
J. Choi, DKU

Lecture Note 6. File System
Basic

May 2, 2022
Jongmoo Choi

Dept. of software
Dankook University

http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)

J. Choi, DKU

Contents

Chap 35. A dialogue on Persistence
Chap 36. I/O Devices
Chap 37. Hard Disk Drives
Chap 38. RAID
Chap 39. Interlude: Files and Directories
ü APIs for file, directory and file system

Chap 40. File System Implementation
ü Layout: superblock, bitmap, inode, data blocks, …
ü Interface (access method): open, read, write, close, lseek, fsync,

mount, …

2

J. Choi, DKU

Chap. 35 A Dialogue on Persistence

3

E Persistence : Making information durable despite of computer crash, disk failures and so on

J. Choi, DKU

Chap. 36 I/O Devices

36.1 System Architecture
36.2 A Canonical Device
36.3 The Canonical Protocol
36.4 Lowering CPU overhead with Interrupt
36.5 More Efficient Data Movement with DMA
36.6 Methods of Device Interaction
36.7 Fitting into the OS: The Device Driver
36.8 Case Study: A simple IDE Disk Driver
36.9 Historical Notes

4

(Source: https://gcallah.github.io/OperatingSystems/IOHardware.html)

J. Choi, DKU

36.1 System Architecture

Computer system focusing on Bus
ü Hierarchical structure

§ Memory bus (System bus): CPU and Memory
• Fast, Expensive, Short

§ I/O bus: SCSI, SATA, USB (and/or separated bus for Graphic Cards)
• Slow, Less expensive, long, pluggable

ü Modern system
§ Special interconnect: Memory interconnect (e.g. QPI, Hyperport),

Graphic interconnect
§ Make use of specialized chipsets: I/O chips with different interfaces

5

J. Choi, DKU

36.2 A Canonical Device / 36.3 The Canonical Protocol

Devices
ü Interface parts

§ Registers: command, status, data
ü Internals

§ Logic: controller and special chips (device specific) + SW (called firmware)
§ Memory: I/O Buffer (e.g. store receiving packet, delayed write, …)

Protocol
ü How to interact with devices?

§ Example: Four steps 1) idle check, 2) data, 3) command, 4) finish check
ü 3 mechanisms: PIO(Programmed I/O), Interrupt, DMA

§ PIO: CPU performs all steps including idle/finish checking (polling)

6

J. Choi, DKU

36.4 Lowering CPU overhead with Interrupt

Interrupt vs Polling
ü Comparison

§ Polling: Checking status (busy or idle, like spin) è thread state: running (still
hold CPU while its usage is only checking device status)

§ Interrupt: Inform when device is idle (or work is done) è thread state:
sleeping (release CPU which can be utilized usefully by other threads

• Note) Interrupt definition: a mechanism that informs an event to OS
ü Example

§ Thread 1 requests disk access (read or write)

ü Tradeoffs
§ Benefit of Interrupt: overlapping

• Interrupt: CPU can do other useful job (for thread 2) while doing I/Os (for thread 1)
• Polling: CPU just polling (actually waiting) while doing I/Os

§ New requirement for Interrupt
• Handling mechanism: call interrupt handler via interrupt table (page 28 in LN 2)
• Sleep queue management (Context switch overhead)

§ Usage suggestion (depend on devices)
• Slow device: Interrupt, Fast device: Polling (like spin and sleep lock)
• Optimization: Hybrid, Interrupt coalescing

7

J. Choi, DKU

36.5 More Efficient Data Movement with DMA

DMA (Direct Memory Access)
ü Comparison

§ PIO (Programmed I/O): CPU manages data copy between memory and
devices

• Concern: Devices are too slow for CPU (note CPU: ns, Disk: ms)
§ DMA controller performs data copy between memory and devices

• CPU can do other useful job (better overlapping)
ü Example

§ Thread 1 requests disk write without/with DMA using Interrupt
§ Data copy (denoted as “c” in the figure is done by CPU vs. DMA)

ü DMA mechanism

8

J. Choi, DKU

36.6. Methods of Device Interaction

How to address registers in devices?
ü Two approaches

§ Direct I/O
• Separated address space
• Explicit I/O instruction (e.g. in/out + port)

§ Memory-mapped I/O
• Single address space: DRAM + I/Os
• Memory access instruction (e.g. load/store + I/O address space)

ü Privileged instruction
§ Kernel mode: okay vs User mode: protection fault
§ Usually accessed in a kernel component called device driver

9

J. Choi, DKU

36.7 Fitting into the OS: The Device Driver

Device driver
ü A set of software in kernel that abstracts devices
ü Two layers

§ Manage 1) device registers (command, status, data), 2) interrupt and 3) DMA
§ Support generic interface such as open, read, write, close, … (like file)

ü 70% of codes in Linux is device drivers (mostly kernel module)
Layered architecture
ü Character device (or raw mode): device accessed by user directly

§ System call è Driver è Devices
ü Block device: device accessed by user through file system (FS)

§ System call è FS è Block layer (buffer, scheduler) è Driver è Devices

10

(Device driver: general) (Device driver: block driver specific)

J. Choi, DKU

36.8 Case Study: A simple IDE Disk Driver (Optional)

A simple IDE disk controller
ü Direct I/O (separated I/O address), I/O instruction: in/out
ü 4 Registers

§ Control (0x3f6), Command block (0x1f2~1f6), Command or Status (0x1f7),
Data port (0x1f0), Error (0x1f1)

• Note) 1) LBA: Logical Block Address, 2) Status: Busy/Ready, 3) Error: bad block,…
§ Example (low-level interface)

• Wait for drive ready: read 0x1f7 until the READY bit is on
• Write: Write sector count and LBA in 0x1f2~1f6 and Start I/O by writing WRITE

command in 0x1f7
• Data transfer: wait until READY and DRQ (Drive Request for Data), write data into

the Data port

11

J. Choi, DKU

36.8 Case Study: A simple IDE Disk Driver (Optional)

Driver interface (OS-level interface)
ü Character driver: open, read, write, close, intr, …
ü Block driver: open, close, intr, rw (or request, strategy), …

§ Note: dynamic loadable kernel module interface for Linux (insmod, rmmod)
IDE disk driver example: 4 main functions
ü ide_rw() è ide_wait_ready() è ide_start_request()
ü ide_intr()

12

J. Choi, DKU

37 Hard Disk Drives

37.1 The interface
37.2 Basic Geometry
37.3 A Simple Disk Drive
37.4 I/O Time: Doing the Math
37.5 Disk Scheduling

13

(Source: https://www.slideshare.net/PareshParmar6/disk-scheduling-algorithms-71247712)

J. Choi, DKU

37.1 The interface / 37.2 Basic Geometry

Interface
ü Basic unit: sectors (512-byte)

§ Disk consists of a large number of sectors (0 ~ N-1 sectors or address space)
ü Addressing (LBA: logical block address for disk)

§ Sector addressing: 512B
§ Multi-sector addressing (usually called as a disk block): 4KB or 8KB è

Kernel developer’s viewpoint: disk is a set of disk blocks whose size is 4KB
Basic Geometry
ü Platter (two surface) è Track (thousands tracks per surface) è Sectors
ü Head: sensing data

§ Multiple heads (one per each surface), connected into an arm
ü Data access: seek time + rotation latency (time) + transfer time

§ Cylinder: a set of same tracks in each surface (no seek time required)

14

J. Choi, DKU

37.3 A simple Disk Drive

In a same track access: Figure 37.2
ü Assume

§ 12 sectors in a track, original head position is 6, target is 10
§ 10,000 RPM (rotation per minute) è 1/6 rotation per ms (millisecond) è a

rotation takes 6ms
§ Rotational latency è 2ms in this case (3ms on average)

Multiple tracks: Figure 37.3
ü Original head position is 30, target is 11
ü Need not only rotational latency but also seek time (ms)

§ Note that seek and rotational latency perform in parallel
Track skew: Figure 37.4
ü To optimize sequential access (e.g. read sector 10, 11, 12, 13)
ü Other optimizations: multi-zones, disk cache (track buffer)

15

J. Choi, DKU

Quiz for 9th-Week 1st-Lesson

Quiz
ü 1. Discuss the merit/demerit of interrupt, compared with polling. What

is the additional merit when we use DMA with interrupt?
ü 2. Discuss the differences between a character device driver and

block device driver (at least two differences)
ü (Bonus) What is the command for loading a module (dynamic

loadable module) in Linux?
ü Due: until 6 PM Friday of this week (6th, May)

16

(Source: https://m.blog.naver.com/PostView.nhn?blogId=bycho211
&logNo=220975324334&proxyReferer=https:%2F%2Fwww.google.com%2F)

(Source: https://www.youtube.com
/watch?v=o768iZKtzBA)

J. Choi, DKU

37.4 I/O Time: Doing the Math

Metrics
ü I/O time (latency)
ü I/O rate (bandwidth, MB/s)

Workload
ü Random: issues small (e.g., 4KB) reads to random locations on disk
ü Sequential: reads a large number of sectors consecutively (100 MB)

Disk considered: Figure 37.5
ü Cheetah: a high-performance SCSI drive
ü Barracuda: a drive built for capacity

17

J. Choi, DKU

37.4 I/O Time: Doing the Math

Metrics
ü I/O time (latency)
ü I/O rate (bandwidth, MB/s)

Lessons
ü I/O rate calculation: 1) I/O component time, 2) I/O time, 3) I/O rate
ü Random: Seek + Rotation + Transfer per 4KB

§ I/O time: 4ms + 2ms (15000/60*1000 = ¼ rotation per secondè 4ms è 2ms
on average) + 0.032ms (4KB / 125MB = 4KB * 1000 / 125 * 1000KB)

§ I/O rate: 4KB / 6ms = 0.66 MB/s
ü Sequential: One seek/rotation per large data (e.g. 100MB)

§ I/O time = 4ms + 2ms + 800ms(100MB/125MB/s), I/O rate = 100MB/0.8s
ü Implication

§ Sequential is much faster than random in disk
§ SW engineers need to make programs that access disks in sequential

18

J. Choi, DKU

37.5 Disk Scheduling

Disk scheduler
ü Role: Examines I/O requests and decides which one to schedule next

Examples
ü FCFS (First Come First Serve)

§ Pros) simple, Cons) may cause long seek distance
ü SSTF (Shortest Seek Time First)

§ Pros) reduce seek distance, Cons) unfair (especially boundary tracks)
ü SCAN (a.k.a. Elevator) and C-SCAN

§ Moves back and forth across all tracks
§ C-SCAN: handle requests from inner-to-outer, then go back inner tracks

directly and handling requests again from inner-to-outer (or reverse)

19

Original head position: 53 track
IO Requests in queue: 98, 183, 37, 122, 14, 124, 65, 67 (about queue, see page 12 in LN 6)

J. Choi, DKU

37.5 Disk Scheduling

Examples (cont’)
ü SPTF (Shortest Positioning Time First)

§ Consider seek and rotation latency
§ Why? Issues that consider seek only è not optimal (Figure 37.8)

• Head position: 30 (sector), Next requests: 16 and 8
• SSTF: 16 and then 8 è 1 seek + 5/6 rotation + 1 seek + 2/6 rotation
• How about 8 and then 16 è 1 seek (relatively further) + 1/6 rotation + 1 seek

+ 4/6 rotation
• Performance depends on disk characteristics (seek vs. rotation)

§ SPTF select a request who has the smallest position time (seek +
rotation time)

Other scheduling issues
ü Merge: requests 33, 4, 34, …
ü Anticipatory disk scheduling

20

J. Choi, DKU

Chap. 39 Interlude: Files and Directories
39.1 Files and Directories
39.2 File System Interface
39.3 Creating Files
39.4 Reading and Writing Files
39.5 Reading and Writing, But Not Sequentially
39.6 Shared file table entries: fork() and dup()
39.7 Writing immediately with fsync()
39.8 Renaming files
39.9 Getting information about files
39.10 Removing files
39.11 Making Directories
39.12 Reading Directories
39.13 Deleting Directories
39.14 Hard Links
39.15 Symbolic Links
39.16 Permission Bits and Access Control Lists
39.17 Making and Mounting a file system

21

J. Choi, DKU

Chap. 39 Interlude: Files and Directories

Computer system
ü Four key abstractions: process (thread), virtual memory, lock, and file
ü Files are in Storage (Hard disk, Solid State Drive)

§ Storage vs. Memory
§ Non-volatility

• Advantages: Support persistence (store information permanently)
• Issues: 1) Integrity, 2) Space-efficiency, 3) Consistency, 4) Crash

consideration (fault-tolerance), 5) Access control, 6) Security, …
§ These issues are managed by a file system

ü How to analysis file system?
§ Interface: open, read, write, close, mkdir, link, mount, … (Chapter 39)
§ Layout: file, directory, inode, FAT, superblock, … (Chapter 40)

22

J. Choi, DKU

39.1 Files and Directories

File
ü Definition: A linear array of characters (bytes), stored persistently

§ Each file has various data structure (text, c code, record, multimedia, …)
§ But, OS don’t care its content, just treating it as a stream of bytes

ü Each file has its name (absolute path, relative path)
ü It also has some kind of low-level name in OS (e.g. inode)

§ Like each process has a unique PCB (like program and PCB)
Directory
ü A special file that constructs a hierarchy (file hierarchy)

§ Root directory
§ Home directory
§ Working directory

ü Contain <file name, inode>
§ or low-level name or first disk block

Others are also treated as a file
ü Device, pipe, socket, and even process

23

J. Choi, DKU

39.2 File System Interfaces

APIs
ü System call: 1) open (return a file descriptor), 2) I/O, 3) attribute, 4)

create, 5) name resolution (directory hierarchy traverse), 6) file
system management, 7) directory management, …

ü Internals: 1) allocate/free block, 2) allocate/free inode, 3) namei
(name-to-inode), 4) buffer related

24

(Source: http://slideplayer.com/slide/9118590/)

J. Choi, DKU

39.3 Creating Files / 39.4 Reading and Writing Files

Create API
ü open() with create flag (refer to LN1 or Figure 2.6 io.c in OSTEP)

§ Arguments: 1) name, 2) flags, 3) permissions
§ Return: fd (file descriptor)

ü creat(): less used (but famous by Ken Thompson’s answer about
redesigning UNIX)

Read/Write API
ü read_size = read(fd, buf, request_size);
ü written_size = write(fd, buf, request_size);

§ Arguments: 1) fd, 2) buffer that points memory space for data, 3) request
size

§ Return: read or written size

25

J. Choi, DKU

39.4 Reading and Writing Files

Read and write example
ü Command line viewpoint

ü System call viewpoint (using strace)

26

J. Choi, DKU

39.5 Reading and Writing, But Not Sequentially

Conventional accessing mechanism for a file
ü Sequential
ü From the begin, increasing the offset while reading or writing

How to access random position? (not sequentially)
ü lseek()

§ Arguments: 1) fd, 2) relative offset from whence, 3) reference point

• Whence: SEEK_SET, SEEK CUR, SEEK_END
§ Explicit update the current offset (c.f. read/write: implicit update)
§ Do not confuse lseek() with disk seek :-)

27

An array of byte

start end (size)current offset (Position)

F Also do not confuse process and processor

J. Choi, DKU

39.7 Writing Immediately with fsync()

Performance consideration for write
ü Write to DRAM vs Disk: 100ns vs 10,000,000ns (10ms)
ü Delayed write

§ Write data into DRAM (called buffer or page cache) and set them dirty
§ Later write all dirty data into disk in a clustering fashion (5 or 30 seconds

periodically)
§ Write grouping and write reordering indeed enhance performance
§ Synchronous vs. Asynchronous

Concern of delayed write
ü Durability

§ User think his/her data is permanent but not in actuality
ü How to guarantee durability

§ fsync() system call

28

J. Choi, DKU

Quiz for 9th-Week 2nd-Lesson

Quiz
ü 1. Calculate the Tseek, Trotation, Ttransfer, TI/O and RI/O for the random and

sequential workload using Barracuda (hint: refer to 6~8 pages of the
Chapter 37 in OSTEP).

ü 2. Discuss why we need fsync() using the term of buffer cache (and
asynchronous write).

ü Due: until 6 PM Friday of this week (6th, May)

29

J. Choi, DKU

39.8 Renaming Files / 39.10 Removing Files

Change a file name
ü Command line viewpoint

ü API (system call) viewpoint: editor example

§ rename(old name, new name)
§ conducted atomically

Remove a file
ü API

§ unlink(file name)

30

F Why not remove() or delete() instead of unlink()? Then, what is link()?

J. Choi, DKU

39.9 Getting Information about Files

Contents in a file system
ü Two types of data in file system: User data vs. Metadata

§ User data (or just data): data written by users
§ Metadata: data written by a file system for managing files (in inode) and file

system (in superblock)
ü API to see the metadata for a certain file

§ stat(file_name, struct stat)
§ fstat(fd, struct stat)

31

J. Choi, DKU

39.11 Making Directories / 39.13 Deleting Directories

API for making directory
ü mkdir(name, permission)

ü After making
§ Two entries: parent directory and itself

API for deleting directory
ü rmdir(file_name)
ü We need to use it carefully

32

J. Choi, DKU

39.12 Reading Directories

APIs for reading directory
ü opendir(dp), readdir(dp), closedir(dp)
ü “ls”: like the below example (c.f. “ls –l”: readdir() + stat())

33

F Why there is no writedir()?

J. Choi, DKU

39.12 Reading Directories

Directory name convention

34

(Source: http://www.unixrock.com/2013/04/solaris-directory-hierarchy.html)

J. Choi, DKU

39.14 Hard Links

Link
ü Make another file name to access an existing file

§ Connect a file name with an inode
ü Command line viewpoint

§ Either file or file2

ü API
§ link(old_name, new_name)

ü After remove one of them
§ Use unlink()
§ Still remain data

ü Link count
§ Delete data when link count is 0

35

J. Choi, DKU

39.15 Symbolic Links

Link
ü Hard link: share inode number

§ Create a new file name and share the existing inode
ü Symbolic link (Soft link): different inode number, but its data is the

linked file name
§ Create not only a new file name but also a new inode (set it as a

symbolic link)
§ Can link between different file systems, Can link to a directory

ü Dangling reference in symbolic link

36

J. Choi, DKU

39.17 Making and Mounting a File System

File system
ü Make a file system

§ Assemble directories and files
§ Related metadata: superblock, bitmap, … (main topic in chapter 40)
§ Command: mkfs

• Make an empty file system (only root directory) in a disk partition

§ How to make partitions?: fdisk
ü Example

§ Partitioning and mkfs
§ Ext2/3/4, NFS, LFS, proc, sysfs, … per a partition

37

J. Choi, DKU

39.17 Making and Mounting a File System

File system
ü Mount

§ Make a file system visible to users
§ Connect multiple file systems within the uniform directory tree

• mount arguments: 1) FS type, 2) partition, 3) mount point

• mount point: mnt in the previous example è point the root of the
mounted FS

38

After mount

$mount –t ext3 /dev/sda4 /mnt

Before mount

F Why multiple partitions?

J. Choi, DKU

Chap. 40 File System Implementation

Objective of this chapter
ü A variety of file systems

§ UFS, FFS, EXT2/3/4, JFS, LFS, NTFS, F2FS, FUSE, RAMFS, NFS,
AFS, ZFS, GFS, FATFS, BtrFS, ….

ü Make a new file system: called VSFS(Very Simple File System)
§ Simplified version of UFS (Unix File System)
§ 1) On-disk structures: inode, bitmap, directory, …
§ 2) Access method: read, write, …
§ 3) Various policies: cache, delayed write, …

ü More complex file systems è next chapters

39

J. Choi, DKU

40.1 The Way to Think / 40.2 Overall Organization

Disk
ü Consist of partitions
ü A file system is created in each partition

Partition
ü Consist of disk blocks
ü User data is stored in a disk block (usually same size with the page)
ü Assume a partition having 64 disk blocks (or simply blocks)

40

F Now consider what data structures are required for making a FS?

J. Choi, DKU
41

40.2 Overall Organization

Layout of a file system (VSFS)
ü Superblock: 0 blocks

§ Metadata for managing a file system (one per a file system)
• Information: how many data blocks, inodes, where they begin, …

§ Used during a mount function
ü Bitmap: 1~2 blocks

§ Metadata for managing free space (allocation structure)
§ Two bitmaps: one for data blocks and the other for inodes

ü Inode: 3~7 blocks
§ Metadata for managing files (one per a file)
§ Inode size = 256B è 16 inodes per a block è 5 blocks for inode è total

80 files can be created
ü User data: 8 ~ 63 blocks (can be dynamically adjusted)

§ Data written by users

J. Choi, DKU

40.3 File Organization: The inode

How to manage metadata for a file
ü inode (index node)

§ File information such as mode, uid, size, time, link count, blocks, …
• Can be accessed using stat()

§ Locations of User data blocks è Multi-Level index and Imbalanced tree
• Direct block pointers (10 or 12 or 15), Single/Double/Triple indirect block

pointers(1/1/1)
• Benefit: Fast for a short file and Big size support for a large file

ü Other approach: FAT (linked based), Extent-based, Log-based, ..

42

F How large size can be supported by direct block pointers? How about an indirect pointer?

J. Choi, DKU

40.3 File Organization: The inode

Maximum file size supported by an inode
ü Sum up: 48KB + 4MB + 4GB + 4TB

§ Direct block point: 12 x 4KB
§ Single indirect block pointers: 1 x 1024 x 4KB

• Why 1024: 4KB / pointer size = 4KB/4B = 1024
§ Double indirect block pointers: 1 x 1024 x 1024 x 4KB
§ Triple indirect block pointers: 1 x 1024 x 1024 x 1024 x 4KB

ü Benefits of imbalance tree: both performance and large size
§ Small file: direct access via an inode

• Indirect block è require additional disk I/Os
§ Large file: support large size with the simple structure of inode

43(Source: https://www.researchgate.net/figure/The-architecture-of-an-inode-in-EXT3-file-system_fig2_258396310)

J. Choi, DKU

Quiz for 10th-Week 1st-Lesson

Quiz
ü 1. Discuss 4 components and their role when we create the VSFS

using “mkfs” command.
ü 2. The below figure is the snapshot that I conduct with “ls –l” for

“current directory”, “/dev/tty”, “/dev/sda”, “/dev/sda1” in our Lab.
environment. What are the meaning of “-”, “l”, “b”, “c”, ”rw” “5”, “8”,
“1” in the figure?

ü Due: until 6 PM Friday of this week (13th, May)

44

(Source: https://www.linuxsysadmins.com/create-and-mount-filesystems-in-linux/)

J. Choi, DKU

40.3 File Organization: The inode

inode manipulation example (assume 12 direct blocks)
ü When we create a new file (named hello.c whose size is 7KB) in a

root directory?
ü Then, we compile it? (a.out whose size is 70KB)

45

• inode for /
• times
• …
• locations: 8

• inode for hello.c
• times
• …
• locations: 9, 10

• .: 0
• ..: 0
• hello.c: 1
• a.out: 2

#include <stdio.h>
int main() …

• inode for a.out
• times
• …
• locations: 11, 12, 13,

14, …, 22, 23

457f 464c 0102 0001
0000 …

24, 25, 26, 27,
28, 29

F Note: 23 is the index block
while others (22, 24, …) are
data blocks

J. Choi, DKU

40.3 File Organization: The inode

inode manipulation example (assume 12 direct blocks)
ü How to read the a.out?

§ e.g. fd = open(“/a.out”, O_RDONLY);

46

• inode for /
• times
• …
• locations: 8

• inode for hello.c
• times
• …
• locations: 9, 10

• .: 0
• ..: 0
• hello.c: 1
• a.out: 2

#include <stdio.h>
int main() …

• inode for a.out
• times
• …
• locations: 11, 12, 13,

14, …, 22, 23

457f 464c 0102 0001
0000 …

24, 25, 26, 27,
28, 29

F Note: 23 is the index block
while others (22, 24, …) are
data blocks

J. Choi, DKU

40.3 File Organization: The inode

Find a location: inode and data in a real
ü How to find the location of an inode?

§ Directory entry: <file name, i_number>
§ i_number is used as the index in inode table (quotient and remainder)

• e.g.) i_number = 33 è 33 / (inodes per block) = 33/16 = 2 … 1 è inode
table start + 4KB x 2 = 12KB + 8KB = 20KB è read a block starting 20KB è
go to the offset of inode_size x 1 = 256B

ü How to find the location of User data?
§ 1) Find inode, 2) file’s current_offset / disk block size = quotient …

remainder, 3) quotient is used to find a pointer in the inode (multi-level
index), 4) remainder is used as the offset in the disk block

• e.g.) file’s current_offset=5000 è 5000/(block size) = 5000/4096 = 1 … 904
è index 1 in inode (e.g. block 12 in the previous slide when the file is a.out)
è read block 12 è go to the 904 in the block

47

J. Choi, DKU

40.4 Directory Organization / 40.5 Free Space Mgmt.

Directory
ü User viewpoint: containing files at a same location
ü System viewpoint: A list of pairs <file name, inode number>
ü For fast search, add the file name length and record length (total bytes

including left over space)

ü Can use more complex structure for directory (e.g. B-tree in XFS)
Free space
ü Bitmap: one bit per block (or inode), indicating whether it is free or used
ü Alternative approach: free-list, tree, …
ü Pre-allocation: allocate free disk blocks in a batch manner è less

overhead, contiguous allocation, …

48

J. Choi, DKU

40.6 Access Paths: Reading and Writing

Reading a file from disk
ü open a file “/foo/bar” whose size is 12KB, read data and close it
ü Timeline

§ Open: directory tree traverse è connect fd to inode
§ Read: current_offset è find disk block location using the inode and read

it è update the last access time in the inode
§ Close: deallocate fd and related data structure in OS, No actions in disk
§ Note: repeated reads for the bar’s inode è How about caching it!

49

J. Choi, DKU

40.6 Access Paths: Reading and Writing

Writing a file into disk
ü Create a file “/foo/bar”, write data (also 12KB) and close it
ü Timeline

§ Open: 1) create a new inode for bar and update i-bitmap, 2) insert a new
entry into foo’s data block (10 I/Os for just creating a file)

§ Write: 5 I/Os per a write (d-bitmap read/update, inode read/update, actual
user data write)

50

J. Choi, DKU

40.7 Caching and Buffering

Issues
ü Disk is too slow.

Solutions
ü 1. Caching

§ Caching directories (e.g. / inode, / data, current directory, …) in DRAM
§ Caching recently used file’s inodes and data in DRAM
§ Management: LRU (Least Recently Used) replacement policy, dynamic

cache size management

51

(Source: http://www.atmarkit.co.jp/ait/articles/0810/01/news134_2.html)

J. Choi, DKU

40.7 Caching and Buffering

Solutions
ü 2. Write buffering (Delayed write)

§ Consolidate several writes into a single one: e.g.) d-bitmap
§ Schedule multiple writes so that they have less seek overhead: e.g.) bar

data
§ Avoid writes: e.g.) temporary file (create and delete immediately)
§ Concern: Data loss due to power fault or crash è fsync() or direct I/O

52

J. Choi, DKU

40.8 Summary

Device and Driver
Disk: I/O rate and Scheduling
File system
ü Interface

§ open(), read(), write(), …
§ mkdir(), readdir(), …
§ mount(), mknod(), …

ü Layout
§ Data blocks
§ Inode, Bitmap, Superblock
§ Boot block

Importance of mental model for OS study (also system study)

53

J. Choi, DKU

Quiz for 10th-Week 2nd-Lesson

Quiz
ü 1. How many disk blocks are allocated from the data region when we

create a file “Lab2_report.doc” whose size is 75KB (disk block: 4KB,
also explain which block is used for an index block) .

ü 2. When we read (or write) a file we need to access an inode and
data alternately, which may cause a long seek distance. Propose
your own idea for reducing this long seek overhead.

ü Due: until 6 PM Friday of this week (13th, May)

54

J. Choi, DKU

Appendix

Hard link vs. Symbolic link(Soft link)

fd (file descriptor), file table and inode

55

(Source: http://classque.cs.utsa.edu/classes/cs3733/notes/USP-05.html)

