
J. Choi, DKU

Lecture Note 3. Scheduling

March 23, 2022

Jongmoo Choi
Dept. of software

Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)

J. Choi, DKU

Contents

From Chap 7~11 of the OSTEP
Chap 7. Scheduling: Introduction
ü Workload assumptions and Scheduling Metrics
ü Algorithms: FIFO, SJF, STCF, RR
ü Incorporating I/O

Chap 8. Scheduling: MLFQ (Multi-Level Feedback Queue)
ü Basic rules
ü Attempts: Change priority, Boost priority, Better accounting
ü Tuning MLFQ and other issues

Chap 9. Scheduling: Proportional Share
ü Basic concept: Lottery, Stride
ü Ticket mechanism, implementation, example and issues

Chap 10. Multiprocessor Scheduling
ü Background: load balancing, cache affinity
ü Scheduling: single queue, multi-queue

Chap 11. Summary Dialogue on CPU virtualization

2

J. Choi, DKU

Chap 7. Scheduling: Introduction

Scheduling
ü Multiple actors want to use (limited) resources at a time
ü Make order to select actors who can use the resources

Process Scheduling
ü Actor: process, Resource: processor (CPU)
ü Select a process who run on a processor (or processors)

3

CPU1
ready

running

J. Choi, DKU

7.1 Workload assumption

Workload
ü The amount of work to be done (dictionary)
ü How much resources are required by a set of processes with the

consideration of their characteristics (in computer science)

A simple assumption about processes (also called as job in
the scheduling research area)
ü Each job runs for the same amount of time
ü All jobs arrives at the same time
ü Once started, each job runs to completion
ü All jobs only use the CPU (no I/O)
ü The run-time of each job is known in advance

ü c.f.) unrealistic, but we will relax them as we go

4

J. Choi, DKU

7.2 Scheduling Metrics

Metrics
ü Something that we use to measure (e.g. performance, reliability, …)

Metrics for scheduling
ü Turnaround time

§ Tturnaround = Tcompletion - Tarrival

ü Response time
§ Tresponse = Tfirstrun - Tarrival

ü Fairness
§ E.g.) Tcompletion of P1 vs. that of P2

ü Throughput
§ E.g.) number of completed processes / 1 hour

ü Deadline
§ E.g.) Tturnaround < Tdeadline

ü ….
E What do you think first when we choose a restaurant for lunch? (among above)
E What does the owner of the restaurant think first?

5

J. Choi, DKU

7.3 FIFO (First In, First Out)

FIFO
ü Schedule a process that arrives first (a.k.a FCFS (First Come First

Serve))
ü Example

§ 1) three processes: A, B, C, 2) run-time: 10 seconds, 3) arrival time: 0s
(tie-break rule: alphabet in this example)

§ What is the average turnaround time?
ü Another example

§ 1) three processes: A, B, C, 2) run-time: 100s for A, 10s for B and C

§ Now, what is the average turnaround time?

6

J. Choi, DKU

7.3 FIFO (First In, First Out)

FIFO
ü Pros)

§ 1) Clearly simple, 2) Easy to implement
ü Cons)

§ 1) May cause a long waiting time (known as convoy effect)

7

(Source: http://web.cs.ucla.edu/classes/fall14/cs111/scribe/7a/index.html)

E How can we overcome this long waiting?

J. Choi, DKU

7.4 SJF (Shortest Job First)

SJF
ü Give a higher priority to the shortest job (a.k.a Shortest Process Next

(SPN))
§ “ten-items-or-less” in a grocery store

ü Revisit the previous example again
§ 1) three processes: A, B, C, 2) run-time: 100s for A, 10s for B and C

§ What is the average turnaround time?
ü Pros)

§ Proved as an optimal algorithm
ü Cons)

§ What if B and C arrive a little bit late than A? (e.g. assume 10, not 0)

8

J. Choi, DKU

7.5 STCF (Shortest Time-to-Completion First)

STCF
ü Similar to SJF, but preemptive version (a.k.a Shortest Remaining-

Time next (SRT))
ü 1) Non-preemptive scheduling

§ Run a job to completion
ü 2) Preemptive scheduling

§ Can stop a job (even though it is not completed yet) to run another job
§ All modern schedulers are preemptive
§ Require the context switch

ü Example
§ 1) three processes: A, B, C, 2) run-time: 100s for A, 10s for B and C, 3)

arrival time: 0s for A, 10s for B and C.

9

vs

J. Choi, DKU

7.6 Response time

Turnaround time
ü A good metric for a batching system

Response time
ü More important for an interactive system?

§ User would sit at a terminal, working something interactively (e.g. move
a mouse, type in a letter, visit a site, and so on)

Revisit the example with SJF (also FIFO)
ü 1) three processes: A, B, C, 2) run-time: 5 seconds, 3) arrival time:

0s (tie-break rule: alphabet in this example)

ü What is the average turnaround time?
ü How about the average response time?

10

E Imagine that you move a mouse and wait for a 5s.

J. Choi, DKU

7.7 RR (Round-robin)

RR
ü Instead of running a job to completion, it runs a job for a time slice

(sometimes called a scheduling quantum) and switch to the next job
in the run queue

ü Repeatedly switch jobs until jobs are finished
ü Example

§ 1) three processes: A, B, C, 2) run-time: 5s, 3) arrival time: 0s (same to
the previous slide)

§ RR with time slice = 1s (different here: non-preemptive in the previous
slide)

§ What is the average response time?
§ What is the average turnaround time?

11

E What if the time slice is set as 500ms or 100ms or 10ms. Discuss tradeoff

vs

J. Choi, DKU

7.7 RR (Round-robin)

Tradeoff of time slice (time quantum)
ü Small: good responsiveness, high context switch overhead
ü Large: low context switch overhead, bad responsiveness
ü We need to balance the tradeoff

§ Good response time with reasonable overhead
§ E.g. time slice: 10ms (or 100ms), context switch overhead: 1ms

Tradeoff between response time and turnaround time
ü Traditional issue in computer science: interactivity vs performance
ü You can not have your cake and eat it too.

12

E Question, “explain which process you prefer to schedule when there are two
processes, browser and backup apps” è Considerations: 1) interactive or batch,
2) fairness, 3) importance, 4) real-time, …

J. Choi, DKU

7.8 Incorporating I/O

Most of applications do I/Os
ü Example

§ Two jobs A and B, both need 50ms of CPU time
§ A runs for 10 ms and then issue an I/O request (it takes 10 ms)

ü What to do while performing I/Os?
§ Busy waiting: Figure 7.8
§ Blocked: Figure 7.9

ü How to implement the Figure 7.9

13

J. Choi, DKU

Quiz for 3rd-Week 2nd-Lesson

Quiz
ü 1. Discuss the differences between preemptive and non-preemptive

scheduling. Give some examples (Anything is fine either from
operating systems or real word)

ü 2. What are the average turnaround time and average response time
of the workload in Figure 7.6 and 7.7 when we assume that the
context switch overhead is 100ms instead of 0ms?

ü Due: until 6 PM Friday of this week (25th, March)

14

J. Choi, DKU

8. MLFQ

Existing scheduling policies
ü FIFO (6 page), SJF (8 page), STCF(9 page): good for turnaround

time, terrible for response time
ü RR (11 page): vice versa

How to optimize the turnaround time while minimizing
response time?
ü MLFQ (Multi-Level Feedback Queue)

§ By F. Corbato (Turing Award Winner)
§ Approach: Learn from the past to predict the future

15

J. Choi, DKU

8.1 MLFQ: Basic Rules

MLFQ
ü Consist of multiple queues
ü Each queue is assigned a different priority level
ü A job that is ready to run is on a single queue (running or blocked

jobs are out of the queues)

ü A job with higher priority (a job on a higher queue) is chosen to run
next (RR among jobs in the same queue)

16

Q0

Q1

Q2

J. Choi, DKU

Q0

Q1

Q2

8.2 Attempt #1: How to Change Priority

How to assign a priority to each process?

ü Not fixed, change the priority of a job based on its observed behavior
(feedback)
§ Use CPU intensively è Next lower-level queue è Low priority
§ Recently do I/Os è same queue è relative High priority
§ Batch (low priority) vs. Interactive (high priority)

17

Use up its time slice

New job

Give up before spending its whole time slice

J. Choi, DKU

8.2 Attempt #1: How to Change Priority

Examples
ü Example 1: A Single Long-Running Job è Fig. 8.2

§ Assumption: Three queues (Q2, Q1, Q0), one job, 10ms time slice
ü Example 2: A long and a new arrived Job è Fig. 8.3

§ Just arrived job è MLFQ presumes the job is a short job è Give high priority
• Really a short job: run quickly and complete (approximates SJF)
• If not: move down the queues, proving itself as a long-running

ü Example 3: What about I/O? è Fig. 8.4
§ Assumption: two jobs, A: long-running job, B: short-intensive job
§ MLFQ keep a process at the same queue if it gives up CPU before using up its

time slice (rule 4b)
• Prefer I/O intensive job for good response time

18

J. Choi, DKU

8.2 Attempt #1: How to Change Priority

Problem with our current MLFQ
ü Pros of the current version

§ Share CPU fairly among long-running jobs
§ Allow short-running or I/O intensive jobs to run quickly

ü Issues
§ Starvation

• If there are “too many” interactive jobs, long-running jobs will never receive
any CPU time (they starve)

§ User can trick the scheduler (game the scheduler)
• Just before the time slice over, issue an I/O request è remain in the same

queue unfairly
§ A program may change its behavior

• CPU-intensive at the first phase è interactive at the later phase (e.g. service
user request after long initialization)

19

J. Choi, DKU

8.3 Attempt #2: The Priority Boost

New rule for avoid starvation
ü One approach: periodic boosting

ü Example
§ Three jobs, two interactive jobs and one long-running job
§ Priority boost every 50 ms

20

J. Choi, DKU

8.4 Attempt #3: Better Accounting

How to prevent gaming of MLFQ scheduler?
ü Change the rule 4a and 4b è instead of forgetting how much of a

time slice a job used at a given queue, keep track it. Once a job has
used its allotment, it is demoted to the next queue

21

J. Choi, DKU

8.5 Tuning MLFQ and Other Issues

Parameters
ü Issues

§ How many queues?
§ How big should the time slice be per queue? Same or Different?
§ How often do the priority boost?

ü Many MLFQ variants with diverse parameter settings
§ Different time slice per queue: shorter for higher priority queue and vice

versa (10, 20 and 40ms in Fig. 8.7 è can reduce context switch overhead)
§ Solaris case: Table based
§ BSD, Linux: Decay based (mathematical)
§ Support user advice (e.g. nice system call)

22

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

8.6 MLFQ: Summary

Name analysis
ü Multi-level: multiple queues
ü Feedback: based on history (track job’s behavior over time and treat

them accordingly)
Final rules

Features
ü Try to good both for short-term interactive jobs and long-term batch

jobs

23

J. Choi, DKU

8.6 Scheduling Comparison

Workload: 5 processes (jobs)

Scheduling policies

(Source: “Operating systems: Internals and Design Principle” by W. Stalling)24

J. Choi, DKU

8.6 MLFQ: Summary

Example: RR (time quantum = 1), RR (time quantum = 4)

25

J. Choi, DKU

8.6 MLFQ: Summary

Example: MLFQ (time quantum = 1), MLFQ (time quantum
= 1, 2, 4, 8, …)

26

J. Choi, DKU

Quiz for 4th-Week 1st-Lesson

Quiz
ü 1. Discuss the differences between interactive and batch job. What

scheduling policies are good for interactive or batch jobs?
ü 2. Using the below left figure, explain what processes are in the

ready queue (including order) at time 8.5 under the RR policy with
the time quantum = 1.

ü Due: until 6 PM Friday of this week (1st, April)

(Source: https://steady-benny.medium.com/pintos-1-3-cpu-scheduling-7d85923bf2eb)

27

J. Choi, DKU

Chap 9. Scheduling: Proportional Share

Proportional Share (fair share)
ü Concept: instead of turnaround time or response time, it tries to

guarantee that each job obtain a certain percentage of CPU time
(especially important for Cloud system)

ü Scheduling algorithms: Lottery, Stride, …

28

J. Choi, DKU

9.1 Basic Concept: Tickets Represent Your Share

Lottery scheduling
ü Made by Waldspurger and Weihl
ü Schedule a job who wins the lottery
ü A job that has more tickets has more chance to win

§ Ticket: represent the share of a resource
§ Two jobs, A has 75% tickets while B has 25% tickets è win probability

with 75% and 25% è 75% of CPU is expected to be used by A
ü Example

§ Total tickets: 0~99, A: 0~74, B: 75~99

§ 80% for A, 20% for B in this example (since it is based on probability).
But, the longer it runs, the more likely it achieves the desired share

29

J. Choi, DKU

9.2 Ticket Mechanisms

Ticket currency
ü Allow users to allocate tickets among their own jobs with correct

global value
ü Example

§ Two users, A: 100 tickets, B: 100 tickets
§ A has two jobs. A gives them each 500 tickets
§ B has only one job. B gives it 10 tickets
§ How many tickets are given into three jobs with a global viewpoint?

Ticket transfer
ü A job temporarily hands off its tickets to another job
ü Especially useful in a client/server environment

Ticket inflation
ü Temporarily raise or lower the # of tickets (in a cooperative env.)

30

J. Choi, DKU

9.3 Implementation

Benefit of Lottery scheduling
ü Simplicity

§ All it needs are 1) random(), 2) counter and 3) ticket at each job

ü Example
§ Three job (see figure)
§ Assume that we pick the number 300 è schedule C

31

J. Choi, DKU

9.4 An Example & 9.5 How to Assign Tickets?

Unfairness analysis
ü Assumption: two jobs, same ticket, same run time (e.g. 10ms * N)
ü U = C1/C2

§ C1: Completion time of the earlier finished job
§ C2: Completion time of the later finished job
§ Implication (assume that N = 1)

• C1=10, C2=20 è U = 0.5 (worst fairness)
• C1=20, C2=20 è U = 1 (best fairness, ideal)
• Long running è Fig. 9.2

How to assign tickets?
ü Money è Cloud computing
ü Priority è Soft RT system
ü …

32

J. Choi, DKU

9.6 Why Not Deterministic?

Lottery scheduling
ü Not deterministic (rely on random number generator è see 29 page)

Stride scheduling
ü A deterministic fair-share scheduler

§ Key concept: Stride è Inverse in proportion to the # of tickets
§ How to Schedule

• Schedule a job who has the smallest pass value
• Increment the pass value by its stride

ü Example
§ Three jobs: A, B, C, Tickets: 100, 50, 250
§ Stride: 100, 200 and 40 (divide 10000 by ticket)

33

J. Choi, DKU

Chap. 10 Multiprocessor Scheduling (Advanced)

Multiprocessor and Multicore
ü Multiprocessor: a system with multiple processors
ü Multicore: a chip (socket, processor) with multiple cores
ü Modern computer equips with multiple processors with multicore

(with hyperthread) è Manycore
For utilizing multicore effectively
ü Typical programs: serial program (use only one CPU) è make

parallel program (e.g. using threads, Map/Reduce, …)
ü Need a scheduler that can handle multiple CPUs è load balancing

34

J. Choi, DKU

10.1 Background: Multiprocessor Architecture

CPU cache (L1, L2, LLC)
ü Small, fast memory that generally hold copies of popular data

(based on temporal and spatial locality)
§ Temporal locality: when a data is accessed, it is likely to be accessed

again in the near future (e.g. stack, for loop, …)
§ Spatial locality: when a data is accessed, it is likely to access data

near as well (e.g. array, sequential execution, …)
ü Benefit

§ Cache hit: make a program run fast by reducing access to the
relatively slow main memory

§ Delayed write: modified data are kept in cache, not writing immediately
into memory so that it possibly merges consecutive writes into a single
memory access

35

J. Choi, DKU

10.2 Synchronization & 10.3 Cache affinity

Issues on Multiprocessor
ü Cache affinity

§ When a process runs, it is often advantageous to run it on the same
CPU where the process ran previously

§ Since the CPU might build up a state in the cache (and TLB) for the
process

https://www.youtube.com/watch?v=fSUqT4WpPdM

36

J. Choi, DKU

10.4 Single-Queue Scheduling

SQMS (Single Queue Multiprocessor Scheduling)
ü Use the framework for single processor scheduling
ü Pros: simplicity
ü Cons: cache affinity (5 jobs and 4 CPUs example, need to some

complex mechanism to support cache affinity to obtain the below
right figure), scalability (especially due to lock for shared queue)

(without affinity consideration) (with affinity consideration)
37

J. Choi, DKU

10.5 Multi-Queue Scheduling

MQMS (Multi-Queue Multiprocessor Scheduling)
ü Multiple queues, Jobs assigned a queue, Each queue is associated

with a CPU (or a set of CPUs)
ü Pros: cache affinity, less lock contention

ü Cons: need to consider load balancing (migration, work stealing)

38

J. Choi, DKU

10.6 Linux Multiprocessor Schedulers (Optional)

Three different schedulers
ü O(1) scheduler

§ Multi-queue, similar to MLFQ (schedule higher priority, priority are
changed dynamically)

ü CFS (Complete Fair Share Scheduler)
§ Multi-queue, similar to stride scheduling (deterministic proportional

share scheduling)
ü BF Scheduler

§ Single-queue, proportional share with more complicate scheme

39

J. Choi, DKU

Chap 11. Summary Dialogue on CPU virtualization

What we have learned
ü Mechanism: Time sharing, Context switch, Timer interrupt, Handler
ü Policy: FCFS, SJF, RR, MLFQ, Lottery, Stride, Multiprocessor, …

How to compare scheduling policies?
ü Analytic models: deterministic evaluation
ü Queueing theory: mathematical evaluation
ü Simulation: programming a model. executing it with real traces.
ü Implementation: materialize as a real system

40

(Source: https://en.wikipedia.org/wiki/Computer_simulation)

J. Choi, DKU

Lab 1: Make a Scheduling Simulator

What is Lab. project?
ü A programming project for demonstrating what you have learnt.

What is the Lab. 1?
ü Goal: Make a scheduling simulator shown in Page 24.

§ Can configure different policies and workloads
§ See Lab. 1 in https://github.com/DKU-EmbeddedSystem-Lab/2022_DKU_OS

ü How to submit?
§ 1) Report (Goal, Design, Results) è upload e-learning campus
§ 2) Source code & report è email to TA (ghwls03s@gmail.com)

ü Requirement
§ 1) At least two execution results (one workload same as 24 pages and

different workloads), 2) Environment: ubuntu on virtual box (See Lab. 0 in the
OS github), 3) Due: until Friday of the next week (6PM, 8th April).

ü Bonus: Lottery scheduler

41

J. Choi, DKU

Quiz for 4th-Week 2nd-Lesson

Quiz
ü 1. We need to consider two things for multiprocessor scheduling.

One is () that tries to run a job on the same CPU where the process
ran previously and the other is () that tries to distribute jobs evenly
among CPUs.

ü 2. Discuss how does the stride policy schedule 3 VMs whose shares
(tickets) are 2, 3, 5, respectively?

ü Due: until 6 PM Friday of this week (1st, April)

42

J. Choi, DKU

Appendix 1: 7.9 No More Oracle

How to predict the length of a job (run time)?
ü By user specification
ü By prediction (approximation)

§ The CPU time length will be similar in length to the previous ones
(characteristics of program behavior) è exponential moving average

§ Validation with a =0.5 and t0=10 (a determines the weight of each
history)

10 ,
burst CPU oflength actual

burst CPUnext for the valuepredicted 1

££
=

=+

aa

t

>

>

>
th

n

n

nt

() .1 1 nnn t taat -+=+

where

(Source: A. Silberschatz, “Operating system Concept”)
43

J. Choi, DKU

Appendix 1: Real time scheduling

Task model: Ti (Ei, Di, Pi, Ai)
ü Ei: execution time, Di: Deadline
ü Pi: period if periodic task, Ai: arrival time

Scheduling algorithm
ü EDF (Earliest Deadline First)

§ Executes a job with the earliest deadline
ü RM (Rate Monotonic)

§ A task with a shorter period has a higher priority (Di= Pi in general)

(Source: https://www.eecs.umich.edu/courses/eecs473/Labs/Lab3F17.pdf)

E What if T1 (2,4)?

44

J. Choi, DKU

Appendix 3: 10.1 Multiprocessor Architecture

CPU cache is much complicated in Multiprocessor
ü Cache coherence: maintain coherence among caches

§ A program running on CPU1 reads data from address A
§ CPU1 fetches the data and keep it its cache (assume its value is D)
§ The program modifies D into D’. CPU1 applies the delayed write
§ OS decides to schedule the program into CPU2 (due to load balancing)
§ The program re-read the value from address A.
§ The value is the old one(D), not the correct one (D’) è incoherent

ü Bus snooping: one of mechanisms for supporting coherence
§ Monitoring cache, Invalidate or update if data is modified

45

J. Choi, DKU

Appendix 3: 10.2 Don’t Forget Synchronization

Another issues
ü Mutual exclusion on shared data

§ Imagine if programs on two CPUs enter the List_Pop() routine at the
same time

§ The first program executes line 9 while the second one executing line
8. What is the right content in the value (or head) variable?

§ May cause invalid pointer, double free, same value return, …
ü Synchronization such as locking is required for correctness

46

