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Chap 7. Scheduling: Introduction

= Scheduling
v Multiple actors want to use (limited) resources at a time
v Make order to select actors who can use the resources
s Process Scheduling

v Actor: process, Resource: processor (CPU)
v Select a process who run on a processor (or processors)
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/.1 Workload assumption

s Workload

v The amount of work to be done (dictionary)

v How much resources are required by a set of processes with the
consideration of their characteristics (in computer science)

s A simple assumption about processes (also called as job in
the scheduling research area)
v Each job runs for the same amount of time
All jobs arrives at the same time
Once started, each job runs to completion
All jobs only use the CPU (no 1/O)
The run-time of each job is known in advance

v c¢.f.) unrealistic, but we will relax them as we go
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7.2 Scheduling Metrics

m Metrics
v Something that we use to measure (e.g. performance, reliability, ...)

= Metrics for scheduling
v Turnaround time

=T = T completion -
v Response time

. Tresponse = Tfirstrun - Tarrival
v Fairness

" E.g.) Tcompletion OF P1 vs. that of P2
v Throughput

= E.g.) number of completed processes / 1 hour
v Deadline

" Eg) Tturnaround < Tdeadline

T

turnaround arrival

<+ \What do you think first when we choose a restaurant for lunch? (among above)

@ \What does the owner of the restaurant think first?
I J. Choi, DKU
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7.3 FIFO (First In, First Out)

= FIFO

v Schedule a process that arrives first (a.k.a FCFS (First Come First
Serve))

v Example

= 1) three processes: A, B, C, 2) run-time: 10 seconds, 3) arrival time: Os
(tie-break rule: alphabet in this example)

A B G

| ] L] T T T T
O 20 240 S0 80 100 120
Time

Figure 7.1: FIFO Simple Example

= What is the average turnaround time?

v Another example
= 1) three processes: A, B, C, 2) run-time: 100s for A, 10s for B and C

B <C

O 20 40 [S1a) 80 100 120
Time

Figure 7.2: Why FIFO Is WNot That Great

= Now, what is the average turnaround time?
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7.3 FIFO (First In, First Out)

= FIFO

v Pros)
= 1) Clearly simple, 2) Easy to implement
v Cons)
= 1) May cause a long waiting time (known as convoy effect)

The Convoy Effect, visualized

‘ shorter jobs
a & @&

(Source: http://web.cs.ucla.edu/classes/fall14/cs111/scribe/7al/index.html)

<+ How can we overcome this long waiting?
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7.4 SJF (Shortest Job First)

s SJF
v Give a higher priority to the shortest job (a.k.a Shortest Process Next
(SPN))

» “ten-items-or-less” in a grocery store
v Revisit the previous example again

= 1) three processes: A, B, C, 2) run-time: 100s for A, 10s for B and C

(e] 20 40 S0 80 100 120
Time

—

Figure 7. .3: SJF Simple Example

= What is the average turnaround time?
v Pros)
» Proved as an optimal algorithm
v Cons)
» What if B and C arrive a little bit late than A? (e.g. assume 10, not 0)

[BE.C arrive]
o | =] L

o 20 40 &0 80 100 120

Time J. Choi, DKU
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7.5 STCF (Shortest Time-to-Completion First)

s STCF

v Similar to SJF, but preemptive version (a.k.a Shortest Remaining-
Time next (SRT))
v 1) Non-preemptive scheduling - -
= Run a job to completion .
v 2) Preemptive scheduling
= Can stop a job (even though it is not completed yet) to run another job
= All modern schedulers are preemptive
» Require the context switch

v Example

= 1) three processes: A, B, C, 2) run-time: 100s for A, 10s for B and C, 3)
arrival time: Os for A, 10s for B and C.

[B.C arrive] [B,C arrive]
|

Al B C A A B C

(0] 20 40 80 80 100 120 9] 20 40 60 80 100 120
Time Time

e s Figure 7.4: SJF With Late Arrivals From B and C
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/.6 Response time

s [urnaround time
v A good metric for a batching system

s Response time

v More important for an interactive system?

» User would sit at a terminal, working something interactively (e.g. move
a mouse, type in a letter, visit a site, and so on)

s Revisit the example with SJF (also FIFO)

v 1) three processes: A, B, C, 2) run-time: 5 seconds, 3) arrival time:
Os (tie-break rule: alphabet in this example)

Pt B Lo

T L ] | L] L]
O 5 10 15 20 25 30
Time

Figure 7.6: SJF A gain (Bad for Response Time)

v What is the average turnaround time?
v How about the average response time?

<+ Imagine that you move a mouse and wait for a 5s.

I J. Choi, DKU
10



7.7 RR (Round-robin)

= RR

v Instead of running a job to completion, it runs a job for a time slice
(sometimes called a scheduling quantum) and switch to the next job
in the run queue

v Repeatedly switch jobs until jobs are finished

v Example
» 1) three processes: A, B, C, 2) run-time: 5s, 3) arrival time: Os (same to
the previous slide)
= RR with time slice = 1s (different here: non-preemptive in the previous
slide)
» What is the average response time?
= What is the average turnaround time?

ABCABCABCABCABC A B
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time Time
Figure 7.7: Round Robin (Good for Response Time) Figure 7.6: SJF Again (Bad for Response Time)

o \What if the time slice is set as 500ms or 100ms or 10ms. Discuss tradeoffJ Chol. DKL
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7.7 RR (Round-robin)

m [radeoff of time slice (time quantum)

v Small: good responsiveness, high context switch overhead
v Large: low context switch overhead, bad responsiveness
v We need to balance the tradeoff

» Good response time with reasonable overhead
= E.g. time slice: 10ms (or 100ms), context switch overhead: 1ms

TIP: AMORTIZATION C AN REDUCE COSsSTS

The general technique of amortization is commonly used in systems
when there is a fixed cost to some operation. By incurring that cost less
often (i.e., byv performing the operation fewer times), the total cost to the
systerm is reduced. For example, if the time slice is set to 10 ms, and the
context-switch cost is 1 ms, roughly 1096 of time is spent context switch-
ing, and is thus wasted. If we want to arrrortize this cost, we can increase
the time slice, e.z2.. to 100 ms. In this case, less than 192 of time is spent
context switching, and thus the cost of time-slicing has been amortized.

m [radeoff between response time and turnaround time

v Traditional issue in computer science: interactivity vs performance
v You can not have your cake and eat it too.

e Question, “explain which process you prefer to schedule when there are two
processes, browser and backup apps” =» Considerations: 1) interactive or batch,
2) fairness, 3) importance, 4) real-time, ...

I J. Choi, DKU
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7.8 Incorporating /O

s Most of applications do I/Os

v Example

= Two jobs A and B, both need 50ms of CPU time
= Aruns for 10 ms and then issue an I/O request (it takes 10 ms)

v What to do while performing 1/Os?

= Busy waiting: Figure 7.8 """'P T
= Blocked: Figure 7.9 \ ¥
v How to implement the Figure 7.9 W
A A A A ABBBBB BﬂBﬂBﬁBﬂB
~§ 1111 |||
0 20 40 60 80 Téﬁ 1éﬁ 1AG Tﬂﬂ TEG T4ﬂ

Time

Figure 7.8: Poor Use of Resources

T|me

Figure 7.9: Overlap Allows Better Use of Resources
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@@@ Quiz for 3"9-Week 2M-Lesson

TIRAE]
s Quiz

v 1. Discuss the differences between preemptive and non-preemptive
scheduling. Give some examples (Anything is fine either from
operating systems or real word)

v 2. What are the average turnaround time and average response time
of the workload in Figure 7.6 and 7.7 when we assume that the
context switch overhead is 100ms instead of Oms?

v Due: until 6 PM Friday of this week (25™, March)

A B G ABCABCABCABCABC
T | T T | I | | | I | i T T |
05 10 1B A % X 0 5 10 15 20 5 3
Time Time
Figure 7.6: S]F Again (Bad for Response Time) Figure 7.7: Round Robin (Good for Response Time)
e J. Choi, DKU
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8. MLFQ

s Existing scheduling policies

v FIFO (6 page), SJF (8 page), STCF(9 page): good for turnaround
time, terrible for response time

v RR (11 page): vice versa
= How to optimize the turnaround time while minimizing
response time?

v MLFQ (Multi-Level Feedback Queue)
= By F. Corbato (Turing Award Winner)
= Approach: Learn from the past to predict the future

TiP: LEARN FROM HISTORY

The multi-level feedback queue is an excellent example of a system that
learns from the past to predict the future. Such apprnaahea are com-
mon in operating systems (and many other places in Computer Science,
including hardware branch predictors and caching algorithms). Sur:h
approaches work when jobs have phases ot behavior and are thus pre-
dictable; of course, one must be careful with such techniques, as they can
easily be wrong and drive a system to make worse decisions than they
would have with no knowledge at all.

I J. Choi, DKU
15



8.1 MLFQ: Basic Rules

= MLFQ

v Consist of multiple queues
v Each queue is assigned a different priority level

v A job that is ready to run is on a single queue (running or blocked
jobs are out of the queues)

v A job with higher priority (a job on a higher queue) is chosen to run
next (RR among jobs in the same queue)
e Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
e Rule 2: If Priority(A) = Priority(B), A & B run in RR.

Highest Priority

@2 - = >~ = >~ 2t D
Q |~ O~ am >
@ [~ >—=C = D

Lowest Priority
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8.2 Attempt #1: How to Change Priority

= How to assign a priority to each process?

o Rule 3: When a job enters the system, it is placed at the highest
priority (the topmost queue).
o Rule 4a: If a job uses up an entire time slice while running, its pri-
ority is reduced (i.e., it moves down one queue).
o Rule 4b: Ifajob gives up the CPU before the time slice is up, it stays
at the same priurity level. _Give up before spending its whole time slice

New-joi—> | Q2 ( dED A

v Not fixed, change the priority of a job based on its observed behavior
(feedback)

» Use CPU intensively =» Next lower-level queue =» Low priority
» Recently do I/Os = same queue =» relative High priority

= Batch (low priority) vs. Interactive (high priority)

I J. Choi, DKU
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8.2 Attempt #1: How to Change Priority

= Examples

v Example 1: A Single Long-Running Job =» Fig. 8.2
= Assumption: Three queues (Q2, Q1, Q0), one job, 10ms time slice
v Example 2: A long and a new arrived Job = Fig. 8.3

= Just arrived job = MLFQ presumes the job is a short job =» Give high priority
Really a short job: run quickly and complete (approximates SJF)
If not: move down the queues, proving itself as a long-running

v Example 3: What about 1/0? = Fig. 8.4
= Assumption: two jobs, A: long-running job, B: short-intensive job

» MLFQ keep a process at the same queue if it gives up CPU before using up its
time slice (rule 4b)

Prefer /O intensive job for good response time

1N ([T
] 50 100 150 200 0 50 100 150 200
Figure 8.2: Long-running Job Over Time Figure 8.3: Along Came An Interactive Job Figure 8.4: A Mixed I/O-intensive and CPU-intensive Workload
[ J. Choi, DKU
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8.2 Attempt #1: How to Change Priority

Problem with our current MLFQ

v Pros of the current version
» Share CPU fairly among long-running jobs
= Allow short-running or I/O intensive jobs to run quickly

v lssues

= Starvation

If there are “too many” interactive jobs, long-running jobs will never receive
any CPU time (they starve)

» User can trick the scheduler (game the scheduler)

Just before the time slice over, issue an I/O request = remain in the same
queue unfairly

= A program may change its behavior

CPU-intensive at the first phase = interactive at the later phase (e.g. service
user request after long initialization)

I J. Choi, DKU



8.3 Attempt #2: The Priority Boost

s New rule for avoid starvation

v One approach: periodic boosting

e Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

v Example
= Three jobs, two interactive jobs and one long-running job

* Priority boost every 50 ms

Q2
m. ||| IO | N |
Q1 QA E g -.g g
& foal &8 A
w.._ w_.__.wm._ - -
QO QO
B 1 BN 1 1111 |
(8] 50 100 150 200 0 50 100 150 200

Figure 8.5: Without (Left) and With (Right) Priority Boost

I
20
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8.4 Attempt #3: Better Accounting

= How to prevent gaming of MLFQ scheduler?

v Change the rule 4a and 4b = instead of forgetting how much of a
time slice a job used at a given queue, keep track it. Once a job has
used its allotment, it is demoted to the next queue

e Rule 4: Once a job uses up its time allotment at a given level (re-
gardless of how many times it has given up the CPU)), its priority is
reduced (i.e., it moves down one queue).

Q1 Qn

0 50 100 150 200 150 200

Figure 8.6: Without (Left) and With (Right) Gaming Tolerance

I J. Choi, DKU
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8.5 Tuning MLFQ and Other Issues

s Parameters
v |Issues

» How many queues?
= How big should the time slice be per queue”? Same or Different?
= How often do the priority boost?

v Many MLFQ variants with diverse parameter settings

= Different time slice per queue: shorter for higher priority queue and vice

versa (10, 20 and 40ms in Fig. 8.7 = can reduce context switch overhead)
= Solaris case: Table based
= BSD, Linux: Decay based (mathematical)

= Support user advice (e.g. nice system call)

0 50 100 150 200

Figure 8.7: Lower Priority, Longer Quanta

lowest

riority

scheduling
order

169

160

interrupt threads

159

100

realtime (RT) threads

59

60

system (S¥Y5) threads

o

59 fair share (Fs5) threads
fixed priority (FX) threads
timeshare (T5) threads

interactive (1A) threads

Figure 6.24 Solaris

eduling.

ource: A, Silberschatz, “Operating system Coycgﬁ
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15 160 5 51
20 120 10 52
25 120 15 52
30 80 20 53
35 80 25 54
40 40 30 55
45 40 S5 56
50 40 40 58
55 40 45 58
59 20 49 59
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8.6 MLFQ: Summary

s Name analysis
v Multi-level: multiple queues

v Feedback: based on history (track job’s behavior over time and treat
them accordingly)

s Final rules

Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

Rule 2: If Priority(A) = Priority(B), A & B run in RR.

Rule 3: When a job enters the system, it is placed at the highest
priority (the topmost queue).

Rule 4: Once a job uses up its time allotment at a given level (re-
gardless of how many times it has given up the CPU), its priority is
reduced (i.e., it moves down one queue).

Rule 5: After some time period .S, move all the jobs in the system
to the topmost queue.

s Features

v Try to good both for short-term interactive jobs and long-term batch
jobs

23
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8.6 Scheduling Comparison

s Workload: 5 processes (jobs)
Process Arrival Time Service Time
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8.6 MLFQ: Summary

::4)

s Example: RR (time quantum = 1), RR (time quantum
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8.6 MLFQ: Summary

1,2,4,8, ...)

s Example: MLFQ (time quantum = 1), MLFQ (time quantum
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|r@@@|

Quiz for 4t"-Week 1st-Lesson

TIRAE]
s Quiz

v 1. Discuss the differences between interactive and batch job. What
scheduling policies are good for interactive or batch jobs?

v 2. Using the below left figure, explain what processes are in the
ready queue (including order) at time 8.5 under the RR policy with

the time quantum = 1.

v Due: until 6 PM Friday of this week (18!, April)

Process Arrival Timme Service Tirme
A 0 =
153 e.d s
= 4 “q
(] (&3 =
[ = >
0 5 10 15 20
et r ¢ r r &+ -+ +r-& & ;& °r 1 1 1]
I 1 T I I 1 T I I T L I 1 L T I 1 T T I 1
I I I 1 1 I I 1 I 1 I I I I I I
A i I I D A R A A
Round-robin B 1 1 I | ! '_l : ! _l : ! _l : :
(RR}). g = 1 oo | _I | [ [ [
I I I 1 I I I
AR e =l e
“I I I 1 I I Il I I : I— I : II_I I 1 I' 1 I
| I I I I I I | I I I
A l I A A A A
Round-obin inm ESEER NN ERS
(RR).g =4 cl I 1t L bt 4 b
DI I I 1 I 1 I I : : : 41 I :l
AN T T T T T O O A e s T Y S

Process Arrival Time Burst Time
P1 4 5
P2 3 6 Average waiting time : (16+14+20+19+2)/5=71/5=142
P3 2 7 Context switching : 10 times
P4 0 9
p5 1 ) *Timeslice =3
Total 29
arrival
WEE Iwaiting! | I I I |
(1] e Ry |
| il I | F]o
P || i 11 . —— i
| | 1 | | | | 1 (|
== = | | | L |
P3 . | | | ] - ‘ | Tl .
LT I | .
o4 ——
_ | I 3 | | | J ! -
| || | | | | |
PS ﬂ || | | | | I |
(I = = | 1 =) Ll time
0 3 5 8 n 14 17 20 23 25 2829

Round Robin Scheduling

(Source: https://steady-benny.medium.com/pintos-1-3-cpu-scheduling-7d85923bf2eb)
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Chap 9. Scheduling: Proportional Share

s Proportional Share (fair share)

v Concept: instead of turnaround time or response time, it tries to
guarantee that each job obtain a certain percentage of CPU time
(especially important for Cloud system)

v Scheduling algorithms: Lottery, Stride, ...

Example: 3 VMs A, B, Cwith 3 : 2 : 1 share ratio

2
B 3
6

4

(o> I (%

D D A

6
6
6

8

(o> I (o))

8

9
6

28
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9.1 Basic Concept: Tickets Represent Your Share

s Lottery scheduling
v Made by Waldspurger and Weihl
v Schedule a job who wins the lottery

v A job that has more tickets has more chance to win

= Ticket: represent the share of a resource

= Two jobs, A has 75% tickets while B has 25% tickets =» win probability
with 75% and 25% = 75% of CPU is expected to be used by A

v Example
= Total tickets: 0~99, A: 0~74, B: 75~99

Here is an example output of a lottery scheduler’s winning tickets:
63 85 70 39 76 17 29 41 36 39 10 99 68 83 63 62 43 0 49 49
Here is the resulting schedule:

A A A A A A A A A A A A A A A A

B B B B

= 80% for A, 20% for B in this example (since it is based on probability).
But, the longer it runs, the more likely it achieves the desired share

I J. Choi, DKU
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9.2 Ticket Mechanisms

= Tlicket currency

v Allow users to allocate tickets among their own jobs with correct
global value
v Example
= Two users, A: 100 tickets, B: 100 tickets
= A has two jobs. A gives them each 500 tickets
= B has only one job. B gives it 10 tickets
= How many tickets are given into three jobs with a global viewpoint?

User A —> 500 (A"s currency) te Al —-> 50 (global currency)
—>» 500 (A's currency) to A2 -> 50 (global currency)
User B —> 10 (B's currency) to Bl —-> 100 (global currency)

= [icket transfer
v A job temporarily hands off its tickets to another job
v Especially useful in a client/server environment

m Ticket inflation
v Temporarily raise or lower the # of tickets (in a cooperative env.)

I J. Choi, DKU
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9.3 Implementation

s Benefit of Lottery scheduling
v Simplicity
= All it needs are 1) random(), 2) counter and 3) ticket at each job

Job:A Job:B Job:C

v Example head — riyqo0 — Tiso > Tixeso > UL
= Three job (see figure)
= Assume that we pick the number 300 =» schedule C

L= R R = L I N

r

/S counter: used to track if we'we found the winner yet

int counter = 0;
S/ winner: use some call to a random number generator to
i t a walue, between 0 and the total # of tickets

e
M

int winner getrandom ({0, totaltickets);

// current: use this to walk through the list of jobs
node_t *current = head;

S/l loop until the sum of ticket walues is > the winner
while {(current]) [

counter = counter 4+ current—>tickets;
if (counter > winner)
break; // found the winner
current = current—>next;
}
JS "current” is the winner: schedule it...

Figure 9.1: Lottery Scheduling Decision Code
31
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9.4 An Example & 9.5 How to Assign Tickets?

s Unfairness analysis

v Assumption: two jobs, same ticket, same run time (e.g. 10ms * N)

v U=C1/C2

= C1: Completion time of the earlier finished job
= C2: Completion time of the later finished job

» |Implication (assume that N = 1)

. C1=10, C2=20 = U = 0.5 (worst fairness)
. C1=20, C2=20 = U =1 (best fairness, ideal)

. Long running =» Fig. 9.2

= How to assign tickets?
v Money =» Cloud computing
v Priority = Soft RT system

Vo

Unfairness (Average)

] ] 1
1 10 100 1000
Job Length
Figure 9.2: Lottery Fairness Study

J. Choi, DKU
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9.6 Why Not Deterministic?

Lottery scheduling

v Not deterministic (rely on random number generator = see 29 page)

Stride scheduling

v A deterministic fair-share scheduler
= Key concept: Stride = Inverse in proportion to the # of tickets

= How to Schedule
Schedule a job who has the smallest pass value
Increment the pass value by its stride
v Example
= Three jobs: A, B, C, Tickets: 100, 50, 250
= Stride: 100, 200 and 40 (divide 10000 by ticket)

Pass(A) Pass(B) Pass{C) Who Runs?
(stride=100) (stride=200) (stride=40)

[4] (4] (1] A
100 (8] (8] B
100 200 ] [
100 200 40 i
100 200 S50 [
100 200 120 A
200 200 120 C
200 200 160 C
200 200 200

Figure 9.3: Stride Scheduling: A Trace
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Chap. 10 Multiprocessor Scheduling (Advanced)

s Multiprocessor and Multicore
v Multiprocessor: a system with multiple processors
v Multicore: a chip (socket, processor) with multiple cores

v Modern computer equips with multiple processors with multicore
(with hyperthread) = Manycore

s For utilizing multicore effectively

v Typical programs: serial program (use only one CPU) = make
parallel program (e.g. using threads, Map/Reduce, ...)

v Need a scheduler that can handle multiple CPUs = load balancing

dacc I ASIDE: ADVANCED CHAPTERS
| LE':‘:J" {r“PTI' Advanced chapters require material from a broad swath of the book to
truly understand, while logically fitting into a section that is earlier than
[ Lt Cache ||l 1.1 Cache said set of prerequisite materials. For example, this chapter on multipro-
12 Cache ||| L2 Cache cessor scheduling makes much more sense if you've first read the middle
_I | piece on concurrency; however, it logically fits into the part of the book
' on virtualization (generally) and CPU scheduling (specifically). Thus, it
Spsien Nty is recommended such chapters be covered out of order; in this case, after

Bl ok | d the second piece of the book.
|
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10.1 Background: Multiprocessor Architecture

= CPU cache (L1, L2, LLC)

v Small, fast memory that generally hold copies of popular data
(based on temporal and spatial locality)

= Temporal locality: when a data is accessed, it is likely to be accessed
again in the near future (e.g. stack, for loop, ...)

= Spatial locality: when a data is accessed, it is likely to access data
near as well (e.g. array, sequential execution, ...)

v Benefit

= Cache hit: make a program run fast by reducing access to the
relatively slow main memory

» Delayed write: modified data are kept in cache, not writing immediately
into memory so that it possibly merges consecutive writes into a single
memory access

CPU

Cache

Memory

I  Figure 10.1: Single ggu With Cache J. Choi, DKU



10.2 Synchronization & 10.3 Cache affinity

s Issues on Multiprocessor
v Cache affinity

= When a process runs, it is often advantageous to run it on the same
CPU where the process ran previously

= Since the CPU might build up a state in the cache (and TLB) for the

process
G.d\Q FrH(m'-}y and My lbtibre Coche aH.‘m"r? Stf\eolulin
cove Mulkithreaded rocesford : ,
P’\v(lcl;a‘c e v:: eA g Pr s <D Wl T ndlac
E? 3;’ T, de scheduled .
LI

L

https://www.youtube.com/watch?v=fSUqT4WpPdM

J. Choi, DKU
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10.4 Single-Queue Scheduling

x SQMS (Single Queue Multiprocessor Scheduling)
v Use the framework for single processor scheduling
v Pros: simplicity
v Cons: cache affinity (5 jobs and 4 CPUs example, need to some

complex mechanism to support cache affinity to obtain the below
right figure), scalability (especially due to lock for shared queue)

Queve—» A — B — C — D — E —»nuLL

CPUO m C B ... (repeat) ... CPUO ﬂ AlA ... (repeat) ...

CPU 1 B A E ... (repeat) ... CPU 1 : . : ... (repeat) ..
CPU2 | C A m ... (repeat) ... CPU 2 [ uitei E ... (repeat) ...

CPU3 EC - A. .. (repeat) ... CPU3 pyEEDENVENIN E ... (repeat) ...

(without affinity consideration) (with affinity considerationJ) et DKL
. ol,
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10.5 Multi-Queue Scheduling

s MQMS (Multi-Queue Multiprocessor Scheduling)

v Multiple queues, Jobs assigned a queue, Each queue is associated
with a CPU (or a set of CPUs)

v Pros: cache affinity, less lock contention

Q— A — C Qi— B — D

CPUD | A | A Bt A | A EEEGE A | A [BEEECEE ..
ST o o o o e o o f

v Cons: need to consider load balancing (migration, work stealing)

Q— A Qt—= B = D 00— U= B =D

CPUO |A|A[A[A|A|A|A|A|AIAIALA GPUO

m - mEmImE

J. Choi, DKU

CPU 1

38



10.6 Linux Multiprocessor Schedulers (Optional)

s [ hree different schedulers

v O(1) scheduler

» Multi-queue, similar to MLFQ (schedule higher priority, priority are
changed dynamically)

v CFS (Complete Fair Share Scheduler)

» Multi-queue, similar to stride scheduling (deterministic proportional
share scheduling)

v BF Scheduler
» Single-queue, proportional share with more complicate scheme

schedulal()._
.
schad_find_first_sat() l
rd i

/bt O priority O |

MNodes represent

sched_entity(s)

indexed by thair
warliual mun e

N e T bit 7 (priority 7)
E lists of all runnabla
? tasks, by priority
: EOEEEmEEEWEE
140-bit priority array | ’ ...
“—— bit 139 (priority 138) A [NiL] (T (W W
e
e wirtual runtime

-
- -

list of runnable tasks
for priority 7

) Most nead of CPU Least nead of CPU

J. Choi, DKU

run the first process in the list —
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Chap 11. Summary Dialogue on CPU virtualization

= What we have learned

v Mechanism: Time sharing, Context switch, Timer interrupt, Handler
v Policy: FCFS, SJF, RR, MLFQ, Lottery, Stride, Multiprocessor, ...

s How to compare scheduling policies?
v Analytic models: deterministic evaluation
v Queueing theory: mathematical evaluation
v Simulation: programming a model. executing it with real traces.
v Implementation: materialize as a real system

CReai system} Malke a model —)—C Model systerm >

Compare Cormparre
arnd iMmprowe and improwe
mocdel theory

Process of building a computer model, and the imnterplay betwvween 5
experiment, simulation, anmnd theocry

(Source: https://en.wikipedia.org/wiki/Computer_simulation)

J. Choi, DKU
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Lab 1: Make a Scheduling Simulator

= What is Lab. project?
v A programming project for demonstrating what you have learnt.

s What is the Lab. 17

v Goal: Make a scheduling simulator shown in Page 24.

= Can configure different policies and workloads

= See Lab. 1 in https://github.com/DKU-EmbeddedSystem-Lab/2022 DKU_ OS
v How to submit?

* 1) Report (Goal, Design, Results) = upload e-learning campus

= 2) Source code & report = email to TA (ghwlsO03s@gmail.com)
v Requirement

= 1) At least two execution results (one workload same as 24 pages and
different workloads), 2) Environment: ubuntu on virtual box (See Lab. 0 in the
OS github), 3) Due: until Friday of the next week (6PM, 8" April).

v Bonus: Lottery scheduler

e eSS e iwzall ST Scerwvice Timmne ‘ © Gitrun -

ooy

&
I




|Q@@ Quiz for 4t"-Week 2"9-L_esson

Ve

s Quiz

v 1. We need to consider two things for multiprocessor scheduling.
One is ( ) that tries to run a job on the same CPU where the process
ran previously and the other is ( ) that tries to distribute jobs evenly
among CPUs.

v 2. Discuss how does the stride policy schedule 3 VMs whose shares
(tickets) are 2, 3, 5, respectively?

v Due: until 6 PM Friday of this week (18!, April)

Example: 3 VMs A, B, Cwith 3 : 2 : 1 share ratio

A 2 4 4 6 8 8 8 10 10
B 3 3 6 6 6 9 9 9 12
C 6 6 6 6 6 6 12 12 12

J. Choi, DKU
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Appendix 1: 7.9 No More Oracle

= How to predict the length of a job (run time)?
v By user specification
v By prediction (approximation)

= The CPU time length will be similar in length to the previous ones
(characteristics of program behavior) = exponential moving average

where >z ., =predicted value for the next CPU burst
> ¢, = actual length of n” CPU burst
>a,0<a<l

= Validation with o =0.5 and t,=10 (o determines the weight of each
history)

12 — —

t;, 10 /

/
t; — —~

N A O

CPU burst () & a & a 13 13 13

"guess" (T)) 10 8 (S5 (S} = o 11 12

‘Source: A. SilberschatzI “Oﬁerating system Concept”)
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Appendix 1: Real time scheduling

= Task model: T, (E;, D, P;, A)

v E;: execution time, D;: Deadline

v P.: period if periodic task, A;: arrival time
s Scheduling algorithm

v EDF (Earliest Deadline First)
= Executes a job with the earliest deadline

v RM (Rate Monotonic)
= A task with a shorter period has a higher priority (D= P, in general)

| Task | Execution Time | Period | Priority |
T1 1 a High
T2 2 G Mediunm
T3 > 12 L.ow

Preaeampted Preempted

— Task 3 completes

Task 3 [

Task 2 e

Task 1 ] o What if T1 (2,4)?
1 1 1 ] 1 L Time

1
Lo/ 1 2 3 <1 5 686 *F 8 S 10 11 12 13 14

Table 1: A scheduling problem from [1]
Figure 1: “Critical instant” analysis, also from [1]

(Source: https://lwww.eecs.umich.edu/courses/eecs473/Labs/Lab3F17.pdf)

I J. Choi, DKU
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Appendix 3: 10.1 Multiprocessor Architecture

s CPU cache is much complicated in Multiprocessor

v Cache coherence: maintain coherence among caches
= A program running on CPU1 reads data from address A
CPU1 fetches the data and keep it its cache (assume its value is D)
The program modifies D into D’. CPU1 applies the delayed write
OS decides to schedule the program into CPU2 (due to load balancing)
The program re-read the value from address A.
The value is the old one(D), not the correct one (D’) = incoherent
v Bus snooping: one of mechanisms for supporting coherence
= Monitoring cache, Invalidate or update if data is modified

CPU CPU

Cache Cache
I I Bus

Memory

I . .
Figure 10.2: Two CPUs With Caches Sharing Memory J. Chol, DKU



Appendix 3: 10.2 Don’t Forget Synchronization

= Another issues

v Mutual exclusion on shared data

» Imagine if programs on two CPUs enter the List_Pop() routine at the
same time

» The first program executes line 9 while the second one executing line
8. What is the right content in the value (or head) variable?

= May cause invalid pointer, double free, same value return, ...
v Synchronization such as locking is required for correctness

1 typedef struct _ Node t {
2 int valus;
3 struct _ Node_ t #*next;
4 } Nede_ _t;
5
6 int List Pop() |
7 Node_t *tmp = head; // remember old head ...
B int wvalue = head->values; ff ... and its wvalue
u head = head->next; // advance head to next pointer
10 free (tmp) ; // free old head
11 return value; // return value at head
12 ]
Figure 10.3: Simple List Delete Code
I J. Choi, DKU
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