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Chap. 25 A Dialogue on Concurrency

Student: Umm... OK. So what is concurrency, ol wonderful professor?
Professor: Well, imagine we have a peach —
Student: (interrupting) Peaches again! What is it with you and peaches?

Professor: Ever read T.S. Eliot? The Love Song of ]. Alfred Prufrock, “Do I dare
to eat a peach”, and all that fun stuff?

Student: Oh yes! In English class in high school. Great stuff! 1 really liked the
part where —

Professor: (interrupting) This has nothing to do with that — 1 just like peaches.

Anyhow, magine there are a lot of peaches on a table, and a lot of people who
’{'UI.‘:JI to eaft them. Lc t’s say we dm’ it this way: em,h eater ﬁraf 1denf1ﬁ€:: a pench

Student: Hmimm... seems like you might see a peach that somebody else also
sees._If they get there first, when you reach out, no peach for you!

Professor: Exactly! So what should we do about it?

Student: Well, probably develop a better way of going about this. Maybe form a
line, and when you get to the front, grab a peach and get on with it.

Professor: Good! But what's wrong with your approach?
Student: Sheesh, do I have to do all the work?
Professor: Yes.

Student: OK, let me think. Well, we used to have many people grabbing for
peaches all at once, which is faster. But in my way, we just go one at a time,
which is correct, but quite a bit slower. The best kind of approach would be fast

and correct, probably.

< Shared data, Race condition, Atomicity, Performance , Fine/Coarse-grained locking, ...

I J. Choi, DKU
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Chap. 26 Concurrency: An Introduction

s Sofar

v CPU virtualization
» Goal: Enable multiple programs to be executed (conceptually) in parallel

= How to: Make an illusion that we have virtual CPUs as many as the # of
processes

v Memory virtualization
» Goal: Share physical memory among processes in an isolated manner
= How to: Create an illusion that each process has a private, large address space
(virtual memory)

s From now on

v Multi-threaded program
» Thread: flow of control
* Process: one flow of control + resources (address space, files)

» Multi-threaded program (or process): multiple flow of controls + resources
(address space, files)

Multiple threads share address space
cf.) Multiple Processes do not share their address space
v Concurrency
» Shared data = race condition = may generate wrong results
» Concurrency: enforce to access shared data in a synchronized way

I J. Choi, DKU



26.1 Why Use Threads?

s [ hread definition

v Computing resources for a program

» CPU: registers (context), scheduling entity

» Address space: code, data, heap and stack

» Files: non-volatile data and I/O devices
v Process model

= Use all resources exclusively

= fork(): create all resources = better isolation, worse sharing, slow creation
v Thread model

» Share resources among threads: code, data, heap and files

= Exclusively resources used by a thread: CPU abstraction and stack

» pthread_create(): create exclusive resources only =» fast creation, better
sharing, worse isolation

| code H data || files | ‘ code || data H files

| stack | ‘registers| |registers‘ |registers‘

‘ stack || stack H stack

thread — ; g ; ;4—— thread

single-threaded process multithreaded process

I (Source: A. Silberschatz, “%perating system Concept”) J. Choi, DKU




26.1 Why Use Threads?

s Benefit of Thread

v Fast creation
» Process: heavyweight, Thread: lightweight

v Parallelism

= Example: sort 100,000 items
Single thread =>» scan all for sorting
Multithread: divide and conquer (Google’'s MapReduce Model)

v Can overlap processing with waiting (e.g. I/0 waiting)

= Example: web server
Single thread: receive, processing, response
Multiple thread: receive thread, processing thread x n, response thread

v Data sharing

(2) create new
(1) request thread to service
the request
client server thread

U

(3) resume listening
for additional
client requests

<+ Make SW (e.g. browser, web server): either using multiple processes or multiple threads?

seemept are indencndent scheduling entity (can utilize CPUs), but different sharing seméﬂtlcgg<U
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26.1 Why Use Threads?

s [hread management

v Several stacks in an address space

» Stack: called as thread local storage since each thread has its own stack
v Scheduling entity
= State and transition
Thread state: Ready, Run, Wait, ... (like process)
= Each thread has its own scheduling priority
= Context switch at the thread level
= = TCB (Thread Control Block)
for thread-specific information management

[9] 4= oOKB
Program Code w,ﬁ,’;?;ﬁfs‘inig;%';'fg';‘-,;e Program Code
1KEB 1KB
the hea 4
Heap coﬁt:—.i;%é;?ﬁgcmdegam Heap
namic 1A structure s
2ica I:hll:;it growes dowr ard) 2KB
i (free)
(free)
Stack (2)
o T el 77
15KB contains Ioc.ajeeariabl-es 15KEB
n ks i i :
Stack Srpine i & myioon Stack (1)
16KB 16KB

Figure 26.1: Single-Threaded And Multi-Threaded Address Spaces

J. Choi, DKU
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26.2 An Example: Thread Creation

s [hread API

v pthread_create(): similar to fork(), thread exits when the passed

function reach the end.
v pthread_join(): similar to wait(), for synchronization

finclude <stdio.h>

i

2 finclude <assert.h>

3 #include <pthread.h>

-4

5 void smythread(void +arg) |

6 printf("%s\n", (char *) arg);

7 return NULL;

8 )

9

10 int

11 main{int arge, char xargwv[]) {

12 pLthread £t pl, pZ;

13 ink Te;

14 printf ("main: ‘begin\n™);

15 ro = pthread create(&pl, HNULL, mythread, "A"); assert (rc
16 rc = pthread create{&p2, HNULL, mythread, "B"}; assertC (rc
17 // join waits for the threads to finish

18 ro = pthread —Goin(pl, NULL); assert(rc == 0);
19 rc = pthread Jjoin(p2, NULL); assert({rc == 0);
20 printf("main: end\n");

21 return D;

22

Figure 26.2: Simple Thread Creation Code (t0.c¢)

I
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26.2 An Example: Thread Creation

s [hread trace

v Threads: main, thread1, thread?2

v Scheduling order: depend on the whims of scheduler
= Main =» create t1 =» create t2 = wait = run t1 =» run t2 =» main: Fig. 3
= Main =» create t1 =» run t1 =» create t2 =» run t2 =» wait =» main: Fig. 4
= Main = create t1 =» create t2 = run t2 = run t1 =» wait =» main: Fig. 5

main

Thread1 Thread2

starts running
prints “main: begin”
creates Thread 1
creates Thread 2
waits for T1

waits for T2

prints “main: end”

runs
prints i
returns

runs
prints o
returns

Figure 26.3: Thread Trace (1)

main Thread1 Thread2
starts running
prints “main: begin”
creates Thread 1
runs
prints “A”
returns
creates Thread 2
runs
prints “B”
returns
waits for T1

returns immediately; T1 is done

waits for T2

returns immediately; T2 is done

prints “main: end”

Figure 26.4 Thread Trace (2)

main

Thread 1 Thread?

starts running
prints “main: begin”
creates Thread 1
creates Thread 2

waits for T1

waits for T2

returns immediately; T2 is done

prints “main: end”

rns

prints “B”
returns
runs
prints AN
returns

Figure 26.5: Thread Trace (3)
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26.3 Why It Gets Worse: Shared Data

m
N
-

Lo I T B R ]

[~

Ll.ilLl.'lIdIJL.ith.lth.'lh.'llJ
=S =S | I OO I

ed data example (see Figure 2.5in LN 1)

Finclude <stdioc.h>
#;:C__de <pthread.h>
#include "mythreads.h"™

static wvolatiie int counter = 0;

v

S mythread ()

P

Sl Bimply adds 1 to counter repaeatedly, in a loop
SA N, this is mot how you woizld add 10, 000, O0Q tao
S oa counter, bot it shows the problem nicely.

oy

woiod o=
mythread (void =arg)
1
printf{"%=s: begiohn™,
it = ;
Fforr {4 =  QF 4
counter =

printf{"%$s: doneZ\n™,
return  NELL.#

pthread t+ pi, pZ;

printEf{"main: begin
Fthread create{&apl,
Pthread craeate (sp2,

fcounter

MITL.I.,

¥ Join waits fDI the threads
Pthread jJjoim{pl, NIOLL)} 7
EPthroad 1D;ﬂﬂp£, o L0 0 S P T
printf{"main: done with both

retwrm O;

fchar =)

= Bd)\n",
MOLI., mythroad,
mythread,

"AETg) §

L

S5 main ()

v

A Just lannches two threads (pthread create)
S oand then waits for them (pthread —join)

rary

g

main{int argc, char =arTgwl])

{

"R":'p-
"E-:Ilu'

o fini=h

(fcountaear = Sd4dyMw\o™,

CcounteTr) ;

countaer)

Figure 26.6: Sharing Data: Uh Oh (tl.c)
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26.3 Why It Gets Worse: Shared Data

s Results of the shared data example

prompt> ./main

prompt> gcc —o main main.

main: begin (counter = 0)
A: begin

B: begin

A: done

B: done

main: done with both (counter = 20000000}

c —Wall -pthread

prompt> ./main
main: begin (counter = 0)

prompt> ./main
main: begin (counter = 0)

A: begin A: begin
B: begin B: begin
A: done A: done
B: done B: done
main: done with both (counter = 19345221) main: done with both (counter = 19221041)
v Different results (not deterministic)
v Big question? Why does this happen?
[ J. Choi, DKU
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26.4 The Heart of Problem: Uncontrolled Scheduling

= High level viewpoint CPU DRAM
19 for (1 = 0; i< IeT; itt) I
20 counter = counter + 1;

21 }

s CPU level viewpoint

T'1 -Il-z et qountel‘
100 mov 0x804%9alc, %eax : ' (0x8049a1c)
105 add o0x1, %eax v )
108 mov  $eax, 0xB04%alc ! }

s Scheduling viewpoint

(after instruction)

0Os Thread 1 Thread 2 PC “seax counter
before critical section 100 0 50
mov 0x804%alc, Yheax 105 50 50
add $0x1, Y%eax 108 51 50
interrupt
saoe T1's state
restore T2's state 100 1] 50
mov Ox8049alc, Yoeax 105 s0 50
add $0x1, Yheax 108 51 50
mov Yeeax, 0x8049a1c 113 51 51
interrupt
saoe T2's state
restore T1's state 108 51 51

mov %eax, 0x8049al1c 113 51 51

Figure 26.7: The Problem: Up Close and Personal
<@ The counter value increases only 1, even though two additions are performed

<+~ Some students show their caEabilig while using pthread_mutex_lock() in the 1st rjjog?]eyvg&lé.
. ol,
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26.4 The Heart of Problem: Uncontrolled Scheduling

s Reason
v Two threads access shared data at the same time =» race condition

v Uncontrolled scheduling = Results are different at each execution
depending on scheduling order

s Solution
v Controlled scheduling: Do all or nothing (indivisible) =» atomicity
v The code that can result in the race condition = critical section
= Code ranging from 100 to 108 in the example of the previous slide
v Allow only one thread in the critical section = mutual exclusion

Glenarchy

llllllll

o
TTTTTT
DDDDD

TTTTTTT

National Park  “Manapouri Qe
- Mil

(One-lane Tunnel to Milford Sound in New Zealand)

I J. Choi, DKU
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26.6 One More Problem: Waiting for Another

s [wo issues related to concurrency
v Mutual exclusion: only one thread can enter a critical section

v Synchronization: one thread must wait for another to complete some

action before it continues

ASIDE: KEY CONCURRENCY TERMS
CRITICAL SECTIDN, RACE CDNDITIGN,
INDETERMINATE, MUTUAL EXCLUSION
These four terms are so central to concurrent code that we thought it

worth while to call them out explicitly. See some of Dijkstra’s early work
[D65,D68] for more details.

e A critical section is a piece of code that accesses a shared resource,
usually a variable or data structure.

e A race condition arises if multiple threads of execution enter the
critical section at roughly the same time; both attempt to update
the shared data structure, leading to a surprising (and perhaps un-
desirable) outcome.

e An indeterminate program consists of one or more race conditions;
the output of the program varies from run to run, depending on
which threads ran when. The outcome is thus not deterministic,
something we usually expect from computer systems.

e To avoid these problems, threads should use some kind of mutual
exclusion primitives; doing so guarantees that only a single thread
ever enters a critical section, thus avoiding races, and resulting in
deterministic program outputs.

I
14
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Chap. 27 Interlude: Thread API

s [ hread classification

v User-level thread

» Thread managements are done by user-level threads library including user-
level scheduler

v Kernel-level thread
* Thread managements are supported by the Kernel (Most operating systems)
v Three representative libraries: pthread, Windows thread, Java thread

» |n this class, we focus on the pthread in Linux which is implemented using
clone() system call with sharing options (pthread based on kernel thread)

task 1 task 2 task 3

user-level thread

el [ees lightweight process

kernel thread

LA

kernesl

41— cpPu

I J. Choi, DKU



27.1 Thread Creation

s | hread creation API

finclude <pthread.h>
int
pthread create |

pthread t =« thread,
const pthread attr t = attr,

wvoid =

wvold = arg) ;

{(*start_routine) {(void=x*),

v Arguments: 1) thread structure to interact with this thread, 2) attribute of
the thread such as priority and stack size, in most case it is NULL (use
default), 3) function pointer for start routine, 4) arguments

s Example

|d

fFinclude <pthread.h>

vold mythread(wvoid +arg)
myarg t +m = {(myarg &t *)}) arg;
printf{"sd Sd\n", m—>a, m—>b);r
return NIOOLI.;

]

int

main{int argc, char =argwv[]} {
cthread t p;
int rc;

myarg t args

args.a = 10;

args.bh = Z0;

re = pthread create (&p., NUOLL,, mythread, Eargsy F

Figure 27.1: Creating a Thread

16
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27.2 Thread Completion

s Wait for completion

. .
1M F
_——

pthread join(pthread t thread, void =*value_ptr);

v Arguments: 1) thread structure, which is initialized by the thread
creation routine, 2) a pointer to the return value (NULL means “don’t

care”)
s Example

[T - R

e

#Finclude <stdioc.h>
#incliude <=pthread. h>
Finclude <assert.h>
#include <stdlib.h>

tyvpedef struct _ myvarg t (|
int aj
int ;i
myarg t©;
typedef struct __ myret_ t |
int x;
int w;
|} myret t;

void «~mythread(veid =arg) |

myarg Tt »m = (myarg © =) arg;

printf ("®2d Fd\n", m—>a, m—>b};
myret_t #«r = Malloc{sizeof (myret_t)} )
m— > = 1;

r—>v = 2;

return {(wvoid *) T

main{int argc, char wargw[]1) [

pthread t p;
my ret Tt sm;

myarg © args;

args.a = 10;

args.bh = 20;

Pthread create (ap, NULL, myvthread, Eargs)
Pthread FJoin (p, (void =) &m);

printf {("rrseturned d $dwn", m—>x, m—>¥);
return 9;

Ficure 27.2: Waiting for Thread Completion

I/
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27.2 Thread Completion

s Be careful: do not return a pointer allocated on the stack

v Modified version of Figure 27.2

1 volid smythread(void =xarg) {

2 myarg_t +m = (myarg_t *) arg;

3 printf("=d Fd\n",; m—>3a, m=>b);

4 myret_t r; // ALLOCATED ON STACK: BAD!
5 P W = i3

6 r.yv = 2;

7 return (void *) &r;

8 }

= Variable r is allocated on the stack of mythread
» Note that when a thread returns, stack is automatically deallocated

choijm@choijm-VirtualBox: ~/2017_05S

choil jm@chol jm—%irtualBox : ™ 2017_05%

ichoi jm@chol jm—VirtualBox ™7/ 2017_05% ./ 27.2
imythread: 10 20

return values 1 2
fchDijm@chnijm—virtualBax:”f?ﬁi?_D5$

ichoi jm@choi jm—VirtualBox:~/2017_05% gcc —o 27.2_ext 27.2_ext.c —lpthread

27.2_ext.c: In function ‘mythread’:

I27.2_ext.c:21:2: warning: function returns address of local wariable [-Wreturn-local-acdr]

return (woild *) &r;
ichnijm@chnijm—virtualng:"KZGi?_DS$
ichnijm@chnijm—Virtuaanx:"f201?_D5$ R 7 el - L A
mythread: 10 20
ireturn values 0 O

!chniim@chuiim—vivtualBax:"IEDl?_DS$

J. Choi, DKU



27.3 Locks / 27.4 Condition Variables

s Concurrency mechanisms

v Mutual exclusion APl (mutex_***): for mutual
= API

exclusion

int pthread mutex lock (pthread mubtex_© mutex) ;
int pthread mutex unlock {(pthread mutex  =mubex) ;
= Example
pthread mute=x t lock:
NN
int re = pthread mutex init (&loclk, NUOILLI.) 7
assert(r == 0) ; Y alwayvs check success!
Thread 1 Thread 2
pthread mutex_lock(&lock); pthread_mutex_lock (&lock);
x=x+1; // or whatever your critical ssction 13 x=x+1; {/ or whatever your ¢critical section 13
pthread mutex_unlock {&lock); pthread mutex_unlock {&lock);

1) Lock free =» entering CS. 2) Lock already hold =» not return from the call

v Condition Variables: for synchronization

int pthread cond wait (pthread cond t

= API

=cond, pthread mutex t «mutex);

int pthread cond signal (pthread cond t =»cond);
= Example Thread 1 Thread 2
pthread mutex_ t lock = PTHREAD MUTEX INITIALIZER; Pthread mutex_lock (&lock);
pthread cond t cond = PTHREAD_ COND TNITIALIZER; ready = 1;

Pthread mutex lock(&lock);

while (ready == 0}
Pthread cond wait (&cond,

Pthread mutex unlock{glock);

&lock);

Guarantee that some part (e.qg. initialization) wi

I
19

5

Pthread cond _signal (&cond);
Pthread mutex unlock (&lock);

Il execute before others (service)
J. Choi, DKU



IQ@UZ Quiz for 51"-Week 1st-Lesson

TIME]

s Quiz

v 1. Discuss the shared and exclusive resources in the thread model
and explain the role of pthread create() using these resources.

[T 1] (1311

v 2. Explain the "shared resource”, “race condition”, “atomicity”, “critical
section” and “mutual exclusion” usmg the program in Figure 26.6.

v Due: until 6 PM Friday of this week (8™, April)
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Chap. 28 Locks

Locks
v Basic idea
v How to Evaluate?

Realization

v 1) Controlling interrupt

v 2) SW approach

v 3) HW approach: using atomic operations

» Test-and-Set, Compare-and-Swap, Load-Linked and Store-Conditional,

Fetch-and-Add, ...
Building and Evaluating spin locks
Sleeping instead of Spinning: using Queues
Different OS, Different Support

J. Choi, DKU



28.1 Locks: Basic Idea / 28.2 Pthread Locks

m Critical section example

balance = balance + 1;

v Other critical sections are possible such as adding a node to a linked
list, hash update or more complex updates to shared data structures

= Mutual exclusion using lock
v Using lock/unlock before/after critical section (generic description)

1 lock_t mutex; // some globally:q—* Bt T B J
5 mutex = 0; /* 0: free, 1: owned */

3 lock (&mutex) ;

4 balance = balance + 1; T1 T T
5 unlock (&mutex) ;
v lock(&mutex) ¥
= Guarantee that only one thread ~ '°(®mutex) ;7 lock(fmutex); s
v Real example: pthread
unlock(&mutex)Y v

= pthread_mutex_lock()
» pthread_mutex_unlock()

unlock(&mutex
v unIock(&muteJ

I J. Choi, DKU
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28.3 Building A Lock / 28.4 Evaluating Locks

= How to build the lock()/unlock() APls?
v Collaboration between HW and OS supports

= How to evaluate a lock()/unlock()? =» Three properties
v 1) Correctness: Does it guarantee mutual exclusion?
v 2) Fairness: Does any thread starve (or being treated unfairly)?
v 3) Performance: Overhead added by uﬂng the lock

= One issue: lock size
v Three shared variables = how many Ig
v Coarse-grained lock
= Prefer to big critical section with smaller number of locks (e.g. one)
* Pros) simple, Cons) parallelism
v Fine-grained lock
» Prefer to small critical section with larger number of locks (e.g. three)
» Pros) parallelism, Cons) simple

I J. Choi, DKU
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28.5 Controlling Interrupts

= How to build the lock()/unlock() APIs?

v First solution: Disable interrupt
= No interrupt = No context switch =» No intervention in critical section

=

vold lock() {
DisableInterrupts();

| ]

ﬁaid unlock () {

L]

5 EnableInterrupts();
i
* Pros)
Simplicity (earliest used solution)
= Cons)

Disable interrupt for a long period = might lead to lost interrupt

Abuse or misuse =» monopolize, endless loop (no handling mechanism only
reboot)

Work only on a single processor (Not work on multiprocessors) = Can
tackle the race condition due to the context switch, not due to the concurrent
execution

=>» used inside the OS (or trusty world)

I J. Choi, DKU
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28.6 Test-and-Set (Atomic Exchange)

s How to build the lock()/unlock() APIs?

v Second solution: SW-only approach

oga =] ov i ks L3 pd e

typedef struct _ lock t { int flag; } lock t;

vold init (lock t +»mutex) |
f// 0 —> lock is available, 1 -> held
mutex—->flag = 0;

}

void lock(lock t *mutex) {

while (mutex-»>flag == 1) // TEST the flag
; // spin—wait (do nothing)
mutex—->flag = 1; // now SET it!

void unlock({leck_t »~mutex) |
mutex—>flag = 0;
}

Figure 28.1: First Attempt: A Simple Flag

o Is it correct?

25
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28.6 Test-and-Set (Atomic Exchange)

= How to build the lock()/unlock() APIs?

v Problems of the S\W-only approach

» Correctness: fail to provide the mutual exclusion
Both thread can enter the critical section
Test and Set are done separately (not indivisible)

Thread 1 Thread 2
call 1lock ()

while (flag == 1)

interrupt: switch to Thread 2

call 1locck ()

while (flag == 1)

flag = 1;

interrupt: switch to Thread 1
flag =1; // set flag to 1 (too!)

Figure 28.2: Trace: No Mutual Exclusion

» Performance
Spinning (Spin-waiting): endlessly check the value of flag
CPU is busy, but doing useless work

I J. Choi, DKU
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28.6 Test-and-Set (Atomic Exchange)

= How to build the lock()/unlock() APIs?

v There are many SW-only approaches: Such as Dekker’'s algorithm,
Peterson’s algorithm, ...

ASIDE: DEKKER™S AND PETERSON'S ALGORITHMS

In the 1960's, Dijkstra posed the concurrency problem to his friends, and
one of them, a mathematician named Theodorus Jo=ef DNekker, came up
with a solution [[Da8]. Unlike the solutions we discuss here, which use
special hardware instructions and even OS support, Dekker’s algorithhm
uses just loads and stores (assuming they are atomic with respect to each
other, which was true on early hardware).

DPDekker’'s approach was later refined by Peterson [P81]. Once again, just
loads and stores are used, and the idea is to ensure that bwo threads never
enter a critical section at the same time. Here is Peterson’s algorithm (for
two threads); see if you can understand the code. What are the £1ag and
turn variables used for?

== e Flagl2] 7
imxt g e g 5

wradodd Emaae ) £
=

Flag O Flaog[1] = Oz Pt ol 1—>thread wants to grab ILock
sy — Of S whose turna? (Ehread 0 o 172)
}
wazrddd Aol ) i
flagis=e1f£f]l = 1; A sl Fr:r thread ID of callexr
txrn — 1L — Se1 £ S make Gt other thread®™ s turn
wrhdi 1 e {{flagl[l—sa=sl11T] == 1) L {tEumarmm —=—— 1 — =1 £) )

5 SV ospin—wait
]
woid uanlock () {
Flagiseilf] = 07 LY sdimply unde wour Iintent

]

* Pros) SW solution

= Cons) 1) not easy to understand, 2) Inefficient (a little HW support can
provide the same capability efficiently), 3) incorrect in modern systems

that use the relaxed memory consistency model = not used any more

I J. Choi, DKU
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28.7 Building A Working Spin Lock

= How to build the lock()/unlock() APIs?

v Third solution: Using HW atomic operations

» Test-and-Set instruction (a.k.a atomic exchange) in this section

1 int TestAndSet (int *old ptr, int new) {

2 int old = xo0ld ptr; // fetch old walue at old ptr
3 +old ptr = new; // store "new’ into old ptr

4 return old; // return the old wvalue

5 }

= All (both test the old value and set a new value) are performed atomically
» Instruction in real systems: xchg in Intel, Idstub in SPARC

v Implement lock using the Test-and-Set instruction

1 typedef struct _ lock t ({

2 int flag;

3 } leck t;

4

5 void init{lock_t *=lock) |

& 7 0 dindicates that leck is awvailable, 1 that it is held
7 lock—>flag = {;

B

=

10 void lock{lock_t =*lock) |

11 while (TestAndsSet(&lock—>flag, 1) == 1)
12 ;i /Y spin—wait ({do mothing)

13

14

15 vold unlock {(leck t *=lack) |

L& lock—>flag = {;

17 }

Figure 28.3: A Simple Spin Lock Using Test-and-set

[ m—
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28.8 Evaluating Spin Locks

= How to build the lock()/unlock() APIs?

v Third solution: Using HW atomic operations

v Evaluating of the Third solution

= Correctness
Does it provide mutual exclusion? = yes
Guarantee that only one thread enters the critical section

= Fairness

Can it guarantee that a waiting thread will enter the critical section? =
unfortunately no.

E.g.) 10 higher priority threads and one low priority thread = the latter
one may spin forever, leading to starvation

= Performance
In the single CPU case: Overhead can be quite painful: waste CPU
cycles (until a context switch occurs!)

In the multiple CPUs case

Spin locks work relatively well when the critical section is short = do not waste
another CPU cycles that much

Usually spin lock is employed for the short critical section situation

I J. Choi, DKU
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28.9/10 Compare&Swap/Load-Linked&Store-Conditional

= Another atomic operation (example of the third solution)
v Compare-and-Swap instruction

» Compare the value specified by ptr with the expected one. If matched, set
the new value. Then, return the previous value. All are done atomically

g | G Comia meAanndSwars (O s Ll == oie TN 3 i = T e o o= i, i mai= Tu==%r ) i
= J i acitwaa 1 = =yt 7
= = = ({acitwuaa l = = rioe it el )
=1 B = el ey = T Wnr 7
5 et 131 T Sactwxaa 1l
- +
Figure 25.4: Compare—-and-swwap

= How to use Lock

1 void lock(lock t *x1ock) {

2 while (CompareAndSwap(&lock—>flag, 0, 1) == 1)
3 F [/ spin

4 }

v Load-Linked and Store-Conditional supported by MIPS, ARM,
. Prevent between load and store.

F it T.wadili.-dnlkaed ( Imte v = '] 4
= metrzrr . =
=
Eee = StoreConditional (Ant = A1t wraliie) 1
- (& =K T ha s upErdataed Lo = e sS4 e the Too=dT.idmcaecd 8 =E e Ethhi s 2ddre s=s)
a o = e — ==l wae g
et uaarm iz e succes=s 1
L= ¥ =1 s 2.t
retuarm— 0z Sy Faided to update
Figure 28.5: Load-linked And Store-conditional

1 WA ol Tock (Llock T * 1 oz ) q{

= whiide g i

. OW to use OC = wihii 1 e (Loadl..dnked{slock—>f1 aag) = 1 )
1 i v spin umnicil = e L= ol — e e}
s G i 2 (StoreConditional (&alock——flag. 1) —_—— 1 )
o retuaarnmy o if set—Ft—FTo—1 was a S1UCCeE S ST a2lil donme
= A otherwise: try it all over agasin
8 }
=
1o
11 wvoilid unlock (Lock © - 1 ok ) {

12 lock——Fflag = 0DO;
13 b
Figure 28.6: Using LL/SC To Build A Loclk
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28.11 Fetch-and-Add

= Final atomic operation
v Fetch-and-Add

1 int Fetcchindadd {(int =«=ptr) {
2 int ©1d = =xpLr;

3 ~ptr — old + 17

4 return old;

5 }

= Atomically increment a value while returning the old value

v Lock APIs
1 Cwvpedel sSstruct 1ock T© {
.3 Int Cicket:?
= d i Tuarmnis
4 } T ook A 5
=3
& BVl e o e | 1lock Iinidt {(lock © s L eI ) i
. lock—>=tT iclk=1 - Q7
5 lock—>=tiurmn - oz
o ¥
10
11 woaldld lock (locik # 1 ok ) 4
1= idmt myturn — Fetchiinmnddhdd  {(&alock——tCicket) 7
13 while ({lock—=turn ! = mmywywiLtwuarIr)
TL H AV O spdn
15 ¥
16
B W did unlock (loclk & = 1 <l ) i
18 lock—>=tTC1urix — 1lock——tTC1uIrIrr: —+ -
19 }
Figure 28.7: Ticket Locks

= Ticket lock: 1) wish to acquire lock = call fetchandadd() with lock-
>ticket, 2) if (myturn == lock->turn) enter the CS, 3) unlock =» add turn

» Ensure progress for all threads (once a thread gets a ticket, it will be
scheduled before other threads that have the tickets issued later)

31
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28.12 Too Much Spinning: What Now?

s Lock mechanisms

v Spin lock
» Busy waiting (endless check while using CPU)
= Simple but inefficient (especially for the long critical section)

= E.g.) N threads, RR scheduling, 1 thread acquires locks during the
period of 1.5 time slice =» N -1 time slices are wasted

v Sleep lock

= Preempt and enter into the waiting (block) state, wakeup when the lock
IS released.

= 1) Can utilize CPUs for more useful work, but 2) context switch for sleep
Is expensive (especially for the short critical section)

= Need OS supports

N

terminated

admitted interrupt exit

scheduler dispatch

I/O or event completion I/O or event wait

waiting

I J. Choi, DKU
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28.14 Using Queues: Sleeping instead of Spinning

s Sleep

v Better than spin since it gives a chance to schedule the thread that holds
the lock (A lot of mutexes are implemented using sleep lock)

s Issues

v Where to sleep? = Using queue

v How to wake up =» OS supports
» E.g) Solaris supports park() to sleep and unpark() to wakeup a thread
= Flag for lock variable, Guard for mutual exclusion of the flag, Queue for sleep

tvwpedef struauct IToclk + £
inmt 1 =agF
i o guards
guense b w Ol

b Tock ;7

o iod Tock imit (lock + & TTE ) i
m—>E]1lag = 5
m—>cguard =— O;
guuene dnit (m—>ag) F
woid lock (lock +© * T ) i
whi 1e (TestAndSet (&Em—>guard, ) _—— i |
Alracguire guard lock by spinning
b i (im—>=f1 g == (]
m—>Flag =— 1; ALY lock is acguired
m—>guard = Dz
1 =1 = {
uietlie Sdcdcd (me— oo, geititiddd) )5
m—>guard = Dz
park () ;7
1
wvolild unilock (Loclk +© & TTL ) 1
whd 1 e (TestAndSet (em——guar-d., i | === i |
SAAacoguire guard Jlock by spinning
i £ (gueuse _empiw (I—>=og) )
m—>F1 ag = Oz Ay det go aof lock; e orne wants=s it

el se
unpark (gueuse remowe (Im—>aE) } 5 o hoaoldd 1lock {for nmhext thread?! )
m—>guard = Oz

Figure 28.9: Lock With OQueues, Test-and-set, Yield, And Walkeup I ChOL DKU
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Quiz for 5th-Week 2nd-Lesson

TIAE]
s Quiz

v 1. Discuss the merits and demerits of the coarse-grained lock (and

fine-grained lock).

v 2. Explain the correctness and fairness of the lock mechanism shown
in Figure 28.1 (if it is incorrect or unfair, explain why).

v Due: until 6 PM Friday of this week (8™, April)

Lock granularity

Coarse-grained: Fewer locks, i.e., more objects per lock
— Example: One lock for entire data structure (e.g., array)
— Example: One lock for all bank accounts

Fine-grained: More locks, i.e., fewer objects per lock
— Example: One lock per data element (e.g., array index)
— Example: One lock per bank account

586, 8

“Coarse-grained vs. fine-grained” is really a continuum

‘Source: httﬁs://sIideplayer.com/slide/4167835/)

34

1

typedef struct _ lock t { int flag; } lock t;

void init (lock t +mutex) |
/{ 0 -> lock is available, 1 -> held
mutex->flag = 0;

void lock(lock_t *mutex) |
while (mutex-»>flag == 1) // TEST the flag
; // spin-wait (do nothing)
mutex->flag = 1; // now SET it!

void unlock(lock t smutex) |
mutex->flag = 0;

Figure 28.1: First Attempt: A Simple Flag

J. Choi, DKU



Chap. 29 Lock-based Concurrent Data Structure

s How to use locks in data structure?
v Concurrent Counters
v Concurrent Linked lists
v Concurrent Queues
v Concurrent Hash Tables
v

s Data structure vs Concurrent data structure
v Thread safe (support mutual exclusion)
v Two Issues: 1) Correctness and 2) Performance

CRrRuUX: HoOw TO ADD LOCKS TO DATA STRUCTURES
When given a particular data structure, how should we add locks to
it, in order to make it work correctly? Further, how do we add locks such
that the data structure yields high performance, enabling many threads
to access the structure at once, i.e., concurrently?

I J. Choi, DKU
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29.1 Concurrent Counters

= A Counter without locks: Figure 29.1

v

= A Counter with locks: Figure 29.2

Incorrect under race condition

Mutual exclusion using locks

Correct? How about performance?

typedef struct _ counter t (|
int value;
} counter t;

void init (counter t #c) {
c->value = 0;

}

vold increment (counter t xc) |
c->valuets;

}

void decrement (counter t +c)
c->value—-;

}

int get(counter_t +c) |
return c->value;
}
Figure 29.1: A Counter Without Locks
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typedef struct _ counter t {
int value;

pthread mutex t lock;
} counter_ t;

void init (counter_t #c) |
c—>value = 0;
Pthread mutex init (&c—>lock, NULL);

}

void increment (counter t +*c) |
Pthread mutex lock (&c—>lock);
c—>value+t+;
Pthread mutex unlock (&c—->1lock);

}

void decrement (counter t +c) {
Pthread mutex lock(&c—>lock);
c—>value——;
Pthread mutex unlock(&c—>1lock);

int get (counter t xc) {
Pthread mutex lock(&c->lock);
int rc = c—>value;
Pthread mutex unlock(&c—>1lock);
return rc;

Figure 29.2: A Counter With Locks
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29.1 Concurrent Counters

= [raditional vs. Sloppy

v Figure 29.3: total elapsed time when a thread (ranging one to four)
updates the counter one million times

v Precise (previous slide): poor scalable
v Sloppy counter: Quite higher performance (a.k.a Scalable counter or
Approximate counter)

= A single global counter + Several local counters (usually one per CPU
core) =» e.g. 4 core system: 1 global and 4 local counters

» Lock for each counter for concurrency

» Update local counter =» periodically update global counter (sloppiness, 5
in figure 29.4) =» Less contention =» Scalable

151 Time | Ly Ly Ls Li |G
0 0 0 0 0 [0
g 10 1 0 0 1 1 0
8 ¥l ¥ 8 § 1 [D
- 30 2 0 3 1 |o
£ 57 £ 3 0 3 2 |0
501 4 1 3 3 |o

0 5 5 " 6| 520 1 3 4 5 (from L)
1 ° Threads ? ) 7 0 2 - 5-0 | 10 (from Li)

Figure 29.4: Tracing the Sloppy Counters | pku

] Figure 29.3: Performance of Traditional vs. Sloppy Counters ,
S/



29.1 Concurrent Counters

s Implementation of Sloppy Counter

1 tvpedef struct ___ _counter_t {

2 o i global; AV glolbal ccount

3 pthread mutex t glock; S aglolal looclk

4 it local [NUMCPUS] ; Y loecal count (per ocpu)
= pthread mutex_t llock [NUMCPUS] ; A e e and locks

6 int threshold; A/ update freguency

7 } counter_ t;

8

=] S Ainit: record threshold, init Jocks, init wvalues

10 AL of all local counts and glcoecbal count

11 wvold init (counter. © *>c, int threshold) {

12 c—>threshocld = threshold;

13 c—>global = 0;

14 pthread mutex__init (&c—>glock, NULL) ;

15 FHE IS

16 for (i = 0; i < NUMCPUS; i++) {

17 c—>localli] = 0;

18 pthread mutex init (&c—>1lock[i], NULL) ;

19 }

20 ¥

21

22 Y update: usually, Just grab local lock and update local amount
23 2 once local count has risen by "threshold’, grab global
24 g lock and transfer local wvalues to it

25 wvoid update (counter_ t *o, int threadIDl, int amt) {

26 int epu = threadID %5 NUMCPUS;

27 pthread mutex_ lock (&ac—>1lock[cpul) ;

28 c—>local [cpu] += amt; Y assumes amt > 0O
29 if (c—>locallcpul] >»>= c—>threshold) { S Eransfer to global
30 pthread mutex lock (&c—>glock) ;

31 c—>glcobal += c—>local [cpua] ;

32 prthread mutex unlock (&c—>glock) ;

33 c—>local [cpul = 0;

34 }

35 pthread mutex umnlock (&c—>1lock [cpul] ) ;

36 }

37

38 Y get: Just return global amount (which may not be perfect)
39 int get (countexr t *c) {

40 pthread mutex lock (&c—>glock) ;

4 int val = c——global;

42 pthread mutex unlock (&c—>glock) ;

43 return wval; J/ only approximate!

44 }

Figure 29.5: Sloppyv Cc\:jgnter Implementation
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29.2 Concurrent Linked Lists

s Implementation
v How to enhance scalability? lock range
v Single return path in lookup(): less bug

no e1
a) Before insert

list

LI -

T
noE ol

T

W
=]

Y basic node structure
typedef struct _ node_t |
1t ke ;
struct ode_t snexty
} mode t;
fYr basiec list structure {(one used per list)
typedef struct __ _list_t |
node © ~head;
pthread_mutesx t lock;

_Imit (list &t +~L)
=ad MUOLIL;
read mutex init {(&L->lock,

NULL) ;

ist_t L, int key)
lock{&L->1lock)} ;
mallooc{sizecf (node t)};
NULL) |

if (new
perror {"malloc™) ;
pthread mutex unlock (&EL->lack) ;

retuyrn —1; '/ £fail
new—>key key;
new—>next L->head;

L->head new;
pthread mutex unlock{&L->lock]) ;
return O; J/

Success

int List_ Tookxup(list_t
pthread mutex lock{&L->lock} ;
1, —>

{curr—->key = key) A
pthread mutex unlock (&L->lock) ;
return O; // =

cCurr Curr-—=

pthread mutex
return =1 J/

Figure 29.7: Concurrent Linked List

Uode W =

=T SRS -

void List Inlt{l%ﬁﬁkf .... »F)

L->head = NULLg 5 . NEXt next
pthresd key - m ..... Key iocii-B key i
node3 node2 nodei NULL

b) After insert (aII done)

void List_TInsert (list_t =L, int key)

7/ SyDChrOﬂlddthﬁ Egtnepded
node_t *new = rnal_lﬁeofmode ot I
if (new == NULL) { .

perror ( ttmc,, );

key “key

ﬂe% Y'J"]

tnade4’kaynode3:-

NULL

nodei
c) After insert (switched while inserting)

// Just lock critical section

pthread_mutex_lock (&L->lock);
new->next L->head;

L->head = new;
pthread_mutex_unlock (&L->1lock);

int

List_lookup(list_t =«L,
int rv = -1;
pthread _mutex_lock (&L->lock);
node_t xcurr = L->head;
while (curr) {
if (curr->key == key) |
rv = 0;
break;

int key) |

}

curr = curr—>next;

1
pthread_mutex_unlock (&L->1lock) ;

return rv; // now both success and failpre

Figure 29.8: Concurrent Linked List: Rewritten




29.2 Concurrent Queues

s Implementation

v How to enhance scalability”? Multiple locks

[N T« (| R S VR B

43
-2
45
46

tyvpedelf struct node__t {
it ol sralue;
struct node__ it *next ;

} mode_t;

typedef struct ____ _gueue_t |
node_ i+ *head;
node__t *tail;
pthread mutex 1t headl.ock ;
pthread_mutex_t taillLock;

} gueue__t;

void Queue_Tnit (gueue_t +*qg) {
node_t +=tmp = malloc(sizeof (node_t) )} ;
tmp—>next = MNULL;
g—>head = g—>tail = tmp;

pthread mutex__init (&eg—>headl.cck, NULL)
pthread mutex_ init (eg—>taill.ock, NULL)

RIS

void QOueue_Engueue (gueue_t »g, int wvalue) {

node_t *tmp = malloc(sizeof (node_t) ) ;
assert (Cmp I'= NWULL) ;

tmpep—>wvalue = walue;

tmp—>next = NULIL;

pthread_ _mutex__lock (&g—>taillock) ;
g—>tail-—>next = tmp;

g—>=>tail = tmp;

pthread_ _mutex_unlock (&fg—>taillock) ;

CThaeue_ Degueude [guede_ L *4g, d1HL =wvaloae) T
prpthread mutex__lock (&eg—>headLoclk) ;
node_t ~tmp = g—>head;
node__t wnewHead = tmp—>next;
if (newHead == HMNIUI.L) {
pthread mutex unlock (&g—>headlLock) ;
return —1; // ueue was empbty
¥
*value = newHead-—->wvalue;
g—>head = newHead;

Prthread mutex_ _unlock (&g—>headl.ock) ;
ftree (tmp) 7

return 0;

Figure 29.9: Michael and Scott Concurrent Queue
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29.2 Concurrent Hash Table

keys buckets entries

= Implementation %x[ ez
1 #define BUCKETS (101) P
2 |:<[ Sandra Dee | 521-9655 |
3 typedef struct __hash t { ”
4 list_t 1ists[BUCKETS]; ;X[ TedBaker | 4184165 |
5 } hash t; : :
. - %‘{x[ Sam Doe | 521-5030 |
7 void Hash_TInit (hash_t «H) {
8 int 1i;
9 for (i = 0; i <« BUCKETS; i++) { .
10 List_TInit(&H->lists[i]); £ Bnple Feoanmit iRt
11 }
2} H10-
13 2
14 int Hash_ Insert (hash_t =+H, int key) { E =
15 int bucket = key % BUCKETS; =
16 return List_Insert (&8H->1lists[bucket]
17 } 0 - - - = -
i3 o 10 20 30 40
Inserts (Thowsands)
19 int Hash_Lookup(hash_t +H, int key) { Figure 29.11: Scaling Hash Tables
20 int bucket = key % BUCKETS;
21 return List_lookup (&H->1ists[bucket], Iﬁ?él‘tf'using concurrent hash vs
22 }

list with a single lock
(Fine-grained vs course-grained lock)
Figure 29.10: A Concurrent Hash Table

I J. Choi, DKU
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29.5 Summary

s Concurrency terms
v Shared data, race condition, mutual exclusion
v Lock before/after critical section

s Lock implementation

v HW + OS cooperation
= HW: atomic operations
» OS: queue management

v Spin lock and Sleep lock: Rule of thumb
= Short critical section = spin lock
» Long critical section = sleep lock
= How about hybrid? =» Two-phase locks (spin at first, then sleep)

s Concurrent data structure

Tip: AvolD PREMATURE OPTIMIZATION ( KNUTHS Law) 3 \

When building a concurrent data structure, start with the most basic ap- @ A.M. @“ ,g e | ‘,:'.5 g ‘v%s
roach, which is to add a single big lock to provide synchronized access. Ny o
y doing so, you are likely to build a correct lock; if vou then find that it WRI NG !ﬁ r}@“ A 3 1

suffers from performance problems, you can refine it, thus only making o el CRRITTT W IENN & PN/

it fast if need be. As Kn famously stated, “Premature optimization is AWARD 24 .K}uar*} 4 nﬂ 2
the rool of all evil ™ TURARINERG ) e
Many operating systems utilized a single lock when first transitioning o
to multiprocessors, including Sun OS5 and Linux. In the latter, this lock o e i
evien had a name, the big kernel lock (BKL). For many vears, this sim-
ple approach was a good one, but when multi-CPU systems became the
norm, only allowing a single active thread in the kernel at a time became
a performance bottleneck. Thus, it was finally time to add the optimiza-
tion of improved concurrency to these systems. Within Linux, the more
straightforward approach was taken: replace one lock with many. Within
Sun, a more radical decision was made; build a brand new operating sys-
tem, known as Solaris, that incorporates concurrency more fundamen-
tally from day ome. Read the Linux and Solaris kernel books for more

. information about these fascinating svstems [BCOS5, MM,
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Lab 2: Concurrent Data Structure

What to do?

v Make a program with multiple threads (based on producer and consumer problem)
» Threads shares common data structure: queue and hash
» Some threads insert/delete items into the queue and hash
» QOther threads lookup an item using hash
= See Lab2 document at https://github.com/DKU-EmbeddedSystem-Lab/2022 DKU_OS
v Requirements

» Three comparisons: 1) with/without locks, 2) fined-grained/coarse grained lock, 3)
Performance under different number of threads

» Reports: 1) Goal, 2) Design, 3) Results (3 comparisons), 4) Discussion

= Submit: 1? Report = e-learning campus (pdf), 2) report and source codes = TA (with the
name of “lab2_sync_32XXXXXX.tar")

= Environment: ubuntu on virtual box (same as Lab1)
= Deadline: 6 PM, 22" April (Friday)

(after insert 16)

Hash ~¥ Queue v Hash ~¥ Queue «.
head-., il head..... il
keymod5==0 [«--—-""""> 1‘5 ........... keymod5==0 [«--—-""""> 1‘5 ...........
S SR B A
keymod5==1 (¢ e 23 ........... AN keymod5==1 [¢-- _ 23 ........... AN
SUR A \ N\
keymod5==2 |e.. > 3 O o keymod5==2 |« e et
keymod5 ==3 eyl 7 & keymod5 ==3 IREE = I A
............. i e —
key m0d5==4 4____§~__-->§ ........... 2'4 .......... key m0d5==4 4____~~---->§ ........... 2'4 .......... ;
e ‘ """"" d ’ /,’ ::.__:"
I e » 16 ‘ J: Choi, DKU
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|f(7ﬂ Quiz for 6th-Week 1st-Lesson

T’{]ME!

s Quiz

v 1. Discuss two differences between Figure 29.7 (Concurrent Linked
List) and 29.8 (Concurrent Linked List: rewritten)

v 2. Assume that a program is waiting for an input from a keyboard.
Explain which is better, spin or sleep lock?

v Due: until 6 PM Friday of this week (15™, April)

Vi

How can three people paint three walls? No problem if the walls are of equal size and the workers are of equal skills, but quite
problematic when synchronization among them is required.

(Source: https://perso.telecom-paristech.fr/kuznetsol/projects/Concur/concur/)

J. Choi, DKU
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