#include <stdlib.h>
$include <unistd.h>
#include <sys/wait.h>

int

main(int arge, char xargvl])

{
printf ("helle world (pid:%d)\n", (int) getpid());
int rc = fork();

if (re < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1) ;
} else if (rc == 0) { // child (new process)
printf ("helle, I am child (pid:%d)\n", (int) getpid());
} else { // parent goes down this path (main)
int we = wait (NULL) ;
printf ("hello, I am parent of %d (wc:%d) (pid:%d)\n",
re, wec, (int) getpid());
}
return 0;

Figure 5.2: Calling fork () And wait () (p2.c)

J. Choi, DKU

Chap 6. Mechanism: Limited Direct Execution

= Time sharing
v Key technique for virtualizing CPU

v |Issues
= Performance: how to minimize the virtualization overhead?
= Control: how to run processes while retaining control over the CPU?

(Source: Google image. Users can be replaced with programs or processes)

J. Choi, DKU
21

6.1 Basic Technique: Limited Direct Execution

s Performance-oriented =» Direct execution
v Run the program directly on the CPU
v Efficient but not controllable

OSs Program

Create entry for process list
Allocate memory for program
Load program into memory
Set up stack with argc/argv

* See 8E§§$@ﬁgamu

Run main()
Execute return from maimn

Free memory of process
Remove from process list

Figure 6.1: Direct Execution Protocol (Without Limits)

o~ Control is particularly important to OS. Without control, a process
could run forever, monopolizing resources.

I J. Choi, DKU
22

6.2 Problem #1: Restricted Operation

s Control mechanism 1: Restrict operations
v Most operations can run directly (e.g. arithmetic, loop, branch, ...)
v Some operations that should run indirectly (privileged operations)

» Gain more system resources such as CPU and memory

» [ssue an I/O request directly to a disk

v Through a well defined APIs (system call)
= E.g.) fork(), nice(), malloc(), open(), read(), write(), ...

= Mechanism: User mode vs. Kernel mode
v User mode: do privileged operation =» cause exception and killed
v Kernel mode: do privileged operation =» allowed
v Mode switch: using trap instruction, two stacks (user and kernel stack)

user process

user process executing

» calls system call

\

return from system call

/

¥

7

user mode
(mode hit = 1)

Fd

kernel

LY
trap
mode bit=0

return

mode bit = 1

execute system call

kernel mode
(mode bit = 0)

‘Source: A. Silberschatz, “Operating system Concept”)

23

J. Choi, DKU

6.2 Problem #1: Restricted Operation

. 0 | divide_by_zero()
How to handle trap in OS? 1 [page_fault()

v Using trap table (a.k.a interrupt vector table) 2 | segment_faulk()

v Trap table consists of a set of trap handlers 80| system_call)
= Trap (interrupt) handler: a routine that deals with a trap in OS trap table

» system call handler, div_by zero handler, segment fault handler, page fault
handler, and hardware interrupt handler (disk, KBD, timer, ...)

= |nitialized at boot time

v E.g.: System call processing

= System call (e.g. fork()) =» trap =» save context and switch stack = jump to
the trap handler = eventually in kernel mode

= Return from system call =» switch stack and restore context = jump to the
next instruction of the system call = user mode

0OS @ run Hardware Program
(kermel mode) (user mode)

Call system call
trap into OS5
save regs to kernel stack
move to kernel mode
jump to trap handler
Handle trap
Do work of syscall
return-from-trap
restore regs from kernel stack
move to user mode
jump to PC after trap

[L _ J. Choi, DKU

24

6.2 Problem #1: Restricted Operation

s Global view

i OS @ boot
Initialize (kemel mode)

Hardware

initialize trap table

(Boot)

remember address of. ..
syvscall handler

(kermel mode)

{user mode)

: Create entry for process list

i Allocate memory for program
Process: 1.cad program into memory

! Setup user stack with argw
create : T kernel stack with reg/PC

return-tfrom-trap

restore regs from kemel stack
move to user mode
jump to main

Trap

Handle trap

return-from-trap

(Sysca"%) Do work of syscall

Process:

i Free memory of process
destroy Remowve from process list

save regs to kermel stack
move to kernel mode
jump to trap handler

restore regs from kermel stack
move to user mode

trap into OS5

.. PR PR R

trap (via exit ())

Figure 6.2: Limited Direct Execution Protocol

25

J. Choi, DKU

6.2 Problem #1: Restricted Operation (optional)

s System call Implementation: Linux case study

user task
main()

{
fork();

J

libc.a

}

fork()

HI.(.)V| $2, %eax

0x0

0x80’

/| debug()

'~ [nmi()

(IvT, 1DT)

__g'iVide_e rror()

int $0x80
}

e oo T Do oo

""s,ystem_call())

... Kerne]
ENTRY(system_call) /* archli386/k‘err,1_9llentry.$ *|
SAVE_ALL

call *SYMBOL_NAME(sys_call_table)(,%eax,4)

ret_from_sys fall (schedule, signal, bh_active,

nested interrupt handling)

Sys_call_table

sys_exit() —

T~

sys_fork()/

sys_fork()

sys_read ()

I archli386Ikernellproge'"sﬁs.c */

sys write ()

I* kernel/fork.c */

(Source: 2ISA HE LHEALLE, 68)

26

e different in 64bit CPU, but the concept is the same |

J. Choi, DKU

6.3 Problem #2: Switching between Processes

Control mechanism 2: Context switch with Timer interrupt
v Time sharing: Process A = Process B = Process A=

v By the way, how can OS regain control of the CPU so that it can
switch between processes?

Two approach

v A cooperative approach: exploiting system calls

* Processes use a system call = control transfer to OS =» do scheduling
(and switching)

= A process causes exception (e.g. page fault or divide by zero) =
transfer control to OS

= A process that seldom uses a system call = invoke an yield() system
call explicitly

* No method for a process that does an infinite loop
v A Non-cooperative approach: using timer interrupt

I J. Choi, DKU

27

6.3 Problem #2: Switching between Processes

s A Non-cooperative approach: using timer interrupt

v Interrupt: a mechanism that a device notify an event to OS

» Interrupt happens =» current running process is halted =» a related
interrupt handler is invoked via interrupt table =» transfer control to OS

v Timer interrupt (like a heart in human)

= A timer device raises an interrupt every milliseconds (programmable) =
a timer interrupt handler = do scheduling (and switching) if necessary

v Context switch
= Context: information of a process needed when it is re-scheduled later

=» hardware registers

= Context save and restore

E.g. 1) Process A = Process B: save the context of the process A and
restore the context of process B. 2) later Process B = Process A: save the
context of the process B and restore the saved context of process A

. Where to save: proc structure in general

I J. Choi, DKU
28

6.3 Problem #2: Swit

ching between

Processes

s Context switch: global view

OS @ boot
(kermel mode)

Hardware

initialize trap table
Initialize
(Boot) :

start interrupt timer

remember addresses of...
syscall handler
timer handler

start timer
interrupt CPU in X ms

OS 4@ run
(kernel mode)

Program
(user mode)

(timer)

e Call switch () routine

and COI‘\:textrSMbitE g=(B) from proc-struct(B)
: switch to k-stack(B)

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

RIS Hmdl@ﬂl@ﬁap ...

mowve to user mode
jump to B's PC

Figure 6.3: Limited Direct Execution Protocol (Timer Interrupt)

29

J. Choi, DKU

6.3 Problem #2: Switching between Processes

s Context switch

v Memorize the last state of a process when it is preempted
= Context save (state save): storing CPU registers into PCB (in memory)
= Context restore (state restore): loading PCB into CPU registers

v Context-switch time is overhead (the system does no useful work
while switching) =» utilizing hardware support (hyper-threading)

process Py operating system process P,

interrupt or system call

executing Q / l
T | save state into PCB, |
: idle
|re|oad state from PCB1| 1
- idle interrupt or system call executing
| save state into PCB, |
- idle
J |re|oad state from PCBol
executing g‘\
(Source: A. Silberschatz, “Operating system Concept”)
I J. Choi, DKU

30

6.3 Problem #2: Switching between Processes

s Context switch: pseudo code

L= -~ B A - R R T e TR

NMT#FJM[\JNNMI—I——#I—I—I—I—I——
== B IR - R | S T T L RO == B = B~ A = LI IR = B~ . S = |

wold switchi{struct context »»o0ld, struct context »new);

#

Save current register context in old
and then load register context from new.
.globl swtch

swtchi:
Save old registers
movl 4({%esp), %Feax # put ocld ptr intc eax
popl O (%eax) # save the old IP
movl %esp, £ (%=ax) # and stack
movl %Febx, B (%eax) # and other registers

movl Secx, 12 {(%eax)
movl Zedx, 1l6(Zeax)
mowl Fesi, Z20(%esax)
movl Sedi, 24 (%eax)
movl %Sebp, 2B (%eax)

Load new registers

movl 4 (%esp), %eax # put new ptr into eax
movl 2B (%=ax), %ebp # restore other registers
mowvl 24 (%eax), %Sedi

movl 20 (%eax), %Sesi

movl 1§&(%eax), %Sedx

mowvl 12 (%eax), %Secx

movl B({Zfeax), %Sebx

movl 4 {%eax), Fesp # stack is switched here
pushl 0O (%eax) # return addr put in place
ret # finally return into new ctxt

Figure 6.4: The xv6 Context Switch Code

J. Choi, DKU

6.4 Worried about concurrency?

s Some issues

v What happens when you are handling one interrupt and another one
occurs?

v What happen when, during a system call, a timer interrupt occurs?

s Some solutions

v Disable interrupt (note: disable interrupt too long is dangerous)
v Priority
v Locking mechanism
v =¥ actually Concurrency issue
I J. Choi, DKU

32

Summary

s Process (Chapter 4)
v Process definition, Process state
v Process management (PCB, struct proc, struct task)

s Process manipulation (Chapter 5)
v fork(), wait(), exec(), kill() , ...

s Mechanism (Chapter 6)

v Limited Direct Execution: 1) Mode switch, 2) Context switch

v Key terms

ASIDE: KEY CPU VIRTUALIZATION TERMS (MECHANISMS)

The CPU should support at least two modes of execution: a re-
stricted user mode and a privileged (non-restricted) kernel mode.

Typical user applicaons run in user mode, and use a system call
to trap into the kernel to request operating system services.

The trap instruction saves register state carefully, changes the hard-
ware status to kernel mode, and jumps into the OS to a pre-specified
destination: the trap table.

When the OS finishes servicing a system call, it returns to the user
program wvia another special return-from-trap instruction, which re-
duces privilege and returns control to the instruction after the trap
that jumped into the OS5,

The trap tables must be set up by the OS at boot time, and make
sure that they cannot be readily modified by user programs. All
of this is part of the limited direct execution protocol which runs
programs efficiently but without loss of OS control.

Once a program is running, the OS5 must use hardware mechanisms
to ensure the user program does not run forever, namely the timer
interrupt. This approach is a non-cooperative approach to CIPU
scheduling.

Sometimes the OS, during a timer interrupt or system call, might
wish to switch from running the current process to a different one,
a low-level technigque known as a context switch.

v

JKU

Suggestion

s Read the questions in OSTEP Chapter 5 (homework) and
Chapter 6 (Measurement homework)

v Exercise them in a Linux machine (Ubuntu on Virtual box or server)

ASIDE: CoDING HOMEWORKS

Coding homeworks are small exercises where yvou write code to runon
a real machine to get some ience with some basic nperat: syshbem
APls. Adter all, you are (‘!nn ably) a mmputer scientist, and ﬁmm_fwrn
showld like to -l..‘l}dl., right? If yvou dr_m t, there is always CS theory, but
that's pretty hard. OF course, to truly become an ex yvou have bo
spend more than a little time hacking away at the a::ﬁ-mz indeed, find
every excuse you can to write some code and see how it works. Spend
the time, and become the wise master you know you can be.

Homework (Code)

In this homework, you are to gain some familiarity with the process
management APls about which you just read. Don’t worry — it's even
more fun than it sounds! You'll in general be much better off if you fnd
as much time as yvou can to write some code, so why not start now?

Questions

1. Write a program that calls fork (). Before calling fork (), have the
main process access a variable {(eg., x} and set its value o some-
thing (e.g., 100). What value is the variable in the child process?
What happens to the variable when both the child and parent change
the value of =7

2. Write a program that opens a file (with the cpen () system call)
and then calls fork () to create a new process. Can both the child
and parent access the file descriptor returned by cp=n (17 What
happens when they are writing to the file concurrently, i.e., at the
same Hme?

3. Write another program using fork {). The child process should
print “hello”™; the parent process should print “goodbye”. You should
try to ensure that the child process always prints first; can you do
this without calling wait() in the parent?

4. Write a program that calls fork () and then calls some form of
exac{) torun the program /bin/ls. See if you can try all of the
variants of exec (), including (on Linux) execl (), sxecle(),
execlp (), execv(), execvpl(}, and execvpa (). Why do
vou think there are so many variants of the same basic call?

34

16 MECHANISM: LIMITED DIRECT EXECUTION

Homework (Measurement)

ASIDE: MEASUREMENT HOMEWORKS
Measurement homeworks are small exercises where you write code to
run on a real machine, in order to measure some aspect of O5 or hardware
performance. The idea behind such homeworks is to give vou a little bit
of hands-on experience with a real operating system.

In this homework, you'll measure the costs of a system call and context
switch. Measuring the cost of a system call is relatively easy. For example,
you could repeatedly call a simple system call (e g, performing a 0-byte
read), and time how long it takes; dividing the time by the number of
iterations gives you an estimate of the cost of a system call.

(e thing you'll have to take into account is the precision and accu-
racy of your timer. A typical timer that you can use is gett imecfday ()}
read the man page for details. What],nu Il see there is that get t imecfday ()
returns the ime in microseconds since 1970; however, this does not mean
that the timer is precise to the microsecond. Measure back-to-back calls
to gettimeniday () tolearn something about how precise the timer re-
ally is; this will tell you how many iterations of your null system-call
test yvou'll have to run in order to get a good measurement result. If
gettimeafday () is not precise enough for you, you might look into
using the rdt sc instruction available on x86 machines.

Measuring the cost of a context switch is a little trickier. The Imbench

J. Choi,

DKU

Appendix

= Answers for questions commonly asked by students

lud < td.ms
e e prompt> /mem &; - /mem &
#include <stdlib.h> [1] 24113
#include "common.h" [2] 24114
- (24113) address pointed to by p: 0x200000
main(int argc, char xargvl[]) (24114) address pointed to by p: 0x200000
{ , _ _ (24113) p: 1
int *p = malloc(sizeof (int)) ; // al
assert (p !'= NULL) ; (24114) p: 1
printf (" (%$d) address pointed to by p: Sp\n", (24114) P 2
getpid (), p);: /S az .
«p — 0; Y 2 (24113) p: 2
while (1) X (24113) p: 3
Spin (1) ; (24114) p: 3
;ii:t;%"i%;; p: %d\n", getpid(), *p); /S a4 (24113) p: 4 S N Ch 2 - o TEP
; (24114) p: 4 (Source: Chapter 2 in)
return 0; . ..
1 i z i 5
Figure 2.3: A Program That Accesses Memory (mem. c) Figure 2.4: Running The Memory Program Multiple Times

v Q1: same address in the two processes?
v Q2:whynot1=22=223=24=-> ..
v Key concept: Program =» CPU using Compiler and OS

int a, b; stack q 272

main() —————— e

{ I S—— > Y | S
intc, d data a 100 a

» Compiler text main 0 0S b 568
. , b, Ioadin OS ..

int a stack| g |,9, (9) a 0S
intc, d A data : 100 R

} text main 0

_ . [J. Choi, DKU
Binary (virtual address) 35 DRAM (physical address) CPU

Program

Quiz for 3"9-Week 1st-Lesson

s Quiz

v 1. Discuss the differences between trap and interrupt.

v 2. Discuss how many mode switch and context switch happen in the
below right figure.

v Due: until 6 PM Friday of this week (25", March)

TRADP
VERSUS
INTERRUPT

TRAP

A signal raised from a user
program that indicates the
operating system o perform
on some functionality
immediately
R EE .
Generated by an instruction in
the user program
i EEEEE ..
Invokes OS functionality -
it transfers the control to
the trap handler

Synchronous and can arrive
after the execution of any
instruction
e e .
Also called a software
interrupt

INTERRLUPT
HEEEEEEEEEEEEEEEEEE
A signal 1o the processor
emitted by hardware
indicating an event that
needs immediate attention

R
Generated by hardware
devices
O EEEEE ..
Triggers the processor to
execute the corresponding
interrupt handler routine

Asynchronous and can occur
at the execution of any
instruction

Also called a hardware
interTupt

WVimit waw PEDLA A oom

X = Blocked Ready | |
/ \ =
| Ready | | | Ready / |
' - ‘I Read
Z| i Ready | | f 4
| .
| | | |
\ [5g] | swap| | | [
‘_T_ A . ‘I |I A 1
o ot |
4 v =
! (¢ Iy I
Running ’ Running | Running Running |~ ~* Running |
Sys.cal ” Sys.call 1 1
Interrupt Interrupt Interrupt
Bt VY e s ==
Time-slice

X uns buttries fo Input a message (from Z) which isntthare X runs a full time-slice this time

Zruns and outputs a message (unblocking X)

(Source: pediaa.com/difference-between-trap-and-interrupt/) (Source: xerxes.cs.manchester.ac.uk/comp251/kb/Context_Switching)

36

J. Choi, DKU

