
J. Choi, DKU

Lecture Note 4. Concurrency:
Thread and Lock

April 4, 2022

Jongmoo Choi
Dept. of software

Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)

J. Choi, DKU

Contents

From Chap 25~29 of the OSTEP
Chap 25. A Dialogue on Concurrency
Chap 26. Concurrency: An Introduction
ü Heart of problem: un-controlled schedule
ü Race condition, Mutual exclusion, Atomicity, …

Chap 27. Interlude: Thread API
ü Thread vs. Process
ü Thread manipulation: creation, completion, mutex

Chap 28. Locks
ü Evaluation method
ü Building method: Four atomic operations
ü Spin vs. Sleep

Chap 29. Locked Data Structure
ü list, queue, hash, …

2

J. Choi, DKU

Chap. 25 A Dialogue on Concurrency

3

E Shared data, Race condition, Atomicity, Performance , Fine/Coarse-grained locking, …

J. Choi, DKU

Chap. 26 Concurrency: An Introduction

So far
ü CPU virtualization

§ Goal: Enable multiple programs to be executed (conceptually) in parallel
§ How to: Make an illusion that we have virtual CPUs as many as the # of

processes
ü Memory virtualization

§ Goal: Share physical memory among processes in an isolated manner
§ How to: Create an illusion that each process has a private, large address space

(virtual memory)
From now on
ü Multi-threaded program

§ Thread: flow of control
§ Process: one flow of control + resources (address space, files)
§ Multi-threaded program (or process): multiple flow of controls + resources

(address space, files)
• Multiple threads share address space
• cf.) Multiple Processes do not share their address space

ü Concurrency
§ Shared data è race condition è may generate wrong results
§ Concurrency: enforce to access shared data in a synchronized way

4

J. Choi, DKU(Source: A. Silberschatz, “Operating system Concept”)

26.1 Why Use Threads?

Thread definition
ü Computing resources for a program

§ CPU: registers (context), scheduling entity
§ Address space: code, data, heap and stack
§ Files: non-volatile data and I/O devices

ü Process model
§ Use all resources exclusively
§ fork(): create all resources è better isolation, worse sharing, slow creation

ü Thread model
§ Share resources among threads: code, data, heap and files
§ Exclusively resources used by a thread: CPU abstraction and stack
§ pthread_create(): create exclusive resources only è fast creation, better

sharing, worse isolation

5

J. Choi, DKU

26.1 Why Use Threads?

Benefit of Thread
ü Fast creation

§ Process: heavyweight, Thread: lightweight
ü Parallelism

§ Example: sort 100,000 items
• Single thread è scan all for sorting
• Multithread: divide and conquer (Google’s MapReduce Model)

ü Can overlap processing with waiting (e.g. I/O waiting)
§ Example: web server

• Single thread: receive, processing, response
• Multiple thread: receive thread, processing thread x n, response thread

ü Data sharing

6

E Make SW (e.g. browser, web server): either using multiple processes or multiple threads?
(both are independent scheduling entity (can utilize CPUs), but different sharing semantics)

J. Choi, DKU

26.1 Why Use Threads?

Thread management
ü Several stacks in an address space

§ Stack: called as thread local storage since each thread has its own stack
ü Scheduling entity

§ State and transition
• Thread state: Ready, Run, Wait, … (like process)

§ Each thread has its own scheduling priority
§ Context switch at the thread level
§ è TCB (Thread Control Block)

• for thread-specific information management

7

J. Choi, DKU

26.2 An Example: Thread Creation

Thread API
ü pthread_create(): similar to fork(), thread exits when the passed

function reach the end.
ü pthread_join(): similar to wait(), for synchronization

8

J. Choi, DKU

26.2 An Example: Thread Creation

Thread trace
ü Threads: main, thread1, thread2
ü Scheduling order: depend on the whims of scheduler

§ Main è create t1 è create t2 è wait è run t1 è run t2 è main: Fig. 3
§ Main è create t1 è run t1 è create t2 è run t2 è wait è main: Fig. 4
§ Main è create t1 è create t2 è run t2 è run t1 è wait è main: Fig. 5

9

J. Choi, DKU

26.3 Why It Gets Worse: Shared Data

Shared data example (see Figure 2.5 in LN 1)

10

J. Choi, DKU

26.3 Why It Gets Worse: Shared Data

Results of the shared data example

ü Different results (not deterministic)
ü Big question? Why does this happen?

11

J. Choi, DKU

26.4 The Heart of Problem: Uncontrolled Scheduling

High level viewpoint

CPU level viewpoint

Scheduling viewpoint

12

T1 T2

E The counter value increases only 1, even though two additions are performed

DRAMCPU

eax
counter

(0x8049a1c)

pc

E Some students show their capability while using pthread_mutex_lock() in the 1st homework.

J. Choi, DKU

26.4 The Heart of Problem: Uncontrolled Scheduling

Reason
ü Two threads access shared data at the same time è race condition
ü Uncontrolled scheduling è Results are different at each execution

depending on scheduling order
Solution
ü Controlled scheduling: Do all or nothing (indivisible) è atomicity
ü The code that can result in the race condition è critical section

§ Code ranging from 100 to 108 in the example of the previous slide
ü Allow only one thread in the critical section è mutual exclusion

13

(One-lane Tunnel to Milford Sound in New Zealand)

J. Choi, DKU

26.6 One More Problem: Waiting for Another

Two issues related to concurrency
ü Mutual exclusion: only one thread can enter a critical section
ü Synchronization: one thread must wait for another to complete some

action before it continues

14

J. Choi, DKU

Chap. 27 Interlude: Thread API

Thread classification
ü User-level thread

§ Thread managements are done by user-level threads library including user-
level scheduler

ü Kernel-level thread
§ Thread managements are supported by the Kernel (Most operating systems)

ü Three representative libraries: pthread, Windows thread, Java thread
§ In this class, we focus on the pthread in Linux which is implemented using

clone() system call with sharing options (pthread based on kernel thread)

15

J. Choi, DKU

27.1 Thread Creation

Thread creation API

ü Arguments: 1) thread structure to interact with this thread, 2) attribute of
the thread such as priority and stack size, in most case it is NULL (use
default), 3) function pointer for start routine, 4) arguments

Example

16

J. Choi, DKU

27.2 Thread Completion

Wait for completion

ü Arguments: 1) thread structure, which is initialized by the thread
creation routine, 2) a pointer to the return value (NULL means “don’t
care”)

Example

17

J. Choi, DKU

27.2 Thread Completion

Be careful: do not return a pointer allocated on the stack
ü Modified version of Figure 27.2

§ Variable r is allocated on the stack of mythread
§ Note that when a thread returns, stack is automatically deallocated

18

J. Choi, DKU

27.3 Locks / 27.4 Condition Variables

Concurrency mechanisms
ü Mutual exclusion API (mutex_***): for mutual exclusion

§ API

§ Example

• 1) Lock free è entering CS. 2) Lock already hold è not return from the call

ü Condition Variables: for synchronization
§ API

§ Example

• Guarantee that some part (e.g. initialization) will execute before others (service)

19

…

Thread 1 Thread 2

Thread 1 Thread 2

J. Choi, DKU

Quiz for 5th-Week 1st-Lesson

Quiz
ü 1. Discuss the shared and exclusive resources in the thread model

and explain the role of pthread_create() using these resources.
ü 2. Explain the "shared resource“, “race condition“, “atomicity”, “critical

section” and “mutual exclusion“ using the program in Figure 26.6.
ü Due: until 6 PM Friday of this week (8th, April)

20

J. Choi, DKU

Chap. 28 Locks

Locks
ü Basic idea
ü How to Evaluate?

Realization
ü 1) Controlling interrupt
ü 2) SW approach
ü 3) HW approach: using atomic operations

§ Test-and-Set, Compare-and-Swap, Load-Linked and Store-Conditional,
Fetch-and-Add, …

Building and Evaluating spin locks
Sleeping instead of Spinning: using Queues
Different OS, Different Support

21

J. Choi, DKU

28.1 Locks: Basic Idea / 28.2 Pthread Locks

Critical section example

ü Other critical sections are possible such as adding a node to a linked
list, hash update or more complex updates to shared data structures

Mutual exclusion using lock
ü Using lock/unlock before/after critical section (generic description)

§ Guarantee that only one thread can enter the critical section
ü Real example: pthread

§ pthread_mutex_lock()
§ pthread_mutex_unlock()

T1 T2 T3

lock(&mutex)

mutex = 0; /* 0: free, 1: owned */

lock(&mutex) lock(&mutex)

unlock(&mutex)

unlock(&mutex)

unlock(&mutex)

22

J. Choi, DKU

28.3 Building A Lock / 28.4 Evaluating Locks

How to build the lock()/unlock() APIs?
ü Collaboration between HW and OS supports

How to evaluate a lock()/unlock()? è Three properties
ü 1) Correctness: Does it guarantee mutual exclusion?
ü 2) Fairness: Does any thread starve (or being treated unfairly)?
ü 3) Performance: Overhead added by using the lock

One issue: lock size
ü Three shared variables è how many locks?
ü Coarse-grained lock

§ Prefer to big critical section with smaller number of locks (e.g. one)
§ Pros) simple, Cons) parallelism

ü Fine-grained lock
§ Prefer to small critical section with larger number of locks (e.g. three)
§ Pros) parallelism, Cons) simple

23

J. Choi, DKU

28.5 Controlling Interrupts

How to build the lock()/unlock() APIs?
ü First solution: Disable interrupt

§ No interrupt è No context switch è No intervention in critical section

§ Pros)
• Simplicity (earliest used solution)

§ Cons)
• Disable interrupt for a long period è might lead to lost interrupt
• Abuse or misuse è monopolize, endless loop (no handling mechanism only

reboot)
• Work only on a single processor (Not work on multiprocessors) è Can

tackle the race condition due to the context switch, not due to the concurrent
execution

• è used inside the OS (or trusty world)

24

J. Choi, DKU

28.6 Test-and-Set (Atomic Exchange)

How to build the lock()/unlock() APIs?
ü Second solution: SW-only approach

25

E Is it correct?

J. Choi, DKU

28.6 Test-and-Set (Atomic Exchange)

How to build the lock()/unlock() APIs?
ü Problems of the SW-only approach

§ Correctness: fail to provide the mutual exclusion
• Both thread can enter the critical section
• Test and Set are done separately (not indivisible)

§ Performance
• Spinning (Spin-waiting): endlessly check the value of flag
• CPU is busy, but doing useless work

26

J. Choi, DKU

28.6 Test-and-Set (Atomic Exchange)

How to build the lock()/unlock() APIs?
ü There are many SW-only approaches: Such as Dekker’s algorithm,

Peterson’s algorithm, …

§ Pros) SW solution
§ Cons) 1) not easy to understand, 2) Inefficient (a little HW support can

provide the same capability efficiently), 3) incorrect in modern systems
that use the relaxed memory consistency model è not used any more

27

J. Choi, DKU

28.7 Building A Working Spin Lock

How to build the lock()/unlock() APIs?
ü Third solution: Using HW atomic operations

§ Test-and-Set instruction (a.k.a atomic exchange) in this section

§ All (both test the old value and set a new value) are performed atomically
§ Instruction in real systems: xchg in Intel, ldstub in SPARC

ü Implement lock using the Test-and-Set instruction

28

J. Choi, DKU

28.8 Evaluating Spin Locks

How to build the lock()/unlock() APIs?
ü Third solution: Using HW atomic operations
ü Evaluating of the Third solution

§ Correctness
• Does it provide mutual exclusion? è yes
• Guarantee that only one thread enters the critical section

§ Fairness
• Can it guarantee that a waiting thread will enter the critical section? è

unfortunately no.
• E.g.) 10 higher priority threads and one low priority thread è the latter

one may spin forever, leading to starvation
§ Performance

• In the single CPU case: Overhead can be quite painful: waste CPU
cycles (until a context switch occurs!)

• In the multiple CPUs case
n Spin locks work relatively well when the critical section is short è do not waste

another CPU cycles that much
n Usually spin lock is employed for the short critical section situation

29

J. Choi, DKU

28.9/10 Compare&Swap/Load-Linked&Store-Conditional

Another atomic operation (example of the third solution)
ü Compare-and-Swap instruction

§ Compare the value specified by ptr with the expected one. If matched, set
the new value. Then, return the previous value. All are done atomically

§ How to use Lock

ü Load-Linked and Store-Conditional supported by MIPS, ARM, …
§ Prevent between load and store.

§ How to use Lock

30

J. Choi, DKU

28.11 Fetch-and-Add

Final atomic operation
ü Fetch-and-Add

§ Atomically increment a value while returning the old value
ü Lock APIs

§ Ticket lock: 1) wish to acquire lock è call fetchandadd() with lock-
>ticket, 2) if (myturn == lock->turn) enter the CS, 3) unlock è add turn

§ Ensure progress for all threads (once a thread gets a ticket, it will be
scheduled before other threads that have the tickets issued later)

31

J. Choi, DKU

28.12 Too Much Spinning: What Now?

Lock mechanisms
ü Spin lock

§ Busy waiting (endless check while using CPU)
§ Simple but inefficient (especially for the long critical section)
§ E.g.) N threads, RR scheduling, 1 thread acquires locks during the

period of 1.5 time slice è N -1 time slices are wasted
ü Sleep lock

§ Preempt and enter into the waiting (block) state, wakeup when the lock
is released.

§ 1) Can utilize CPUs for more useful work, but 2) context switch for sleep
is expensive (especially for the short critical section)

§ Need OS supports

32

J. Choi, DKU

28.14 Using Queues: Sleeping instead of Spinning

Sleep
ü Better than spin since it gives a chance to schedule the thread that holds

the lock (A lot of mutexes are implemented using sleep lock)
Issues
ü Where to sleep? è Using queue
ü How to wake up è OS supports

§ E.g) Solaris supports park() to sleep and unpark() to wakeup a thread
§ Flag for lock variable, Guard for mutual exclusion of the flag, Queue for sleep

33

J. Choi, DKU

Quiz for 5th-Week 2nd-Lesson

Quiz
ü 1. Discuss the merits and demerits of the coarse-grained lock (and

fine-grained lock).
ü 2. Explain the correctness and fairness of the lock mechanism shown

in Figure 28.1 (if it is incorrect or unfair, explain why).
ü Due: until 6 PM Friday of this week (8th, April)

34

(Source: https://slideplayer.com/slide/4167835/)

J. Choi, DKU

Chap. 29 Lock-based Concurrent Data Structure

How to use locks in data structure?
ü Concurrent Counters
ü Concurrent Linked lists
ü Concurrent Queues
ü Concurrent Hash Tables
ü …

Data structure vs Concurrent data structure
ü Thread safe (support mutual exclusion)
ü Two Issues: 1) Correctness and 2) Performance

35

J. Choi, DKU

29.1 Concurrent Counters

A Counter without locks: Figure 29.1
ü Incorrect under race condition

A Counter with locks: Figure 29.2
ü Mutual exclusion using locks
ü Correct? How about performance?

36

J. Choi, DKU

29.1 Concurrent Counters

Traditional vs. Sloppy
ü Figure 29.3: total elapsed time when a thread (ranging one to four)

updates the counter one million times
ü Precise (previous slide): poor scalable
ü Sloppy counter: Quite higher performance (a.k.a Scalable counter or

Approximate counter)
§ A single global counter + Several local counters (usually one per CPU

core) è e.g. 4 core system: 1 global and 4 local counters
§ Lock for each counter for concurrency
§ Update local counter è periodically update global counter (sloppiness, 5

in figure 29.4) è Less contention è Scalable

37

J. Choi, DKU

29.1 Concurrent Counters

Implementation of Sloppy Counter

38

J. Choi, DKU

29.2 Concurrent Linked Lists

Implementation
ü How to enhance scalability? lock range
ü Single return path in lookup(): less bug

39

list

key
node2 node1

key

head
next next

NULL

list

key
node2 node1

key

head
next next

NULL
key

node3
next

a) Before insert

b) After insert (all done)
list

key
node2 node1

key

head
next next

NULL
key

node3
next

c) After insert (switched while inserting)

key
node4

next

J. Choi, DKU

29.2 Concurrent Queues

Implementation
ü How to enhance scalability? Multiple locks

40

J. Choi, DKU

29.2 Concurrent Hash Table

Implementation

41

Insert using concurrent hash vs
list with a single lock
(Fine-grained vs course-grained lock)

J. Choi, DKU

29.5 Summary

Concurrency terms
ü Shared data, race condition, mutual exclusion
ü Lock before/after critical section

Lock implementation
ü HW + OS cooperation

§ HW: atomic operations
§ OS: queue management

ü Spin lock and Sleep lock: Rule of thumb
§ Short critical section è spin lock
§ Long critical section è sleep lock
§ How about hybrid? è Two-phase locks (spin at first, then sleep)

Concurrent data structure

42

J. Choi, DKU

Lab 2: Concurrent Data Structure
What to do?
ü Make a program with multiple threads (based on producer and consumer problem)

§ Threads shares common data structure: queue and hash
§ Some threads insert/delete items into the queue and hash
§ Other threads lookup an item using hash
§ See Lab2 document at https://github.com/DKU-EmbeddedSystem-Lab/2022_DKU_OS

ü Requirements
§ Three comparisons: 1) with/without locks, 2) fined-grained/coarse grained lock, 3)

Performance under different number of threads
§ Reports: 1) Goal, 2) Design, 3) Results (3 comparisons), 4) Discussion
§ Submit: 1) Report è e-learning campus (pdf), 2) report and source codes è TA (with the

name of “lab2_sync_32XXXXXX.tar”)
§ Environment: ubuntu on virtual box (same as Lab1)
§ Deadline: 6 PM, 22th April (Friday)

43

Hash

key mod 5 == 0

Queue

key mod 5 == 1

key mod 5 == 2

key mod 5 == 3

key mod 5 == 4 24

7

15

31

22

Hash

key mod 5 == 0

Queue

key mod 5 == 1

key mod 5 == 2

key mod 5 == 3

key mod 5 == 4 24

7

15

31

22

16

(after insert 16)

head tail tail head

J. Choi, DKU

Quiz for 6th-Week 1st-Lesson

Quiz
ü 1. Discuss two differences between Figure 29.7 (Concurrent Linked

List) and 29.8 (Concurrent Linked List: rewritten)
ü 2. Assume that a program is waiting for an input from a keyboard.

Explain which is better, spin or sleep lock?
ü Due: until 6 PM Friday of this week (15th, April)

44

(Source: https://perso.telecom-paristech.fr/kuznetso/projects/Concur/concur/)

