DANKOOK UNIVERSITY

Lecture Note 5. Concurrency:
Semaphore and Deadlock

April 13, 2022
Jongmoo Choi

Dept. of software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)
[J. Choi, DKU

Contents

s From Chap 30~32 of the OSTEP

C
C
C

nap 30. Condition Variables
nap 31. Semaphores

nap 32. Common Concurrency Problems

. Acguing Sermaphons - ;

a \ iy,
;SEMAF*A ORE Shared Fesource

/{ﬂhl: Semaphore

(Source: https://www.crocus.co.kr/1261)

-

2

J. Choi, DKU

Chap. 30 Condition Variables

s Locks
v Mainly focusing on mutual exclusion

s Condition variables

v Focusing on synchronization (not only mutual exclusion but also
ordering)

v Specifically, used for checking whether a condition is true

00~ O o W N e

e
[L

o
w

—
= W

= E.g.

: 1) whether a child has completed. 2) whether a buffer is filled

void =»=child({veid =arg) {

int

printf{"childina");
S/ XHEY how to indicate we are done?
return NULL;

main{int argc, char *argv([]) {

printf ("parent: beginin");

pthread_t c;

Pthread create(&c, NULL, child, NULL); // create child
/S XXX how teo wait for child?

printf ("parent: end\n");

return 0;

Figure 30.1: A Parent Waiting For Its Child

3

J. Choi, DKU

Chap. 30 Condition Variables

s Feasible solution 1: busy waiting with a variable

volatile int done = 0;

void xchild(void =arg) {
printf ("child\n");
done = 1;
return NULL;

Mo =1 3 N ke W [e

int main(int argec, char =xargv([]) {
printf ("parent: begin\n"};
pEhread £ ¢;
Pthread_create (&c, NULL, child, NULL); // create child
while (done == 0)
; // spin
printf ("parent: end\n");
return 0;

— — — — — — — -
=] on N e I 3 = O
o

Figure 30.2: Parent Waiting For Child: Spin-based Approach

v Generally work, but inefficient (waste CPU time), sometimes
incorrect on multiple children case

I J. Choi, DKU
4

30.1 Definition and Routines

s Feasible solution 2: condition variable

v An explicit queue that threads can put themselves on when some
state of execution (i.e., some condition) is not as desired

v Some other thread, when it changes state, can then wake one (or
more) of those waiting threads and thus allow them to continue.

v pthread APls

pthread_cond_wait (pthread_cond_t *c, pthread mutex_t +m);
pthread_cond_signal (pthread_cond_t +c);

Task #1

Task #2 Task #n

! !

guarding 1
murtex
1

Condition Variable

Predicate

Condition(s)

- I Task]-l Task |-I Task |

N

Waiting
Tasks

FALSE

i, DKU

30.1 Definition and Routines

s Feasible solution 2: condition variable
v Condition variable example

int done = Oz
rchread mutesx i+ m
PLhread cond &£ o

PTHREAD MUTEX TNITIAT.TZER;
PTHREAD COND_ TMNITITAT.TAFER;

r

wvoaid thr exit () i
Pthread mutex_ lock (&m) ;
domne = 1 ;
Prthread cond signal (&) 7
Pthread muatex unlock (&m) ;

}

void xchild{void *arg) {
printFEFi{"childNn™)
thr exit () ;
retiuarn NULIL;

i

wvoid thr jJoin() {
Pthread matex lock {(&Em) ;
while (done == 00)
Pthread cond wait (&c, &m) ;

Pthread muatex unlock (&m) ;

int main{(int argc. char w=argwvil]l) {
printf{"parent: begin’\n"};
pthread t p;
Ptrthread creatae (&0, MNTII.I., child; MNUIILI.)
thr¥yr Jjoin() ;
printf ("parent: end \n") ;
return O;

Figure 30.3: Parent Waiting For Child: Use A Condition Variable

v Note: 1) wait(): unlock/lock implicitly, 2) while instead of if in join()

6

J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

s [he famous Producer/Consumer problem (also known as
bounded buffer problem)

v Scenario
* Producers generate data items and place them in a buffer
= Consumers grab the items from the buffer and consume them
= e.g. DB server, streaming server, pipe, cache, ...
v Issue
= Mutual exclusion
= Empty case: no data (need condition check)
» Full case: no available buffer (need condition check)

n --'-*':-' Data Buffer e

Producer Threads Consumer Threads

J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

s Basic structure: without considering sharing

v Shared buffer: put(), get() interfaces
= Assumption: space for only one item (single buffer) =» relax later

v Producer/Consumer: producer(), consumer/()
z izz E;iijri L B imitiallw, = Ty
3 count
4 wodad bt (dnmnt walieesk i
= aEiiE:;:T?n: == 1}
e 2:2;121::un: == 1z bUﬁer

r=tiarm bufFTfex;

Figure 30.46: The Put And Get Rowutines (w10

Wwiold wproducer (wioino wSITop) |
int iz
inmt loops

E>x

{Zmic k S Trogy
1 <= loopsg

=5 +

Pt {E) ;

:j- - +) L

| I

Wwiodd w=ooRSsuamEeEr [wirEo wSrEop) |
whils (1) 1

11 Imt tmp = gt d) F
ErriobtE {"E2Nm™, tmpel 3

F

Figure 30.7: Producer/Consumer Threads (v1)

8

J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

s Solution 1: Now consider sharing

- r il &= - =

(]
L=
[
L4
L5
LE

P E BB E e

v Mutual exclusion: mutex
v Ordering: condition variable

int loops; // mast idnitislize somewhsre. . .
o b Cirtd;
mutex +t mubtszx;

wolad wproducer {woid warogl |

int 33
For (i = 0; i = leoops; i++)F |
Fothread mutex_ fock {&mutcex)} 3
1Ef Jfocount == 1]
Pthread cond wait (&Econd, &Emuatex)
puat (3} 7

Fohread, cond signasl { Eocondd) @
Prchread mutex unlock [Emoatex) g

!

wold w=consumer {(woid w«azog) |

int 313

For (i = 07 41 = loops; i++})
Pothread mutex lock {fdmaobtex] ;
1Ef Jocount == 4]

Pthread cond wait (Econd, &Smutex) ;

int tmp = gt {}F
Pohread cond signal {(Econd)
Prchread mutex unlock [Emoatex) g
printf {"%¥dWa™, tmpl;

b

'
sy
Ao
Fa
Far
Ao

i
Fary
s
ra
oy
S

cl

[l
=4
—4
[|
i =]

Figure 30.8: Producer/Consumer: Single CV And If Statement

e Is it correct?

9

count

buffer

J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

16 void sconsumer (void ~arg) | 4 void sproducer (void »arg) {
. 17 int i; 5 int i;
s Solution 1 (cont’) r mUERLIRGLL e) Blcnnmamt
2 o en_csni sttt ey VY €3 " b oot o i
<~ Wakeup C1,butrun G2 = oo 0 0 Lo
2 Pthread_nutex_unLock (smutex) /1 cf ! Pthread_cond_signal (écond) /185
5 printf ("%d\n", tmp); n Pthread mutex_unlock (&mutex); /1 pé
% } 13 }
[5 State T.o State Ty State Count Comment
o | Running Ready Ready 0
c2 Running Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get
Sleep Ready pl Running 0
Sleep Ready p2 Running 0
Sleep Ready p4 Running 1 Buffer now full
Ready Ready p5 Running 1 T.1 awoken
Ready Ready p6 Running 1
Ready Ready pl Running 1
Ready Ready p2 Running 1
Ready Ready p3 Sleep 1 Buffer full; sleep
Ready cl Running Sleep 1 Teo sneaks in ...
Ready c2 Running Sleep 1
Ready c4 Running Sleep 0 ... and grabs data
Ready c5 Running Ready 0 T, awoken
Ready cb Running Ready 0
c4 Running Ready Ready 0 Oh oh! No data

Figure 30.9: Thread Trace: Broken Solution {(v1)

I J. Choi, DKU
10

30.2 Producer/Consumer (Bounded Buffer) Problem

s Solution 2
v while instead of if

int loops;
cond E COoTicE
mutex t mutex;

woid =producer {woid =waz-g) |
int iz

B od 8 4 B W & b =

EFor (i = 07 4d = loops; i++) |
Pohread muotex_lock {&smaobtex) ; T =
while {count == 1} Fd p2
Pthread cond wait (&cond, &mutex); /S p3

T put (i) ; LS opa
2 Pohread cond_ signal (&Econd) ¢ F45 e5
L3 Foihread mutex _unlock {smutex}) ; fS O pb
L4 F
L5 '
Le
LT woilid =consumer {void sarTgl i
L8 int iz
Ls for (i = D i < loops; i++)
0 Pothread mutex lock {&mubtex] ; f75 el
as while {count == 0O} FA R =
23 PEhread cond wait (&cond, &mutex); 75 =3
3 int tmp = gt) ; F A - X
LT Pechread cond sizognal {Econd] ; A5
25 Fohread mutex_ _unlock {smutex} ; P -t
28 printE{"T®d\n"™, to);
xr 3
z i

Figure 30.10: ProducerfConsumer: Single CV And While

@ Now, is it correct?
—11 J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

16

void *consumer (void #arg) {

void wproducer (void rarg) |

17 int i; 5 int i;
18 for (1 = 0; 1 < loops; i++) { 6 for (1 = 0; 1 < loops; it+4) {
s Solution 2 (cont’) e T L T s
: et
v Signal to P, but wake up C2 @ i, 00w S
% printf("$d\n", tmp); B
% I
7 State Teo State g State Count Comment
cl Running Ready Ready 0
c2 Running Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get
Sleep cl Running Ready 0
Sleep c2 Running Ready 0
Sleep c3 Sleep Ready 0 Nothing to get
Sleep Sleep pl Running 0
Sleep Sleep p2 Running 0
Sleep Sleep p4 Running 1 Buffer now full
Ready Sleep p5 Running 1 T.1 awoken
Ready Sleep po6 Running 1
Ready Sleep pl Running 1
Ready Sleep p2 Running 1
Ready Sleep p3 Sleep 1 Must sleep (full)
2 Running Sleep Sleep 1 Recheck condition
c4 Running Sleep Sleep 0 T.1 grabs data
c5 Running Ready Sleep 0 Oops! Woke T.2
cb Running Ready Sleep 0
cl Running Ready Sleep 0
c2 Running Ready Sleep 0
c3 Sleep Ready Sleep 0 Nothing to get
Sleep [Running Sleep 0
Sleep c3 Sleep Sleep 0 Everyone asleep...

Figure FHI_11: Thread Trace: Broken Soluatiors (w20

12

/] pl
/] p2
/] p3
/] pd
// p5
/] pb

30.2 Producer/Consumer (Bounded Buffer) Problem

= Solution 3 (final)

v Two condition variables
» |ndicate explicitly which thread | want to send my signal.

| cond_t empty, £ill;

2 mutex t muatex;

3

4 wvoid v producer (void xarg) {

5 Tt A

6 for (i = 03 i = loopss; it+t+) {

= Prthread mutex_lock {(amutex) ;

s while (count == 1)

9 Pthread cond_wait (&dempty, &mutex) ;
10 put (1) ;

11 Pthread_cond_signal{&fill);
12 Pthread_ mutex_ _unlock (&dmutex) ;
13 b

14 }

15

16 void xconsumer (void w=arg) |

17 Trrks a3

18 for (i = 0; i = loops; i++) {

19 Pthread mutex lock (&mutex) ;
20 while (count == 0)

21 Pthread cond _wait(&fill, &mutex) ;
22 int tmp = get () ;

23 Pthread cond_signal {&emptv) ;
24 Pthread mutex unlock (&mutexx) ;
25 printf ("Sd\n"™, tmp);

26 }

N

1
Figur-;- S IZ: Prodiacer M omsurmeers Tewo CWa S el W lad e

I J. Choi, DKU
13

30.2 Producer/Consumer (Bounded Buffer) Problem

s Multiple buffers cases: final solution

Nk W=

LB R -

L L6]

inmt buffer [MBX]

int £ill ptrxr = O;
int use_ _ptx = O;
int counkt = Oz

woid put (imnt wvalue) {

buffer [£fi1l1 ptr] = walus;

fill ptr = (E111 ptr + 1) T MAMN
cowrnt 44z

1

int get () {
int tmp = bufferlusse ptxr] ;
use. ptr = (auase_pitr¥r + 1) 5 ML
ot ——3

return tmpe;

Figure 20.13: The Correct Put And Get

cond t empiy, FI3AEZ

mutex T+ mutexx;;

void =producer (void warg) {

dnt 4

o (i = 0; i < lToops; A4+ {
Pthread mutex lock {(&Emutex) ;
while {conmnt == ML)

Pthread cond wait (fempiowv,

Eput {i) ;
Pthread cond signal {(&fill1) ;
Prthread mutex unlock (&mutcex) ;

}

woid *consumer (void warg) [
FTmvE T dg
o {i = 0; F- =< 1 oops ;7 d++3 {

Pthread mutex lock{&mutex) ;

while ({count ==)
Pthread cond wait(&ae£fill,

inmt tmp = get () ;

Fthread cond signal (&empitvw) 7

Prthread matex unlock (&Emutex)

printf ({"fd4dNn", tmp) 7

1

Emutesx)

&emutex) ;

-

fill_ptr

LA o pl
LA pZ
Lr a3
S F p4a
LS ps
L pe
PRkt . <
PV R =
FR A = e
S e
PV A =
P A =

I:'_:i.EL:Ir-E IO 3L T he Correct Fm::}zcerfﬂnnsmer El_l,.rnn:hmnizalinﬂ

oi, DKU

@@@ Quiz for 6th-Week 2nd-esson

IS

s Quiz
v 1. Explain the three issues that we need to consider for the
producer/consumer problem.

v 2. Describe whether the below program is correct or not? If incorrect,
discuss why?

v Due: until 6 PM Friday of this week (15™, April)

. K l ocops; ¥ muast initializse sSsaomeEwheEre .o -« .
connd__t corucl;
mutex + muatex

wold =produoucer {wvwoid waz-og) [
u M * e Pt

For (4 = D3 i <= loop=sg i) |
Prohread moatesx lock {&Emutex] § P . =
3 i focomant == 1] L, =
Fohread cond wait (Ecormd, Emirte=») 7 I = |
Pt () 3 P S =]
Prthreasd ocond signal {Scond) ; L, =
Frthread mubtsx unlock (Emutcesxx) ; A =1 =

woid soonsumesr {(woild sa@Dogl |
« M * e Py
o B ta = DO; E =< loop=g I} I

b Pohread mstsx lock {Emabtex]) 7 A0 =l
3 F (couant == 0] LA =2
=3 Fohread cond wait (Ecormd, Emirte=») 7 N S |
it btmp = geEt) F A =]
B4 Fihread —cond signal {&Scond) g P =5
= Frhread mubtsx unlock (Emutcesxx) ; A ch
s printE {"SdNno"™, Ema) ;

]

Figure 30.58: ProducerConsumer: Single OV And If Statement

I J. Choi, DKU
15

Chap 31. Semaphores

m Semaphore

v Well-known structure for concurrency control
» Can be used as both a lock and a condition variable
» Binary semaphore, Counting semaphore

» Can be employed by various concurrency problems including
1) producer/consumer, 2) reader/writer and 3) dining philosophers

v Invented by the famous Edsger Dijkstra

The bouncer represents a semaphore.
These people represent waiting threads. He won't allow threads to proceed
They aren't running on any CPU core. untilinstructed to do so. wait

signal

Have a nice day, ma'am.

wait

(Source: http://preshing.com/20150316/semaphores-are-surprisingly-versatile/)
J. Choi, DKU

16

31.1 Semaphores: A Definition

» Semaphore definition

v An object with an integer value manipulated by three routines
= sem_init(semaphore, p_shared, initial_value)

= sem_wait(): also called as P(), down() ...

Decrease the value of the semaphore (S). Then, either return right away
(when S >= 0) or cause the caller to suspend execution waiting for a
subsequent post (when S < 0)

= sem_post(): also called as V(), up(), sem_signal() ...

Increment the value of the semaphore and then, if there is a thread waiting
to be woken, wakes one of them up

» Others: sem_trywait(), sem_timewait(), sem_destroy()

1 #include <semaphore.h>
2 sem T s;
3 sem_init (&s, 0, 1) ;

Figure 31.1: Initializing A Semaphore

int sem _wait (sem_t =xs) {
decrement the value of semaphore s by one
wailit 1Ff wvalue of semaphore s 1s negative

int sem post (sem_t *s) {
increment the value of semaphore s by one
if there are one or more threads waiting, wake one

O 0N Ok WNRE

— Figure 31.2: Semaphore: Definitions Of Wait And Post |[J. Choi, DKU

31.2 Binary Semaphores (Locks)

s Using a semaphore as a lock

U ke W N

» Note that the value of the semaphore, when negative, is equal to the

sem_ Tt m;
sem_init (&m, O,

sem_wait (&m) ;
1f eéritical sactieon here
sem_post (&m) ;

X); // initialize semaphore to X;

Figure 31.3: A Binary Semaphore (That Is, A Lock)

v Running example
= Can support the mutual exclusion

number of waiting threads

Value Thread O State Thread 1 State
il Running Ready
1 call sem_wait () Running Ready
O sem_wait () returns Running Ready
(9] (crit sect : begin) Running Ready
o Imterrupt; Switch—T71 Ready Running
o Ready call sem_wait () Running
-1 Ready decrement sem Running
-1 Ready (sem<<0) —-sleep Sleeping
-1 Running; Switch—TO0 Sleeping
-1 (crit saect: end) Running Sleeping
-1 call sem_post () Running Sleeping
0] increment sem Running Sleeping
O wake (T1) Running; Ready
(0] sem_post () returns Running Ready
o Interrupt; Switch—T71 Ready Running
(0] Ready sem_wait () returns Running
o Ready (s) Running
o Ready call sem_post () Running
i | Ready sem_post () returns Running

| O

Figure 31.5: Thread Trace: Two Threads Using A Semaphore

what should X be?

oi, DKU

31.3 Semaphores for Ordering

s Using a semaphore as a conditional variable
v Initial semaphore value: O (note: it is initialized as 1 for mutex)

1 sem_t s;

2

3 void =

4 ehild(veid =arg) 1

5 printE ("child\yn"™) ;

6 sem _post(&s); // signal here: child is done
7 return NULL;

8 }

9

10 int

11 main (int arge, char *axrgv[]) {

'y
[}

sem_init(&s, 0, X); // what should X be?
printf ("parent: begin\n");

pthread_t c;

Pthread create (&c, NULL, child, NULL) ;
sem_wait (&s); // wait here for child
printf ("parent: end\n");

return 0;

I e T e e N e Ml e
O 0 N e W
—

Figure 31.6: A Parent Waiting For Its Child

<« Compare semaphore (this page) with condition variable (page 6) = No “"Done” variable

I J. Choi, DKU
19

31.4 Producer/Consumer (Bounded Buffer) Problem

W
W

b
S
(]

s Using a semaphore for the producer/consumer problem
v mutex: binary semaphore, full/empty: counting semaphore

1 J i bhbuiffer [MAX] 7

=2 d raic i i] (1 =) o

3 d ot use — o2

= 5

5 ~woid puat (it ~v~alue) {

[=Y TouuffFfFfer [453 1T 1] = ~walue i i T.4d me 1
i o counpr gl (0 = i 13 —+ ad = b o B N o I.idne E =2
s ¥

=]

10 d ot get () i

11 s i Ty tmp = buffer [use<e] ; S ILdrne S
1z use = (use —+ ¥ = MEL A T.dne o2
i3 ety arra tmypy s

. Figure 31.0: -~ ¥ Summary of two versions (semaphore in

1 sem__t emptwv; H o H 1
P oem b omw page 20 vs condition variable in page 14)
3 m m = . . .
r Semot mmbes « 1) No count variable (owing to counting semaphore)
5 ER SErSemcetrendG -Erea W 2) ordering = mutex vs mutex =» ordering (See
g fFfoxr (i = O; I =< loopss A+ [mge40)
s sem_wait (Ssemptvw) ;
9 sem. _wailit (smutex) ; a4 IT.ine PI1 .5 (MOVED MUTEX HERE . . .)
10 Pput (i) ; S/ Line P2
11 sem _post (&ESmutex) ; Sy Line P2.5 [R AND HERE)
1z sem_post (&Ffull1) ; S Line P3
i3 }
14 }
15
16 wvoid wconsumer (void warg) {
17 Ayl A
18 for (2 = O; i < loops; i+—+) {
19 sem_ _wait (&fwull) ; A/ T.ine CL
20 sem__wailit (&mutex) ; v IT.ine Cl1l.5 ({(MOVED MUTEX HERE . . .)
21 int tmpe = get () 7 S/ Line C22
22 sem _post (&amutex) ; Y Line CZ2.5 e 5 AND HERE)
23 sem _post (&gempty) ; S Lidine C3
24 EBEEHIETE R AN, tmp) ;7
25 ¥
26 }
27
28 int main {(int AT C iy char ~arg~w[]) {
29 s -
30 sem_ _init (semptyv., i MDY 7 S S MAY buffers are empty to begin with o o o
31 sem_init (&a&full., B B I P - e - o and 0 are full
32 sem__init (samutex, (& A el A/ mutex=1 because it is a lock
v

Figure 31.12: Adding Miutual Exclusion (Correctly)

31.5 Reader-Writer Locks

s Producer/Consumer vs. Reader/\Writer
v Producer/Consumer: need mutual exclusion (e.g. list insert/delete)

v Reader/Writer: need mutual exclusion, but allow multiple readers
(e.g. tree lookup and insert)
= Specific comparison
A Producer or Consumer in Critical Section =» next Producer or Consumer
must wait
A writer in Critical Section =» 1) next writer or 2) next reader must wait

A reader in Critical Section =» 1) next writer must wait, 2) but next reader
can enter (better performance)

» |ssue (related to starvation)

Readers in Critical Section + a writer is waiting = a reader arrives : wait or
allowed (depending on either writer preference or reader preference)

Readae ﬁ | S Ta PSS o ﬁ
J Raoaders J
CELTE e TRl e w
C R e ade 3 INata bhasae
N AT e ﬁ R e ade ﬁ
J N A te = JJ
EAARLEST W s it
A e s to» cdaata bhaaase

21

31.5 Reader-Writer Locks

= Implementation for reader/writer
v lock: for mutual exclusion on readers

v writelock: to allow a write or multiple readers
» The below implementation prefer readers (writers can starve)

tvpedef struct __rwlock_ t {

sem_t lock; S/ binary semaphore (basic lock)

sem_t writelock; S/ used to allow ONE writer or MANY readers

IwvE readers; S/ count of readers reading in critical section
¥ Ewmlieels g

woid rwlock dnit(rwlock £t *x1rw) {
rw—>readers = 0;
sem _init (&rw—>lock, o, 1) ;
sem _init (&arw—>writelock, o, 1 i .

}
rl r2

void rwlogk - cquire_reaJ}Dckr%wrock_t W I) {
sem__wali (&tw—>lock) ;
rw—>readers-+-+;
dF { =w— eaders == 1)
sem _wait (&rw—writeldeck) ; 7 first reader acguires writelock
sem_ post (&srw—>lock) ;

H

BN U RN

NNKREERHEHHEH BB R
HQOWONGOURERWNRQOYW

volid rwlock release readlock (rwlock_ t @ *1rw) {
sem _wait (&arw—>lock) ;
rw—>readers——;
if (rw—>readers == 0)
sem_ _post (&srw—>writelock) ; /S /S last reader releases writelock
sem_ _post (&rw—>l1lock) ;

wl w2 wl

void|rwlock acguire writeldck (rwlock t =xrw) {
sep_waiit (&rw—>writelock)

}

NNNNNRN
N DR WN

}

W W WwwNRN
WNHOO®

wvoid rwlock release writelock (rwlock t© @ *1rw) {
sem_post (&arw—>writelock) ;

}

W W
S

[Figure 31.13: A Simple Reader-Writer Lock

22

31.6 The Dining Philosophers

s Problem definition
v There are five “philosophers” sitting around a table.
v Between each pair of philosophers is a single fork (thus, five total)
v The philosophers each have times for thinking or for eating

v In order to eat, a philosopher needs two forks, both the one on their
left and the one on their right = shared resource =» concurrency

Figure 31.14: The Dining Philosophers

J. Choi, DKU

31.6 The Dining Philosophers

= Solution
v Basic loop for each philosopher

v Now question is how to implement getforks() and putforks()
» Using five semaphores: sem_t forks[5]
= Obtain semaphore before acquire a fork

v Cause Deadlock

= All philosophers obtain their left fork, while waiting their right one
= How to avoid this issue?

s New Solutions

v 1) break ordering, 2) set limit, 3) employ transaction (e.g. the Monitor),
4) more resource, 5) teach philosophers (idea from a student)

while (1) {

think () ;

getforks () ;

eat ()
P FoElks Y 3
=1 o ’ =D [

= <> =1
-_— (Basic loop) -

Figure 31.14: The Dining Philosophers Figure 31.14: The Dining Philosophers

void get forks(int p) { 1 void get_forks(int p) {
sem_wait (&forks[left(p)l); z if (p == 4) |
sem_wait (&forks[right (p)1); sem_wait (&forks[right (p)1);
1 sem wait (&forks[left (p)]l);
} else {
void put_forks (int p) { sem_wait (&forks[left (p)]);
sem_ post (&forks[left (p)]); 3 sem _wait(a&forks[right (p) 1)
sem post {(&aforksiright {(p)]1); s }

¥ }

Figure 31.15: The get _forks () And put_forks () Routines 24 Ficure 31.16: Breakine The Dependency In get_forks ()

|Qu@ Quiz for 7t"-Week 1st-Lesson

TIME]

s Quiz

v 1. Explain the meaning of semaphore value in Figure 31.5. Is it
possible that this value becomes -27?

v 2. Discuss the differences between the producer/consumer and
reader/writer problem (at lease 2 differences).

v Due: until 6 PM Friday of this week (22, April)

Value | Thread 0 State Thread 1 State
1 Running Ready
1 call sem_wait () Running Ready
0 sem.wait () returns Running Ready
0 (crit sect: begin) Running Ready
0 Interrupt; Switch—T1 Ready Running
0 Ready call sem_wait () Running
-1 Ready decrement sem Running
-1 Ready (sem<0) —sleep Sleeping wait{mutex)
-1 Running | Switch—T0 Sleeping readers++ readers++
-1 (crit sect: end) Running Sleeping If (readers==1) Y e —
-1 call SEmpEsE () Runnmg Sleepmg wait{wrmutex) wait{wrmutex)
0 increment sem Running Sleeping
0 wake (T1) Running Ready signal{mutex) signal(mutex)
0 sem_post () returns Running Ready Raad Heve Nl Here
0 Interrupt; Switch—T1 Ready Running wait(mutex) walt{mutex)
0 Ready semwait () returns Running readers— readers-
0 Ready (eritmsect) Running if{readers==0) if{readers==0)
0 Ready call sem_post () len]:ng signal{wrmutex) signal(wrmutex)
1 Ready sem-post () returns Rummg signal{mutex) signal{mutex)
Figure 31.5: Thread Trace: Two Thr ing A Semaphor
gure 31.5: Thread Trace: Two Threads Using A Semaphore (Source: WWW.Chegg.Com/)
I J. Choi, DKU

25

Chap 32. Common Concurrency Problems

s Concurrency
v Pros: can enhance throughput via processing in parallel

v Cons: may cause several troublesome concurrency bugs (a.k.a.
timing bugs)

s 32.1 What Types of Concurrency Bugs Exist?

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16
OpenOffice Office Suite 6 2
Total 74 31

Figure 32.1: Bugs In Modern Applications

v Total bugs: 105
= Deadlock bugs: 31
= Non-deadlock bugs : 74

v Differ among applications

I J. Choi, DKU
26

32.2 Non-Deadlock Bugs

s Two major types of non-deadlock bugs
v Atomicity-Violation Bugs (From MySQL sources)

1 Thread 1::
1.f (thd->proc info)

fputs {(thd—>prac. Aanfe; ...);

Thread 2::

2
3
4
5
6 }
- 4
8
9 thd->proc_info = NULL;

v Order-Violation Bugs

1 Thread 1::

2 vold: init{) {

3 S

4 mThread = PR_CreateThread(mMain, ...);

5

6 }

7

8 Thread 2::

9 void mMain({...) {

10 .- . -

11 mState = mThread->State;

12

13 }
[J. Choi, DKU

27

32.2 Non-Deadlock Bugs

e e o R = S L " I

T T S T S i S o Gy v
N o= W N = O

s Solution to Atomicity-Violation Bugs

pthread mutex t proc_info lock = PTHREAD MUTEX INITIALIZER;

Thread 1::
pthread _mutex_ lock (&proc_info_lock);
if (thd->proc_info) {

fputs (thd—>prog info, ..«);

}

pthread _mutex_unlock (&proc_info_lock);

Thread 2::
pthread_mutex_ lock (&proc_info_lock);
thd->proc_info = NULL;

pthread _mutex_unlock (&proc_info_lock);

I J. Choi, DKU

28

32.2 Non-Deadlock Bugs

s Solution to Order-Violation Bugs

1 pthread_mutex_t mtLock = PTHREAD MUTEX_ TNITIALITIZER;
2 pthread_ cond_t mt-Cond = PTHREAD COND_ TITNITIALIZER;
3 int mtInit = 0;

4

5 Thread 1::

6 wvold 1rnit () {

7 v wlia

8 mThread = PR_CreateThread{(mMain, ...);

=)

10 // signal that the thread has been created...
11 pthread mutex_lock (&mtLock) ;

12 mtInit = 1;

13 pthread cond_signal (&gmtCond) ;

14 pthread mutex unlock {(&mtLock) ;

15

16 T

17

18 Thread 2::

19 wvold mMain (. ..} {

20 e

21 /S wait for the thread to be initialized...
22 pthread mutex_lock (&mtLock) ;

23 while (mtInit == 0)

24 pthread_ cond_wait (&mtCond, &mtLock) ;

25 pthread mutex unlock (&mtLock) ;

26

27 mState = mThread—>State;

28

P Bt]hread_cond_waits a: unlock and lock mutex imEIicitIy before and after sleep (seﬁ %?]ge 6K)U
. Choi, D

29

32.3 Deadlock Bugs

s Deadlock

v A situation where two or more threads wait for events that never
occur

Thread 1:

pthread mutex_ lock (L1) ;
pthread mutex_ lock (L2) ;

Thread 2:

pthread mutex_ lock (L2) ;
pthread _mutex_ lock (L1l) ;

= E.g.) When a thread (say Thread 1) is holding a lock (L1) and waiting for

another one (L2); unfortunately, the thread (Thread 2) that holds lock L2
is waiting for L1 to be released.

Holids
» | Loclk L1

Lock L2| =

Wanted by

—
Aq pajuepm

Thread 2

Holds

Figure 32.7: The Deadlock Dependency Graph

J. Choi, DKU
30

32.3 Deadlock Bugs

Deadlock: 4 Conditions

v Mutual exclusion

v Hold-and-Wait

v No preemption for resource
v Circular wait

#u

LI ——— -

o

{a) Deadlock Possible

Holds

. Lock L1

Wanted by
<E
e fq pajue

Lock L2 E

Holds

Figure 32.2: The Deadlock Dependency Graph

-

=

—
- e

(b) Deadlock

J. Choi, DKU

32.3 Deadlock Bugs

s How to handle Deadlock: three strategies
v 1. Deadlock Prevention
v 2. Deadlock Avoidance via Scheduling
v 3. Deadlock Detection and Recovery

Approach Lo f&llocatlon Different Schemes Major Advantages . WEEe
Policy Disadvantages
sInefficient
*Works well for *Delays process
- processes that perform a initiation
Requesting all resources at . .
single burst of activity *Future resource
onee *No preemption requirements must
necessary be known by
processes
Conservative; *Convenient when
Prevention | undercommits . applied to resources <Preempts more
resources Preemption whose state can be
often than necessary
saved and restored
easily
*Feasible to enforce via
ile-ti heck .
compile-time checks Disallows
. *Needs no run-time :
Resource ordering . . incremental
computation since
. . resource requests
problem is solved in
system design
eFuture resource
Midway between that . g requirements must
. . ™M late to fi t1 t | N t
Avoidance | of detection and IR Te VD) U Abale X) © preemption be known by OS
g one safe path necessary
prevention *Processes can be
blocked for long
periods
Very liberal; *Never delays process
. requested resources Invoke periodically to test initiation sInherent preemption
Detection LT .
are granted where for deadlock «Facilitates online losses
possible handling

ﬁ e “Qﬁiiiilﬂﬂ systems: |pterna|s and Design Principle” by W. Sta"ing)(;hoi DKU

32

32.3 Deadlock Bugs

s Deadlock prevention

v This strategy seeks to prevent one of the 4 Deadlock conditions
v 1. Hold-and-wait
= Acquire all locks at once, atomically

v 2. No Preemption | I
= Release lock if it can not hold another lock

= Concern: 1) may cause Livelock, 2) sometimes require undo

Two threads could both be repeatedly attempting this sequence and
repeatedly failing to acquire both locks = add random delay

v 3. Circular Wait
= A total ordering on lock acquisition

» E.g.) The comment at the top of the source code in Linux: i_mutex”
before i_ mmap_mutex”

- v Ry

pthread mutex_lock (prevention); // begin lock acquistion

! 1 top:

2 pthread_mutex_lock (L1); 2 pthread_mutex_lock(L1);

] pthread nutex lOCk(LZ); 3 if (pthread_mutex_trylock (L2) !'= 0) {
- - 4 pthread_mutex_unlock (L1);

4 5 goto top;

5 pthread_mutex_unlock (prevention); // end 6 }

‘Acauire all locks atomicalln (Release lock if it can not hold anotrhelc'3 Lock U
. ol,

33

32.3 Deadlock Bugs

s Deadlock prevention (cont’)
v 4. Mutual Exclusion:

“lock free” approach: no lock but support mutual exclusion

Using powerful hardware instructions, we can build data structures in a
manner that does not require explicit locking

= Atomic integer operation with compare-and-swap (chapter 28.9 in LN 4)

~] o~ W

L= -]

void insert (int value) |
nocde £ *n = malloc(sizeof (node £));
assert(n !'= NULL);
n->value = value;
pthread_mutex lock(listlock);
= head;
= n;

pthread mutex unlock(listleck); // end critical section

old increment (counter t +c) | | void AtomicIncrement(int value, int amount) |
Pthread mutex_lock (&c->lock);) o |
c->yaluct++: ;
ST R T R] int old = svalue;
PLhread mutex unlock(&c->lock); ' shile (¢ S 4 old | :
4 } wnile (CompareAndswap(value, old, old + amount) == (];
Using Lock | pareancovap va.ue, old, I}
5
Lock free
= |ist management (39 page in LN4)
1 wvolid insert(int wvalus) 1
2 node £t »nn = malloci(sizeof (node t)) ;
3 sassert{n = MNUOLL) ;
4 n—=wvalue = walue;
5 n—=next = head;
I head = 1i;
T 1
Using Lock Logl free

// begin eritical section

=] o W W= W P

e]

Vo1t

insert (int wvalue) |
node_t +n = malloc(sizeof(node_t));
assert(n '= NULL);
n—-r*valuse = value;
do
n—->next = head;
} while (CompareAndSwap (&head, n->next, n) == 0);

'I-r- 1 1 1
o [ock free: applicable onlvy son¥ specific tases vs tock—aeneral

32.3 Deadlock Bugs

Deadlock Avoidance via Scheduling
v Instead of prevention, try to avoid by scheduling threads in a way as
to guarantee no deadlock can occur.

= E.g.) two CPUs, four threads, T1 wants to use L1 and L2, T2 also wants
both, T3 wants L1 only, T4 wants nothing

71 B2 IY T4 CPU1 T4

L1 yes yes no no

LZ yes yes yes no CPUE- T2

= E.g. 2) more contention (negative for load balancing)

] ; 4 s
._ T = 7 A CPU1 | T4
L1 yes yes yes no '

» No deadlock, but under-utilization = A conservative approach

I J. Choi, DKU

35

32.3 Deadlock Bugs

s Deadlock Avoidance via Scheduling (cont’)

v Famous algorithm: Banker’s algorithm
= E.g.) Multiple processes with single resource case (also applicable to

multiple resources case)

| Has | Max | Has Max J | Has | Max_
A 5 A 3 A 5

0 2 2
B 0 6 B 0 6 B 1 6
C 0 3 C 1 3 ks 1 3
D 0 7 D 5 7 D 5 7
Initial State: Free =10 State 1: Free =2 State 2: Free =1

= Safe and unsafe state

. Try to stay in safe state while allocating resources

deadlock

unsafe

S

36

J. Choi, DKU

32.3 Deadlock Bugs

s Deadlock Detection and Recovery

v Allow deadlocks to occasionally occur, and then take a detection and
recovery action

= E.g.) If an OS froze once a year, you would just reboot it (but failure is a
norm in a Cloud/Bigdata platform)

= Many DB systems employ active deadlock detection approach
v How to detect?

» Periodically, build resource allocation graph, checking in for cycles
v How to recovery?

= Select a victim (youngest or least locks)

Edge R1

; — e =
Assign Request = - B
Edge Edge (P (3
@ ® = - \ \[/ -
I l | o ® i ‘ E

R2

R R P3 L ™
Meaning of Node and Edge in Resource allocation grap Resource allocation graph
Resource allocation graph Example without Deadlock Example with Deadlock
Source: https://www.slideshare.net/AbhinawRai/deadlock-51330115)
J. Choi, DKU

37

32.4 Summary

Concurrency method
v Lock, Condition variable, Semaphore, ...

Well-known concurrency problems
v The Producer/Consumer problem
v The Reader/\Writer problem
v The Dining philosopher problem

Concurrency bugs Tip: DON'T ALWAYS DO IT PERFECTLY (TOM WEST'S LAW)

_ Tom West, famous as the subject of the classic computer-industry book
v Non-Deadlock bugs Soul of a New Machine [K81], says famously: “Not everything worth doing

v Deadlock bugs is worth doing well”, which is a terrific engineering maxim. If a bad
thing happens rarely, certainly one should not spend a great deal of effort

Deadlock apprOaCh to prevent it, particularly if the cost of the bad thing occurring is small.
If, on the other hand, you are building a space shuttle, and the cost of

v Prevention strategy something going wrong is the space shuttle blowing up, well, perhaps
v Avoidance strategy you should ignore this piece of advice.

v Detection and Recovery strategy

I J. Choi, DKU

38

@@@. Quiz for 7th-Week 2"d-_esson
TIRAE]

s Quiz
v 1. Explain how to prevent deadlock. (4 mechanisms in the deadlock

prevention strategy)
v 2. Is there a deadlock in the below right resource allocation graph?

v Due: until 6 PM Friday of this week (22, April)

(Source: velog.io/@agpinel2/ and www.chegg.com/homework-help/questions-and-answers/)

J. Choi, DKU

39

Appendix 1

s 31.4 Producer/Consumer (Bounded Buffer) Problem
v Second attempt: Adding mutual exclusion

1 sem_t empty;

2 sem_t full;

3 sem_t mutex;

4

5 void =*producer (void =*xarg) {

6 int 4

7 for (i = 0; i < loops; 4i++) {

8 sem_wait (&mutex) ; // Line PO (NEW LINE)
g sem_wait (&gempty) ; // Line P1

10 put (i) ; // Line P2

11 sem_post (&full) ; // Liine P3

12 sem_post (&mutex) ; // Line P4 (NEW LINE)
13 }

14 }

15

16 void xconsumer (void warg) {

17 Iint T3

18 for (i = 0; i < Lloeps:; d++) {

19 sem_wait (&mutex) ; // Line C0O (NEW LINE)
20 sem_wait (&full) ; S/ Line C1

21 inkt tmp = get () ; // Line C2

22 sem_post (sempty) ; // Line C3

23 sem_post (&mutex) ; // Line C4 (NEW LINE)
24 peint F{"EdNn™y Lomp);

25 1

I
&

! @ [s it correct?

N N
® N

int main(int argec, char =xargvi[]) {

29 VL (.,

30 sem_init (&empty, 0, MAX); // MAX buffers are empty to begin with...
31 sem_init (&full, 0, 0); // ... and 0 are full

32 sem_init (emutesx, 0, 1); // mutex=1 because it is a lock (NEW LINE)
33 Pl e .

)
N

}

e Figure 31.11: Addll‘lﬁ MutuleExclumon (Incorrectly) 5. unoi, DKU

Appendix 1

s 31.7 How to Implement Semaphores
v Using mutex and condition variable

typedef struct __ _Zem_t {
int wvalue;
pthread cond_t cond;
pthread mutex_t lock;
} Zem t;

// only one thread can call this
void Zem init (Zem_ t *s, int wvalue) ({
s—>value = wvalue;
Cond_init (&s—>cond) ;
Mutex init (&s—>lock) ;

LoTie <IN B« (6 B 2 A o I

= =
N - O

}

[T
=W

void Zem_wait (Zem_t =*s) {
Mutex lock (&s—>1lock) ;
while (s—>value <= 0)
Cond_wait (&s—>cond, &s—>lock) ;
s—>value——;
Mutex unlock (&s—>1lock) ;

1 QU G G U
o9 B NG

}

RN
N

void Zem post (Zem_t =*s) |
Mutex lock (&s—>lock) ;
s—>value++;
Cond_signal (&s—>cond) ;

Mutex unlock (&s—>1lock) ;

[e R o T
N U e W
—

Figure 31.16: Implementing Zemaphores With Locks And CVs

I J. Choi, DKU
41

Appendix 2

s 30.3 pthread _cond_broadcast: Covering Conditions
v Memory allocation library for multi-thread env.

v Issue: which one to wake up?
= E.g.) no free space, T1 asks 100B, T2 asks 10B, Both sleep = T3 free

v pthread_cond_broadcast() instead of pthread _cond_signal()

M2 2 emypueWn-=

I L)
L - I B

(W)

Y how many bytes of the heap are free?
int bytesleft = MAM HEALP STZAE;

A need lock and condition too
comndd ot
miztexx_ 1T m;

srodd

allocate{(int size) i
Pthread mutex_ lock (&m) ;
while (bvtesLeft < size)

Pothread cond wait(&c, &m) ;

void x*xptr = .(..;7; VY get mem from heap
byteslL.eft —— gSizej
Pthread mutex_ unlock (&m) ;
return ptr;

void free(void =ptir, inmt size) i
Pothread mutex_ lock (&m) ;
bvtesLeft += si=ze;

Pthread_ cond signal (&c) ; Y whom to signal??
Pihread muatex unlock (&m)

Figure 30.15: Covering Conditions: An Example

o Please read carefully the program in Figure 30.13, Figure 30.14 and

Figure 31.12. It will be great helpful when you do the Lab. 2 A
I

42

50B =» T2 wakeup: okay, T1 wakeup: sleep again, but T2 also sleeps

J. Choi, DKU

