DANKOOK UNIVERSITY

Lecture Note 6. File System
Basic

May 2, 2022
Jongmoo Choi

Dept. of software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)
[J. Choi, DKU

Contents

O 0O 0 0O

C

nap 35. A dialogue on Persistence
nap 36.
nap 37.
nap 38.

/O Devices
Hard Disk Drives
RAID

nap 39.

nterlude: Files and Directories

v APIs for file, directory and file system

Chap 40. File System Implementation

v Layout: superblock, bitmap, inode, data blocks, ...

v Interface (access method): open, read, write, close, Iseek, fsync,

mount,

J. Choi, DKU

Chap. 35 A Dialogue on Persistence

Professor: And thus we reach the third of owur four ... err... thrge pillars of
operating systems: persistence.

Student: Did you say there were three pillars, or four? What is the fourth?

Professor: No. Just three, young student, just three. Trying to keep it simple
here.

Student: OK, fine. But what is persistence, oh fine and noble professor?

Professor: Actually, you probably know what it mieans in the traditional sense,
right? As the dictionary would say: “a firm or obstinate continuance in a course
of action in spite of difficulty or opposition.”

Student: It's kind of like taking your class: some obstinance required.

Professor: Ha! Yes. But persisternice here means somethin
I'magine you are outside, in a field, and you pick a —

else. I et me explain.

Student: (interrupting) I know! A peach! From a peach tree!

Professor: I was going to say apple, from an apple tree. Oh well; we’Jl do it your
walf, I guess.

Student: (stares blankly)
[_Professnr: Anyhow, you pick a peach; 11 fact, you pick niarny marniy peac'}ws,]

but you wamnt to make them last for a long time. Winter is hard and cruel in
Wisconsin, after all. What do you do?

Student: Well, I think there are some different things you can do. You can pickle
it! Or bake a pie. Or make a jarm of some kind. Lots of fun!

rotessor: Funs Well, maybe. Cerfaimmly, you liave 1o do a lot miore work to make
the peach persist. And so it is with information as well; making information
persist, despite computer crashes, disk failures, or power outages is a tough and
iriteresting challenge.

Student: Nice segue; you're getting quite good at that.

Professor: Thanks! A professor can always use a few kind words, you know.

< Persistence : Making information durable despite of computer crash, disk failures and so on

I J. Choi, DKU
3

Chap. 36 I/O Devices

s 36.1 System Architecture

s 36.2 A Canonical Device

36.3 The Canonical Protocol

36.4 Lowering CPU overhead with Interrupt
36.5 More Efficient Data Movement with DMA
36.6 Methods of Device Interaction

36.7 Fitting into the OS: The Device Driver
36.8 Case Study: A simple IDE Disk Driver

s 36.9 Historical Notes

Interrupt 1. Device is finished
CPU 3. CPU acks controller

interrupt 4——| IDlsk
= m Keyboard

— ‘-—. Clock
2. Controller | C—1

L issues 7L ; &__.--RPnnter

interrupt .

Bus

(Source: https://gcallah.github.io/OperatingSystems/IOHardware.html)
4

J. Choi, DKU

36.1 System Architecture

s Computer system focusing on Bus

v Hierarchical structure

» Memory bus (System bus): CPU and Memory

Fast, Expensive, Short

» |/O bus: SCSI, SATA, USB (and/or separated bus for Graphic Cards)
Slow, Less expensive, long, pluggable

v Modern system

= Special interconnect: Memory interconnect (e.g. QPI, Hyperport),

Graphic interconnect

= Make use of specialized chipsets: I/O chips with different interfaces

CPU Memory

A Memory Bus

(proprietary)

. » General I/O Bus
(e.g.. PCI)

Graphics

- » Peripheral IO Bus
| | I | (e.g.. SCSI, SATA, USB)

Figure 36.1: Prototypical System Architecture

PCle

Graphics

|

Graphics

Memory
Interconnect

CPU 1« Memory

PCle

eSATA

[| Disk

!Il

Network

Figure 36.2: Modern System Architecture

J. unol, uny

36.2 A Canonical Device / 36.3 The Canonical Protocol

s Devices
v Interface parts
= Registers: command, status, data
v Internals

» Logic: controller and special chips (device specific) + SW (called firmware)
= Memory: I/O Buffer (e.g. store receiving packet, delayed write, ...)

s Protocol

v How to interact with devices?

= Example: Four steps 1) idle check, 2) data, 3) command, 4) finish check
v 3 mechanisms: PIO(Programmed 1/O), Interrupt, DMA

= PIO: CPU performs all steps including idle/finish checking (polling)

While (STATUS == BUSY)

Registers | Status | [Command Data Interface i |/ wait until device is not busy
—— Write data to DATA register

Micro-controller (CPU) Write command to COMMAND register

Memory (DRAM or SRAM or both) Internals (starts the device and executes the command)

Other Hardware-specific Chips

While (STATUS == BUSY)
i // wait until device is done with your request]

I e iy =

Figure 36.3: A Canonical Device

6

36.4 Lowering CPU overhead with Interrupt

= Interrupt vs Polling
v Comparison

» Polling: Checking status (busy or idle, like spin) = thread state: running (still

hold CPU while its usage is only checking device status)

» |nterrupt: Inform when device is idle (or work is done) =» thread state:
sleeping (release CPU which can be utilized usefully by other threads

Note) Interrupt definition: a mechanism that informs an event to OS

v Example

» Thread 1 requests disk access (read or write)

CPU 1 IS o0 I O [

1

1

1

1

'

Disk 1 |49 11|

v Tradeoffs

» Benefit of Interrupt: overlapping

CPU

Disk

1

1

Interrupt: CPU can do other useful job (for thread 2) while doing 1/Os (for thread 1)

Polling: CPU just polling (actually waiting) while doing I/Os

= New requirement for Interrupt
Handling mechanism: call interrupt handler via interrupt table (page 28 in LN 2)

Sleep queue management (Context switch overhead)

» Usage suggestion (depend on devices)

Slow device: Interrupt, Fast device: Polling (like spin and sleep lock)

Optimization: Hybrid, Interrupt coalescing

J. Choi, DKU

36.5 More Efficient Data Movement with DMA

s DMA (Direct Memory Access)

v Comparison

= PIO (Programmed 1/O): CPU manages data copy between memory and
devices

Concern: Devices are too slow for CPU (note CPU: ns, Disk: ms)
= DMA controller performs data copy between memory and devices
CPU can do other useful job (better overlapping)
v Example
» Thread 1 requests disk write without/with DMA using Interrupt
= Data copy (denoted as “c” in the figure is done by CPU vs. DMA)

o [T [T+ [T e RN T SONERRRERENRY - - -
Disk 111|1| | DMA
Disk |1|1|1|1|1|

v DMA mechanism
=] e

1. CPU
pPrograms DMA Disk
CcPuU the DMA controller controlier

| — Buffer

i1
1 —

4. Ack I

—'-\-—__\
e [

1 1
S. Interrupt when 2. DMA requests
done transfer to merrmonry

_ S- Data transferred J

—e— Bus

I J. Choi, DKU

36.6. Methods of Device Interaction

s How to address registers in devices?

v Two approaches
= Direct 1/O

Separated address space
Explicit /O instruction (e.g. in/fout + port)

= Memory-mapped I/O
Single address space: DRAM + |/Os
Memory access instruction (e.g. load/store + 1/O address space)

v Privileged instruction

= Kernel mode: okay vs User mode: protection fault

» Usually accessed in a kernel component called device driver

FFFFF

00000

Memory
addressing
space

FFFF

0O00

Direct 1/O

/O
addressing
space

FFFFF

00000

/O

Memory addressing
space

Memory-mapped /O

'hoi, DKU

36.7 Fitting into the OS: The Device Driver

s Device driver

v A set of software in kernel that abstracts devices

v Two layers

» Manage 1) device registers (command, status, data), 2) interrupt and 3) DMA

= Support generic interface such as open, read, write, close, ...

(like file)

v 70% of codes in Linux is device drivers (mostly kernel module)

s Layered architecture

v Character device (or raw mode): device accessed by user directly

» System call = Driver = Devices

v Block device: device accessed by user through file system (FS)
= System call = FS = Block layer (buffer, scheduler) = Driver =» Devices

Micro-controller User App1 @ @ User App4

[System calls Interface |

O0S/Kernel Space 0S-specific
Verticals

Device Drivers
Device-specific

Hardware .
Protocol-specific
Horizontals

Hardware Space

Device Controller

! ! !

} Hardware Protocol

Device 1 Device 2 Device 3

‘ Device driver: generalz

10

Application "g’
POSIX APl [open, read, write, close, etc.] ~ ===e=as
File System Raw

Generic Block Interface [block read/write]

Generic Block Layer

kernel mode

Specific Block Interface [protocol-specific read/write]
Device Driver [SCSI, ATA, etc.]

Figure 36.4: The File System Stack

(Device driver: block driver specific)
J. Choi, DKU

36.8 Case Study: A simple IDE Disk Driver (Optional)

- A

s A simple IDE disk controller
v Direct I/O (separated I/O address), I/O instruction: in/out

v 4 Regqisters
= Control (0x3f6), Command block (0x1f2~1f6), Command or Status (0x1f7),
Data port (0x1f0), Error (0x1f1)
Note) 1) LBA: Logical Block Address, 2) Status: Busy/Ready, 3) Error: bad block,...

= Example (low-level interface)
Wait for drive ready: read 0x1f7 until the READY bit is on

Write: Write sector count and LBA in 0x1f2~1f6 and Start I/O by writing WRITE
command in 0x1f7

Data transfer: wait until READY and DRQ (Drive Request for Data), write data into
the Data port

[S = o e e el e B Recyd s 1 e 1
DA A reae == D= 3 F S

O == O L O OO O b . = = - R = R e = e 11— ,
=0 IMEe ST = Teernal>l = 3 st e rrasiarpt "

CCeormrrie r1oil B3 o lc R e
PaccA e s = O=11 F O
B cA T e = = O == = 1
DA cd e = = D=l =
P Acd e = = O F =
B dcdr e s s O =1 F 4
BrcAdcdree = = Bzl Fri5

H3 st aear=s =
IDa i = =l B s =
| Sl cacie ol oo S o
S i e oo arai=
T.HF5 2 A o wnT It =
T.F=.2 rred oA o=
T.F= 2 i o B | T oy amt =

ERRERREY

o e e B gl — S — O F & 1 =1 I T« 4 T .= = BE—T. 5 ID=—ci a— i =7
BT e s = == F7F Cormunarncd S st a T ua s
St atit wvas Reog i si e a ({ B cdcd e s = O>=>1 B "F) =
i = = =1 = = a L]
BEILF S FRE.S2T AT IT ."1T S EELED - = O RER T IO F-ERERCOER
i S5 cra ama e e o Re oy A = & e 1 Dcdcd e = = D= 1 = 1 » — { e T = = B weFr b e= 1 FPFRROR——T1 »
i L= = =4 = = E E L]
BEE i T T IE MR PR T— O E = N i] S
== — == i = T e e
I — CTFra s o> I = = =l = cAdat e = I3 3 co> I
s == PMect G = CThharycyecd
T aFE" — T Ireesa e b I > f= Freaoaoraryod
it e = — e A G = Ty rx oy e e ocguae st A
= = RO = CC e ITEreea raoid el e i — o |
T O I E —_ B B e O f i e Freowarecd

Bicdcdre s = M= a— T 1= F «ooiariacd

Figure 36.5: The ITINDE Interface
[

36.8 Case Study: A simple IDE Disk Driver (Optional

s Driver interface (OS-level interface
v Character driver: open, read, write, close, intr, ...
v Block driver: open, close, intr, rw (or request, strategy), ...
» Note: dynamic loadable kernel module interface for Linux (insmod, rmmod)
s |IDE disk driver example: 4 main functions
v ide_rw() =» ide_wait_ready() = ide_start_request()
v ide_intr()

static dmt dde. wait readw () i
wh i 1 e Cf (imt x= = i {02xA1 £7)) [~ TDE_BSY) .| LI Ee TDE_DRDY })
F s ooy it 30 driwe dsn'™t busy

ract Imaf * k>) i

static wvoid ide_ start_reguest (st
dde wait yTeadxs () 5
ouutbh (O3 F S, i T P generate inmnterrupt
St (Ol £2) = P ol how mansy sSectors7=
ocunutbh (01 £33, bhb—>>sector & OQz2=FEF) 7 ¥ hF I.BA goes here e -
ocutl (O2x1 £4 , (bhb—sector e 2 = OxFF) 7 ¥ b o = and here
ot (Oxx1 £F5, (bh—sectoxr = = 16) & 5 fo e i i J v . and here!
outbh (O0x1 £, Ozxes0 | ((b—>dewal) <<<4) I ({ {(b—>>sector>>24) &0x0FX)) ;
if(b—>flags & B_DIRTY) {
ot {O=1 £7 , TDOE_CMD_ WRITE) ;- e thi=s 4 = & WRITE
ouwutsdl (O2x1 F0O ., bh—=data., 512/4a49) g trans fexr data oo !
} =1 = e i
oyt O F7F TDE___CMD__REATY)Y 7 o chis: 4= a READ (nmno data)
+
BT = B ide rwi{strruct I £ =13) {
acguire {saide. 1ock) »
For {struct I =)= = S dde guene g LS = =] PEP=& (~pp) —>gnext)
3 L wrar 1 3 gueile
e = by P add reguesit to end
3-F (ide gueuse =—=— Iz} o H5F o s ermet W
ide start reguest (Io) 7 o send reg to Aislk
wrihidi 1 e ((b—>flags & (B_VALIDIB_DIRTY)) ! = B_NVAI.ITD)
slcecep (I, Edide dJock) z A wa it Ffor completion
reldJecascec {&aidae dlock) -
3
wvoid dde. Gt r () 1
struct Ibwa > k> 7
acguire(&ide l1lock)
b L (! (b—>Fflags & B_DIRTY) e e ide wait readsys () == O)
drm=31 (Ox1 £0O, h—>data . S S Ay v if READ : et clata
b—=flags | = 2B _WVAT.TD;
b——=fflags = TB_DTITRTY

wakeup () = wake waiting process
i fF ({ide gueue — b—>gnext) 1= 03 o startc nexx<t regue st
dde start reguest (ide guesiuae) 2 e {iFf one exists)

.......... . releasse (&ide lock) i J.Cmm,DKU

Figure 36.6: The xv6e IIDE Disk Driver (Simplified)

37 Hard Disk Drives

37.1 The interface

37.2 Basic Geometry

37.3 A Simple Disk Drive

37.4 1/0O Time: Doing the Math
37.5 Disk Scheduling

Base Casting
Spindle
Slider (and Head)

Actuator Arm

Actuator Axis
Case
Mounting
Actuator Holes
— Platters
Ribbon Cable

(attaches heads
to Logic Board)

Tape Seal

FCFS

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

o 14 37 536567 o8 122124
1 1 1 11 1 1

183 199
1]
Ll

lllustration shows total head movement of 640 cylinders.

SCAN (Elevator)

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

o 14 37 536567 o8 122 124
1 1 1 T 1 L

183 199
1 |

(Source: https://www.slideshare.net/PareshParmar6/disk-scheduling-algorithms-71247712)

13

J. Choi, DKU

37.1 The interface / 37.2 Basic Geometry

s Interface
v Basic unit: sectors (512-byte)
» Disk consists of a large number of sectors (0 ~ N-1 sectors or address space)
v Addressing (LBA: logical block address for disk)

» Sector addressing: 512B

= Multi-sector addressing (usually called as a disk block): 4KB or 8KB =»
Kernel developer’s viewpoint: disk is a set of disk blocks whose size is 4KB

s Basic Geometry
v Platter (two surface) = Track (thousands tracks per surface) = Sectors

v Head: sensing data
» Multiple heads (one per each surface), connected into an arm

v Data access: seek time + rotation latency (time) + transfer time
» Cylinder: a set of same tracks in each surface (no seek time required)

Sector Tracks Heads Seek Time Latency Time

Disc Latency

Platters
Cylinder Tracks

37.3 A simple Disk Drive

= In a same track access: Figure 37.2

v Assume
= 12 sectors in a track, original head position is 6, target is 10

= 10,000 RPM (rotation per minute) =» 1/6 rotation per ms (millisecond) =» a
rotation takes 6ms

» Rotational latency = 2ms in this case (3ms on average)
s Multiple tracks: Figure 37.3
v Original head position is 30, target is 11
v Need not only rotational latency but also seek time (ms)
» Note that seek and rotational latency perform in parallel
s Track skew: Figure 37.4
v To optimize sequential access (e.g. read sector 10, 11, 12, 13)
v Other optimizations: multi-zones, disk cache (track buffer)

' t i i Rotates this wa
Rotates this way Rotates this way . Feaissible way y
—) —

i~ 3
O O Track skew: 2 blocks

Figure 37.2: A Smgle Track Plus A Head Figure 37.3: Three Tracks Plus A Head (Right: With Seek)

1 5 Figure 37.4: Three Tracks: Track Skew Of 2

Quiz for 9th-Week 1st-Lesson

v 1. Discuss the merit/demerit of interrupt, compared with polling. What
is the additional merit when we use DMA with interrupt?

v 2. Discuss the differences between a character device driver and
block device driver (at least two differences)

v (Bonus) What is the command for loading a module (dynamic
loadable module) in Linux?

v Due: until 6 PM Friday of this week (6™, May)

5. DMA controlleri= 1. CPUE= DMA controller 2
FAS|e OB = =4 x| OO ME R = cPU * Linux Module
O 7=, DMA_MODE_READ =
o HESo0 CcaE A ad
AZ|R, C=0 O Hujmpx] = 2. CPUE= DMA
sSgmR et st i 50
o g Zoj2 2 DMA F200, A7OE H2E
controlleri= HE0] 2w
IHEE QEIY=ES S8l
. DMA/bus/interTupt
cPuo ¥R coiitallar 4+——CPU memory bus L memory
(PCl bus U

3. DMA controlleri= disk
controller0f| 7l ClO|E HES
IDE disk controller 2%

4. Disk controller®*Y byte

oel= glol 2 HOo|EE e ——
DMA controller0f 7§ & =
Linux Kernel Module
Programming

(Source: https://m.blog.naver.com/PostView.nhn?blogld=bycho211 (Source: https://www.youtube.com
&logN0=220975324334&proxyReferer=https:%2F%2Fwww.google.com%2F) Iwatch?v=0768iZKtzBA)
J. Choi, DKU

16

37.4 1/0O Time: Doing the Math

s Metrics
v 1/0 time (latency)

v |/O rate (bandwidth, MB/s)

s Workload

TIJ.-"G = T seer + Trotation + Tt*.'"aﬂsfer

E;T:EE Transfer
TI,.I"(J'

R0 =

v Random: issues small (e.g., 4KB) reads to random locations on disk
v Sequential: reads a large number of sectors consecutively (100 MB)

s Disk considered: Figure 37.5
v Cheetah: a high-performance SCSI drive
v Barracuda: a drive built for capacity

Cheetah 15K.5 Barracuda
Capacity 300 GB 1TB
RPM 15,000 7,200
Average Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 16/32 MB
Connects via SCSI SATA

Figure 37.5: Disk Drive Specs: SCSI Versus SATA

17

J. Choi, DKU

37.4 1/0O Time: Doing the Math

s Metrics
v 1/0O time (Iatency) Trjo0 = Tseer + Tqﬂf:_:t‘atian + TvuninFer
< 1O rate (bandwidth, MB/s) R, o = 2 Ctransrer

s Lessons RS

v |/O rate calculation: 1) I/O component time, 2) I/O time, 3) I/O rate

v Random: Seek + Rotation + Transfer per 4KB

= |[/O time: 4ms + 2ms (15000/60*1000 = V4 rotation per second=>» 4ms = 2ms
on average) + 0.032ms (4KB / 125MB = 4KB * 1000 / 125 * 1000KB)

= |/O rate: 4KB / 6ms = 0.66 MB/s
v Sequential: One seek/rotation per large data (e.g. 100MB)

= |/O time =4ms + 2ms + 800ms(100MB/125MB/s), 1/0 rate = 100MB/0.8s
v Implication

= Sequential is much faster than random in disk

= SW engineers need to make programs that access disks in sequential

Cheetah 15K.5 Barracuda

S ol B Cheetah Barracuda

e 125 MBJs 105 MBys Ryjo Random 066 MB/s 0.31MB/s

ot i i Rrjo Sequential 125MB/s 105 MB/s
Fi;;n;;;s;;zk Diive specsszcssém e S Figure 37.6: Disk Drive Performance: SCSI Versus SATA

18

37.5 Disk Scheduling

s Disk scheduler
v Role: Examines |/O requests and decides which one to schedule next

s Examples

v FCFS (First Come First Serve)
* Pros) simple, Cons) may cause long seek distance

v SSTF (Shortest Seek Time First)

* Pros) reduce seek distance, Cons) unfair (especially boundary tracks)
v SCAN (a.k.a. Elevator) and C-SCAN

= Moves back and forth across all tracks

» C-SCAN: handle requests from inner-to-outer, then go back inner tracks
directly and handling requests again from inner-to-outer (or reverse)

Rotates this way Original head position: 53 track
‘ IO Requests in queue: 98, 183, 37, 122, 14, 124, 65, 67 (about queue, see page 12 in LN 6)
i4 Iz L\La‘l\il 122 124 183
- t:)—
‘<
—— e s
e
e — e
\\‘
G | 53,\7 65 67 S8 122 124
//>
==+) — ' ——
\;\A\—\\\s\
e
- . e (——
Figure 37.7: SSTF: Scheduling Requests 21 And 2

J. UlOI, UNU

37.5 Disk Scheduling

s Examples (cont’)

v SPTF (Shortest Positioning Time First)
» Consider seek and rotation latency

= Why? Issues that consider seek only =» not optimal (Figure 37.8)
Head position: 30 (sector), Next requests: 16 and 8
SSTF: 16 and then 8 = 1 seek + 5/6 rotation + 1 seek + 2/6 rotation

How about 8 and then 16 =» 1 seek (relatively further) + 1/6 rotation + 1 seek
+ 4/6 rotation

Performance depends on disk characteristics (seek vs. rotation)

» SPTF select a request who has the smallest position time (seek +
rotation time)

s Other scheduling issues

v Merge: requests 33, 4, 34, ...
v Anticipatory disk scheduling

Rotates this way
4—

Figure 37.8: SSTF: Sometimes Not Good Enough

I J. Choi, DKU

20

Chap. 39 Interlude: Files and Directories

39.1 Files and Directories

39.2 File System Interface

39.3 Creating Files

39.4 Reading and Writing Files

39.5 Reading and Writing, But Not Sequentially
39.6 Shared file table entries: fork() and dup()
39.7 Writing immediately with fsync()

39.8 Renaming files

39.9 Getting information about files

39.10 Removing files

39.11 Making Directories

39.12 Reading Directories

39.13 Deleting Directories

39.14 Hard Links

39.15 Symbolic Links

39.16 Permission Bits and Access Control Lists
39.17 Making and Mounting a file system

J. Choi, DKU

Chap. 39 Interlude: Files and Directories

s Computer system
v Four key abstractions: process (thread), virtual memory, lock, and file

v Files are in Storage (Hard disk, Solid State Drive)
» Storage vs. Memory
= Non-volatility
. Advantages: Support persistence (store information permanently)

Issues: 1) Integrity, 2) Space-efficiency, 3) Consistency, 4) Crash
consideration (fault-tolerance), 5) Access control, 6) Security, ...

» These issues are managed by a file system

v How to analysis file system?
» |nterface: open, read, write, close, mkdir, link, mount, ... (Chapter 39)
= Layout: file, directory, inode, FAT, superblock, ... (Chapter 40)

HARD DISK

J. Choi, DKU

39.1 Files and Directories

s File

v Definition: A linear array of characters (bytes), stored persistently
= Each file has various data structure (text, c code, record, multimedia, ...)
= But, OS don't care its content, just treating it as a stream of bytes

v Each file has its name (absolute path, relative path)
v It also has some kind of low-level name in OS (e.g. inode)
» Like each process has a unique PCB (like program and PCB)
s Directory

v A special file that constructs a hierarchy (file hierarchy)
= Root directory

= Home directory »’—J
= Working directory Gon) () ()
v Contain <file name, inode> &) (=

= or low-level name or first disk block

@) GO GE
s Others are also treated as a file L
v Device, pipe, socket, and even process T

do&»[pI;S) repért.doci

I J. Choi, DKU
23

39.2 File System Interfaces

= APlIs

v System call: 1) open (return a file descriptor), 2) I/O, 3) attribute, 4)
create, 5) name resolution (directory hierarchy traverse), 6) file
system management, 7) directory management, ...

v Internals: 1) allocate/free block, 2) allocate/free inode, 3) namei
(name-to-inode), 4) buffer related

‘ Filesystem system calls I

Fileswstem svstem calls

Return a N A Allocate I 2 File System
N Use nameis . Attributes Lo §
descriptor inode Structure Management

open stat

open : creat chown read
creat link : =

creat 8 - mimnod chmod write mount chdir
chdir unlinik .

dup link stat lseek umount chroot

: chroot mknod :

pipe unlink
chown 1oL

close

chmod umount

Filesystem low level functions
namei
alloc free ialloc ifree
iget iput bmap
buffer allocation algorithms
getblk brelse bread breada bwrite

(Source: http://slideplayer.com/slide/9118590/)

J. Choi, DKU
24

39.3 Creating Files / 39.4 Reading and Writing Files

s Create API
v open() with create flag (refer to LN1 or Figure 2.6 io.c in OSTEP)

int fd = open("foo", O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
= Arguments: 1) name, 2) flags, 3) permissions
» Return: fd (file descriptor)

v creat(): less used (but famous by Ken Thompson’s answer about
redesigning UNIX)

int fd = creat ("foo"); // option: add second flag to set permissions

s Read/Write API
v read_size = read(fd, buf, request_size);
v written_size = write(fd, buf, request_size);
= Arguments: 1) fd, 2) buffer that points memory space for data, 3) request
THE LINUX

size
= Return: read or written size NereacE e

ndbook

J. Choi, DKU
25

39.4 Reading and Writing Files

s Read and write example
v Command line viewpoint prompt> echo hello > foo

prompt> cat foo
hello
prompt>

v System call viewpoint (using strace)

prompt> strace cat foo

open{"foao™, O RDONLY |QO_ LARGEFILE)

= 3
read(3, "helloh\n", 4096) = &
write(l, "hello’\n", 6) = &
hello
read(3, """, 4096) = 0
close (3) = 0

prompt>

TIP: USE sTtraceE (AND SIMILAR TOOLS)

The st race tool provides an awesome way to see what programs are up
to. By running it, you can trace which system calls a program makes, see
the arguments and return codes, and generally get a very good idea of
what is going on.

The tool also takes some arguments which can be quite useful. For ex-
ample, —f follows any fork’d children too; —t reports the time of day
at each call; —e trace=open, close, read, write only traces calls to
those system calls and ignores all others. There are many more powerful
flags — read the man pages and find out how to harness this wonderful

EEE tool. J. Choi, DKU
20

39.5 Reading and Writing, But Not Sequentially

s Conventional accessing mechanism for a file
v Sequential
v From the begin, increasing the offset while reading or writing

An array gf byte

start current offset (Position) end (size)

= How to access random position? (not sequentially)

v Iseek()
= Arguments: 1) fd, 2) relative offset from whence, 3) reference point

off €t lseek(int fildes, off t offset, int whence);

- Whence: SEEK_SET, SEEK CUR, SEEK_END
= Explicit update the current offset (c.f. read/write: implicit update)
»= Do not confuse Iseek() with disk seek :-)

= Also do not confuse process and processor

I J. Choi, DKU
27

39.7 Writing Immediately with fsync()

s Performance consideration for write

v Write to DRAM vs Disk: 100ns vs 10,000,000ns (10ms)

v Delayed write
= Write data into DRAM (called buffer or page cache) and set them dirty
= Later write all dirty data into disk in a clustering fashion (5 or 30 seconds

periodically)
= Write grouping and write reordering indeed enhance performance
= Synchronous vs. Asynchronous Buffer Cache
@ Cache
Bus Disk
s Concern of delayed write ot v v
v Durability Main Memory

» User think his/her data is permanent but not in actuality

v How to guarantee durability
= fsync() system call

int fd = open("foo", O_CREAT|O_WRONLY |O_TRUNC, 5_IRUSR|S5_IWUSR);
assert (fd > -1);

int rc = write(fd, buffer, size);
assert (rc == size);
rc = fsync(fd};
assert (rc == 0);
I J. Choi, DKU

28

|’@@@|

Quiz for 9th-Week 2nd-|_esson

TIAE]
s Quiz

v 1. Calculate the Tseek’ Trotation’ Ttransfer’

T,0 and R, for the random and

sequential workload using Barracuda (hint: refer to 6~8 pages of the
Chapter 37 in OSTEP).

v 2. Discuss why we need fsync() using the term of buffer cache (and
asynchronous write).

v Due: until 6 PM Friday of this week (6™, May)

Cheetah 15K.5

Barracuda

Capacity 300 GB 1TB
RPM 15,000 7,200
Average Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 16 /32 MB
Connects via SCSI SATA

Figure 37.5: Disk Drive Specs: SCSI Versus SATA

Cheetah Barracuda

Rrjo Random

0.66MB/s 0.31MB/s

R}/o Sequential 125 MB/S 105 MB/S

Figure 37.6: Disk Drive Performance: SCSI Versus SATA
I

29

Bus

@

Buffer Cache

Cache

Disk

Used

' Umf'll Blﬂtr
Coache

Main Mmory

J. Choi, DKU

39.8 Renaming Files / 39.10 Removing Files

s Change a file name
v Command line viewpoint

prompt> mv foo bar

v APl (system call) viewpoint: editor example

int fd = open("foo.txt.tmp", O WRONLY |O CREAT|C TRUNC,

S._TRUSER |5 IWUSR);
write(fd, buiffer, size); // write cut new version of file

fsync {(fd) ;
close (£4) ;
rename {"foo.txt.tmp", "foo.txt");

* rename(old name, new name)
= conducted atomically

s Remove a file

v API
= unlink(file name)

prompt> strace rm foo
unlink ("foo")

% Why not remove() or delete() instead of unlink()? Then, what is link()?

I J. Choi, DKU
30

39.9 Getting Information about Files

Contents in a file system

v Two types of data in file system: User data vs. Metadata
» User data (or just data): data written by users

» Metadata: data written by a file system for managing files (in inode) and file
system (in superblock)

v APl to see the metadata for a certain file

= stat(file_name, struct stat)
= fstat(fd, struct stat)

struack

dew T st _dew; S ID of device containing file
Fna st dino; S Inode numbexr =/

mode T« st _mode; S protection =/

nlink L sSst.--nlinks S+ mumber of hard l1inks =« /

it IR oy MR o st uid; S w user IBD of owner =/

cyicd k st gidr; S+ group ID of owner =/

dewv_ ¢ st rdew; A% device ID (L special T£3ile)
oif-Ef & st_size; S total size, in bytes =/
blksize t st _blksize; /* Dblocksize Tor Tilesystem IO
B Koy & st bhblocks; % mumber of blocks allocated «)
Time L« st _atime; A Lime of last access)/

Time © st mtirme; S+ bEime of last modification =/
Ttime- £ st ctime; S+ Etime of last status changes =)

j

sCcat {

prompt> echo helle > file
prompt> stat file

Filer: YEREL T

Size: 6 Blocks: 8 T Block: 4096 regular file
Pevice: 811h/2065d Inode: &71583084 LBinks: 1
Access: (040 / —rw—1T————— Y} Uidrz: (0686, remzi) Gid: (20686,

Access: Z011-—-05—03 15:50:20.157524748 —0500
Modify: 2011—-05—03 15:50:20.157524748 —0500

Change: 2011-05-03 15:50:20.157594748 —0500

A\ |

rem=z=i)

oi, DKU

39.11 Making Directories / 39.13 Deleting Directories

= API for making directory

v mkdir(name, permission)

PEGRETS BERSSES WSV THe
mkdir {"Ffoo™, OFTFT7T) = O
S R
v After making
= Two entries: parent directory and itself

prompiE> 1s —a

i e

prompt> 1s —al

total 8

drwxr—x——— 2 rem=zi rem=zi & Apr F0 61T LS
drwHxr—x——— 26 remzi rem=zi 40926 Apr 30 16:17 ../

= API for deleting directory
v rmdir(file_name)
v We need to use it carefully

I J. Choi, DKU
32

39.12 Reading Directories

s APIs for reading directory
v opendir(dp), readdir(dp), closedir(dp)
v “Is”: like the below example (c.f. “Is —I”: readdir() + stat())

int main{int argc, char xargv[]) {
DIR *xdp = opendir(".");
assert (dp != NULL);
struct dirent =d;
while ((d = readdir(dp)) != NULL) {
printf("%d %s\n", (int) d->d _ino, d->d_name);
]
closedir (dp);
return 0;

}

struct dirent {

char d_name [256]; /* filename »*/

ino t d ino; [/« inode number =/

off t d off; /* offset to the next dirent =*/
unsigned short d reclen; /+ length of this record =/
unsigned char d_type; /* type of file =/

% Why there is no writedir()?

I J. Choi, DKU
33

39.12 Reading Directories

s Directory name convention

/root

i
Wi || e
e |

(Source: http://lwww.unixrock.com/2013/04/solaris-directory-hierarchy.html)

34

J. Choi, DKU

39.14 Hard Links

s Link

v Make another file name to access an existing file
» Connect a file name with an inode

v Command line viewpoint
= Either file or file2

prompt> echo hello > file prempt> 1s —3 file Tilel
prompt> cat f£ile 67158084 file

hello 67158084 file2

prompit> 1n file: Ffilel prompt>

prompt> cat fileZ2

hello

v API
» link(old_name, new_name)

prompt> echo hello > file

v After remove one of them prompt> stat file
--. Inode: 67158084 Links: 1 ...
u Use Un“nk() prompt> 1n file file2
prompt> stat file
= Still remain data ... Inode: 67158084 Links: 2 .
. prompt> stat file?Z
prompt> rm file ... Inode: 67158084 Links: 2 ...
removed ‘*‘file’ prompt> 1n fileZ file3
. prompt> stat file
prompt> cat filel ... Inode: 67158084 Linkss 8 .
hello prompt> rm file
prompt> stat file?Z
1 ... Inode: 67158084 Links: 2 ...
v Llnk Count prompt> rm filel
H : prompt> stat file3
= Delete data when link countis O S me (e et B -
prompt> rm file3
I J. unoi, ukKU

35

39.15 Symbolic Links

s Link

v Hard link: share inode number
= Create a new file name and share the existing inode

v Symbolic link (Soft link): different inode number, but its data is the
linked file name

= Create not only a new file name but also a new inode (set it as a
symbolic link)

» Can link between different file systems, Can link to a directory
v Dangling reference in symbolic link

oslab@osLab: ~Jos_kEesk
o t~JSos_testSsS Ls -—-al
2t Hl s
drwxrwsxr - x 2 oslab oslLab ae96 428l 23 1z2:09 .
drwxr - »xr - x 22 oslab oslab 4096 42l 23 1z2:03 ..
s Tes ,..5
- fos -est echo "hello world” = file1l
Tn Filel FilezZ
Tn -s Filel FfilLe3

t~fos_testsS Ls -—-all
2 Al 1s
8297 drwsxrwxir — > 2 oslab oslab 46096 4% 23 12:89 .
8196 drwxr-xr-x 22 oslab oslab 4096 42 23 1z2:03

I8 —rwW-rw-r-— - 2 oslLab oslab 1z a2l 23 1z2:e09 filel
I8E —rwW-rw-1r— — 2 oslab oslab 12 42 23 12:09 fFilez2
IBE L rwirwixriwxx 1 oslab oslab s 42l 23 12:89 L -= Filel
:~fos_tests
r—Jfos_testS rm Fileld
~fos_ testSsS
r~Ffos_testSsS cat File2
hello world
r~fos_ T cat Fi1L
cat: Ffile3: 1 JII‘EI‘UlL-i‘ =:|—|E|E|;"'|’ 2= Ll Cct
- _; oS testS
15 s -1i .
380 FTilez2 336 _ - J. ChOI, DKU
= _TtestS

39.17 Making and Mounting a File System

s File system

v Make a file system
= Assemble directories and files
» Related metadata: superblock, bitmap, ... (main topic in chapter 40)

» Command: mkfs
Make an empty file system (only root directory) in a disk partition

-~
DS howtogeek@ubuntu: ~

howtogeek@ubuntu:~% sudo mkfs

mkfs mkfs.ext2 mkfs.extd4dev mkfs.ntfs
mkfs.bfs mkfs.ext3 mkfs.minix mkfs.vfat
mkfs.cramfs mkfs.ext4 mkfs.msdos
howtogeek@ubuntu:-5$ sudo mkfs.extd4 /dev/sdas|]

= How to make partitions?: fdisk

v Example
= Partitioning and mkfs

39.17 Making and Mounting a File System

s File system

v Mount
= Make a file system visible to users

= Connect multiple file systems within the uniform directory tree
mount arguments: 1) FS type, 2) partition, 3) mount point

$mount —t ext3 /dev/sda4 /mnt

4
bin dev b mnl vy

Before mount After mount
mount point: mnt in the previous example = point the root of the
mounted FS

< Why multiple partitions?

I J. Choi, DKU
38

Chap. 40 File System Implementation

Obijective of this chapter

v A variety of file systems

= UFS, FFS, EXT2/3/4, JFS, LFS, NTFS, F2FS, FUSE, RAMFS, NFS,

AFS, ZFS, GFS, FATFS, BtrFS,

v Make a new file system: called VSFS(Very Simple File System)

= Simplified version of UFS (Unix File System)

= 1) On-disk structures: inode, bitmap, directory, ...

= 2) Access method: read, write, ...
= 3) Various policies: cache, delayed write, ...

v More complex file systems = next chapters

Useas:

Mount poink;

lerinstallation:

KHARDDISK (17.2GB)

39

Ext4 journaling file system
Ext3 journaling file system
Ext2 file system

btrfs journaling file system

| JFSjournaling file system fion Table... | Revert

XFs journaling file system

FAT16 file system v

| FAT32file system

swap area ck Install Now

physical volume for encryption

. , DKU

40.1 The Way to Think / 40.2 Overall Organization

s Disk

v Consist of partitions

v Afile system is created in each partition

| Three primony porfitio J Oirve extended parkiticon

conbaining twe logical partitions

s Partition
v Consist of disk blocks

dev/sdal
dev/sda2
dev/sda3
dev/sdad
dev/sdas
dev/sdaé
dev/sda?
dev/sdas

Device Boot
.

Start
1
7681
14182
28556
20556
34324
34771
320380

End
7681
14182
28556
38913
32838
34770
38913
34323

1

pDisk /dev/sda: 320.1 GB, 320872933376 bytes
255 heads, 63 sectors/track, 38913 cylinders
Units = cylinders of 16865 * 512 = 8225288 bytes
sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes
pisk identifier: ©xaa692e81e

Blocks
61696888
52219904
5126868000
47453953
92160000

I

b I N N =

3583999+ B2

33276928

7

18423808 a3

Partition table entries are not in disk order

System

HPFS/NTFS
HPFS/NTFS
HPFS5/NTF5
wWos Ext'd
HPFS/NTFS
Linux swa
HPF5/NTF5
Linux

(LBA)

p / Solaris

v User data is stored in a disk block (usually same size with the page)
v Assume a partition having 64 disk blocks (or simply blocks)

o
Gl

N

Bl

I
1

[] [|
32 39 40 a7

L |
48

0/

5

o

o)/

||
63

%= Now consider what data structures are required for making a FS?

40

J. Choi, DKU

40.2 Overall Organization

s Layout of a file system (VSFS)

v Superblock: 0 blocks

» Metadata for managing a file system (one per a file system)
Information: how many data blocks, inodes, where they begin, ...

» Used during a mount function
v Bitmap: 1~2 blocks

» Metadata for managing free space (allocation structure)

» Two bitmaps: one for data blocks and the other for inodes
v Inode: 3~7 blocks

» Metadata for managing files (one per a file)

» |node size = 256B = 16 inodes per a block = 5 blocks for inode = total
80 files can be created

v User data: 8 ~ 63 blocks (can be dynamically adjusted)
= Data written by users

Inodes | | Data Region

EIIE— DIDDDIDIDIDID)] [DIDDDDIDIDID] mmmrmmmm
15 16 23 24
Data Region

—r 39 40 47 48 55 56 63, Choi, DKU

40.3 File Organization: The inode Y
e &

s How to manage metadata for a file | ——
v inode (index node) e Qm
= File information such as mode, uid, size, time, link count, blocks, ... ™™
Can be accessed using stat() e

= | ocations of User data blocks =» Multi-Level index and Imbalanced tree

Direct block pointers (10 or 12 or 15), Single/Double/Triple indirect block
pointers(1/1/1)

Benefit: Fast for a short file and Big size support for a large file

v Other approach: FAT (linked based), Extent-based, Log-based, ..

Size Name What is this inode field for? at? v
2 mode can this file be read /written/executed? Mnd_:
2 uid who owns this file? E——————
4 size how many bytes are in this file? Bize
4 time what time was this file last accessed? T mestaim ps
4 ctime what time was this file created?
4 mtime what time was this file last modified? Direct Blocks
4 dtime what time was this inode deleted?
2 gid which group does this file belong to?
2 links_.count how many hard links are there to this file?
4 blocks how many blocks have been allocated to this file?
4 flags how should ext2 use this inode? —
4 osdl an OS-dependent field a7 -~ .

60 block a set of disk pointers (15 total) A
4 generation file version (used by NES) Tilphe loclroct -
4 file_acl a new permissions model beyond mode bits e
4 dir_acl called access control lists -

-
Figure 40.1: Simplified Ext2 Inode

% How large size can be supported by direct block pointers? How about an indirect pointer?

I J. Choi, DKU
42

40.3 File Organization: The inode

» Maximum file size supported by an inode

v Sum up: 48KB + 4MB + 4GB + 4TB
= Direct block point: 12 x 4KB
= Single indirect block pointers: 1 x 1024 x 4KB
Why 1024: 4KB / pointer size = 4KB/4B = 1024
» Double indirect block pointers: 1 x 1024 x 1024 x 4KB
= Triple indirect block pointers: 1 x 1024 x 1024 x 1024 x 4KB

v Benefits of imbalance tree: both performance and large size

= Small file: direct access via an inode
Indirect block =» require additional disk 1/Os

= Large file: support large size with the simple structure of inode

)II Data block |

Mode
)I] Data block | . . ;
Owner oo | Most files are small Roughly 2K is the most common size

_ Size [Data biock | Average file size is growing Almost 200K is the average
ey ' TE Most bytes are stored in large files | A few big files use most of the space
= File systems contains lots of files | Almost 100K on average
— —I—’I Data block_| File systems are roughly half full | Evenas disks grow, file systems remain “50'% full
Data block

_
I) — . [¥ [¥ . 3 '
S e =il Directories are typically small Many have few entries; most have 20 or fewer
Dofl?ll:itiziircct — Data block
pointer e | |

Triple indirect T Figure 40.2 Fale System Measurement Summary

pointer

(!ource: Https:, ,www.researcHgate.net,!llgure,!He-architgcgure-of-an-inode-in-EXT3-fiIe-svstem fig2 nggi%é%}%)

Direct pointers

Quiz for 10th-Week 1st-Lesson

= QUIZ

v 1. Discuss 4 components and their role when we create the VSFS
using “mkfs” command.

v 2. The below figure is the snapshot that | conduct with “Is —I” for
“current directory”, “/dev/tty”, “/dev/sda”, “/dev/sda1” in our Lab.
environment. What are the meaning of “-*, “I”, “*b”, “c”, “rw” *5”, “8”,
“1" in the figure?

v Due: until 6 PM Friday of this week (13, May)

Crcatc and I.nOI,l_lit B choijm@choljm-VirtualBox: ~/0S/chap3s
filesystems in LLinux

choijm@choijm-VirtualBox:~/05/chap39s

choljm@choijm-virtualBox:~f05fchap39s 1s -1

A e

choljmicholin-virtualBox:~/0S/chap39s
cholim@choljm-VirtualBox:~f05/chap395 echo "hello DKU" > filel
cheijm d thgﬁ-JtrLua\Box:—}DE}chap39s

choljm@choiim J{rruakeer:~{05;chap395 ln -5 filel file2
choljm@choijm-VirtualBox:~/05/chap39s

chnlj--uno\]--uirtun!ﬁox:~fusfcha939$ 1s -1

A a

-rw-rw-r-- 1 chotim chotjm 18 38 31 13:52 flilel
lrwrwxrwx 1 :hﬂijn choijm 5 38 31 13:53 filez -> filel
A chotljm@choijm-virtualBox:=~f05/chap3®s

|r‘10d85 Data Regmn | cheijm hm} -VirtualBox:=/05fchap3ss 1s -1 Edevitty

i | |
} ' Crw-rw-rw- 1 root tty 5,8 3 31 12:22

1

chu1jfﬁ;h01jﬂ-umrtuazﬁor:~f05fcha939$ s -1 fdev/sda
15 16 23 24 31 brw-rw---- 1 root disk 8, 0 38 31 12:22 ﬁ
Data REglOﬂ chotim@cholin-virtualBox:~/05/chap395
cho 1j @choijm-VirtualBox:~f05/chap39s 15 -1 /dev/sdal
cﬁ iim ?011 xrruateer:n{DS}chnp39$
32 39 40 47 48 55 56 63 Coee et

SSource. https://www.linuxsysadmins.com/create-and-mount-filesystems-in-linux/)
J. Choi, DKU

44

40.3 File Organization: The inode

= iInode manipulation example (assume 12 direct blocks)

v When we create a new file (named hello.c whose size is 7KB) in a
root directory?

v Then, we compile it? (a.out whose size is 70KB)

» inode for hello.c « inode for a.out
* times » times

* inode for /
» times

 locations: 8 * locations: 9, 10 . i6cations: 11, 12, 13,

14, .., 22, 23
Bl " iblock 2 | iblock 3 | iblock 4

16|17 18|10 |32 |33 [34 |35 |48|40|50| 51 |64 |65 |66 |67]]
20 (21| 22|23 |36 |37 |38 |39 |52 |53 |54 |55 | 68|69 |70 |71 & Note: 23 is the index block

8 (10|11 (24 |25| 26 |27 |40 |41 |42 |43 |56 |57 |58 |59 (72|73 |74 |75 =
12|13 |14 |15 (28 (29|30 |21 |44 |45 |46 | 47 (60 (61 |62| 63 |76 |77 |78 |79 Whlle Others (22 24’ "') are

------- - data blocks

Data Region

\\\ -
-

-

~ -
—————
‘‘‘‘‘‘‘

Inodes

IIE_D 7 8\\\\5§£§£§g.onl - zsl\lzt n— '31I

[DID[D[D[D[D[D[D] DIDIWQIDIDI\HS:EQIDIDIDIDIDIDI me[D—IWUFUI

#include <stdio.h> 457f 464c 0102 0001 24, 25, 26, 27,
int main() ... 0000 ... 28, 29
* hello.c: 1
* a.out: 2
J. Choi, DKU

45

40.3 File Organization: The inode

= iInode manipulation example (assume 12 direct blocks)

v How to read the a.out?
» e.g. fd = open(“/a.out”, O _RDONLY);

» inode for hello.c « inode for a.out
* times » times

* inode for /
» times

 locations: 8 + locations: 9, 10 . i(.).cations: 11, 12, 13,

14, ..., 22, 23
B Tiblock 2 | iblock 3 | iblock 4

16|17 18|10 |32 |33 [34 |35 |48|40|50| 51 |64 |65 |66 |67]]
20 (21| 22|23 |36 |37 |38 |39 |52 |53 |54 |55 | 68|69 |70 |71 & Note: 23 is the index block

8 (10|11 (24 |25| 26 |27 |40 |41 |42 |43 |56 |57 |58 |59 (72|73 |74 |75 =
12|13 |14 |15 (28 (29|30 |21 |44 |45 |46 | 47 (60 (61 |62| 63 |76 |77 |78 |79 Whlle Others (22’ 24’ "') are

________________________ ~data blocks
\\\\\\ ., Inodes _____----"""'_—— Data Region ,
[S EEGINEI [RID[DRD[D[D[DD] [D[D[DD[DDID[E] [DID[D[D[D[D[D[D]
(0] 7 8\\\\5§£§ 16 23‘& 31
, Region
[DID[D[D[D[D[D[D] DIDIBIQIDIDI‘FIS:EQIDIDIDIDIDIDI me[mtﬂmw
32 39 40

- 0 #include <stdio.h> 457f 464c 0102 0001 24, 25, 26, 27,
e .00 int main() ... 0000 ... 28, 29
¢ hello.c: 1
* a.out: 2
J. Choi, DKU

46

40.3 File Organization: The inode

s Find a location: inode and data in a real

v How to find the location of an inode?
» Directory entry: <file name, i_number>

* |_number is used as the index in inode table (quotient and remainder)

e.g.) i_number = 33 =» 33/ (inodes per block) =33/16 =2 ... 1 =» inode
table start + 4KB x 2 = 12KB + 8KB = 20KB =» read a block starting 20KB =>»
go to the offset of inode_size x 1 = 256B

The Inode Table (Closeup)

i ! i i iblock 0 | iblock1 | iblock2 | iblock3 | iblock 4
8] 1 2 31617 (18|12 (32|33 (34 |35|48 |49 |50|51 |64 |65 (66|67
= 4 | 5| 6 T (20121 (22|23 |36|37 |38 (39 |562|53 |54 |55 |68 |69 |70|71
Super I_bmap d_bmap 8|9 1011 |24 (25 (26 |27 |40 |41 |42 |43 |56 |57 (58|59 |72 |73 |74 |75
1213 (141528 |29 |30 |31 |44 |45 |46 (47 (60|61 |62 |63 |76 |¥7 |78 |79
oKB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

v How to find the location of User data?

* 1) Find inode, 2) file’s current_offset / disk block size = quotient ...
remainder, 3) quotient is used to find a pointer in the inode (multi-level
index), 4) remainder is used as the offset in the disk block

e.qg.) file's current_offset=5000 =» 5000/(block size) = 5000/4096 = 1 ... 904

=» index 1 in inode (e.g. block 12 in the previous slide when the file is a.out)
=» read block 12 =» go to the 904 in the block

[J. Choi, DKU
47

40.4 Directory Organization / 40.5 Free Space Mgmt.

s Directory
v User viewpoint: containing files at a same location
v System viewpoint: A list of pairs <file name, inode number>

v For fast search, add the file name length and record length (total bytes
including left over space)

inum | reclen | strlen | name
5
=
1=
13
24

Ffoo
bar
foobar

v Can use more complex structure for directory (e.g. B-tree in XFS)

s Free space
v Bitmap: one bit per block (or inode), indicating whether it is free or used
v Alternative approach: free-list, tree, ...

v Pre-allocation:; allocate free disk blocks in a batch manner = less
overhead, contiguous allocation, ...

o LR .Y
S Y A S B

Bit Map:
[t jojJojJrjofJajafajJojojoJajajojaja|

M emory:

J. Choi, DKU

40.6 Access Paths: Reading and Writing

= Reading a file from disk
v open a file “/foo/bar” whose size is 12KB, read data and close it

v Timeline
data inode root foo bar root foo bar bar bar
bitmap bitmap |inode inode inode | data data datal[0] data[l] data[2]
read
read
open(bar) read
read
read
read
read() read
write
read
read() read
write
read
read() read
write

Figure 40.3: File Read Timeline (Time Increasing Downward)

» Open: directory tree traverse =» connect fd to inode

» Read: current_offset = find disk block location using the inode and read
it =» update the last access time in the inode

= Close: deallocate fd and related data structure in OS, No actions in disk

* Note: repeated reads for the bar’s inode = How about caching it!

I J. Choi, DKU
49

40.6 Access Paths: Reading and Writing

s Writing a file into disk

v Create a file “/foo/bar”, write data (also 12KB) and close it

v Timeline
data inode root foo bar root foo bar bar bar
bitmap bitmap |inode inode inode | data data data[0] datal[l] data[2]
read
read
read
read
create read
{/ foo,/"bar) write
wirite
read
write
wrikte
read
read
write() write
wirikte
write
read
read
write() wrike
write
write
read
read
write() write
write
write

Figure 40.4: File Creation Timeline

(Time Increasing Downward)

= Open: 1) create a new inode for bar and update i-bitmap, 2) insert a new
entry into foo’s data block (10 I/Os for just creating a file)

= Write: 5 I/Os per a write (d-bitmap read/update, inode read/update, actual

user data write)

I
50

J. Choi, DKU

40.7 Caching and Buffering

s Issues

v Disk is too slow. THE CRUX: HOW TO REDUCE FILE SYSTEM I /O COSTS

Even the simplest of operations like opening, reading, or writing a file
incurs a huge number of /O operations, scattered over the disk. What
s Solutions can a file system do to reduce the high costs of doing so many [/0s?

v 1. Caching
» Caching directories (e.g. / inode, / data, current directory, ...) in DRAM
» Caching recently used file’s inodes and data in DRAM

» Management: LRU (Least Recently Used) replacement policy, dynamic
cache size management

Read / Write:= 1=
Memory

o
>
Page Cache a5 CPL
1

o

| Page CacheMH| write=F e =
| H==Z S H|l =t |
storage| AHZF

2 Tt page Cache = A
memoryH| LoadEl =
CPUZ Read

Storage

(Source: http://www.atmarkit.co.jp/ait/articles/0810/01/news134_2.html)
J. Choi, DKU

51

40.7 Caching and Buffering

s Solutions

v 2. Write buffering (Delayed write)
» Consolidate several writes into a single one: e.g.) d-bitmap
» Schedule multiple writes so that they have less seek overhead: e.g.) bar

data

» Avoid writes: e.g.) temporary file (create and delete immediately)
» Concern: Data loss due to power fault or crash = fsync() or direct 1/O

data

inode

bitmmap bitmap

ook foo bar
inode inode inode

ook foo bar bar bar
data data data[0] data[l] datal2]

read

read
read
read
create read
{/ foo,/"bar) wwrike
write
read
—rrre—
ww ribe
—rerrei—
e ad
wwrite) ——% Tite
wwribe
—vrriite—
—_—TTart
—rersrei
wwrite () —wrrite
wirikte
-vrite—T
—_—Teaact—
—Trer
wwrite) ww rite
e rikte
wwrite

Figure 40.4: File Creation Timeline (Time Increasing Downiw ard)

h?

J. Choi, DKU

40.8 Summary

s Device and Driver
s Disk: I/O rate and Scheduling

= File System sone || e B";{’f:pa" I:;:Ie Table DATA BLOCKS
v Interface — =
= open(), read(), write(), ... /% =
= mkdir(), readdir(), ... ’//“ /,,;j’/
= mount(), mknod(), ... — T
v Layout SN <
= Data blocks —

* |node, Bitmap, Superblock
= Boot block

s Importance of mental model for OS study (also system study)

ASIDE: MENTAL MODELS OF FILE SYSTEMS

As we've discussed before, mental models are what you are really trying
to develop when learning about systems. For file systems, your mental
model should eventually include answers to questions like: what on-disk
structures store the file system’s data and metadata? What happens when
a process opens a file? Which on-disk structures are accessed during a
read or write? By working on and improving your mental model, you
develop an abstract understanding of what is going on, instead of just
trying to understand the specifics of some file-system code (though that
is also useful, of course!).

J. Shoi, DKU
53

p@@ Quiz for 10t"-Week 2"d-L_esson

Ve

s Quiz

v 1. How many disk blocks are allocated from the data region when we
create a file “Lab2_report.doc” whose size is 75KB (disk block: 4KB,
also explain which block is used for an index block) .

v 2. When we read (or write) a file we need to access an inode and
data alternately, which may cause a long seek distance. Propose
your own idea for reducing this long seek overhead.

v Due: until 6 PM Friday of this week (13, May)

| iblock 0 | iblock 1 | iblock 2 | iblock 3 | iblock 4
011|2|3|16[17|18|18|32|33 |34|35|48(48)|50(51|64|65|66 |67
4|5|6(7|20|21|22|23|36(37|38|30|52|53|54|55(68(60|70(71
B8 (10]11|24|25|28 |27 |40|41 |42 43| 56|57 [58|50(72(73|74|75
121314 [16]28 20|30 |31 |44 |45 | 46|47 | 60|81 |62 (B3| 76|77 |78(79

H““n Inodes | st Data Region

[5_ [DTDTDIDTDFDTUEEQ %WWWIUMTEDBJ EIDTDTD]DFDFD]UI
Data Region

[D[D[DID]DWD]% EDTDIU[DTDWDWE HDWWDWDTDWH [D[D[D] U[DTDTEHU

54

data inode
bitmap bitmap

root

foo

bar

inode node inode

root foo bar bar bar
data data data[0] data[l] data[2]

open(bar)

read

read

read

read

read

read()

read

write

read

read()

read

write

read

read()

read

write

read

Figure 40.3: File Read Timeline (Time Increasing Downward)

J. Choi, DKU

Appendix

s Hard link vs. Symbolic link(Soft link)

directary entry in /dira

directory entry in /dirB

inode name
12345] namel
inode 12345
2 block 23567
: / “This is the
text in the
23567 .
fle.

inode name

12345]name2

directory eniry in /dira

inode name

inode 23143

1

14287

directory entry in /dirB

inode name

23143 | namel H? /13579[name2

block 14287

“"This is new
text in the

file after

modification.”

inode 13579

1

15213

block 15213 >
“idirAlnamel”

s fd (file descriptor), file table and inode

Proc A

Proc B

Proc C

O prermn NHRle table

i

Ref couwuimt: =2

Imnode table

O ITset: G
\ [P

% Filennarrie

Ref coummt: 1

,,.,__..,.d———'”' B_filename
Ref coumnc: 1

O fffset:

(Source: http://classque.cs.utsa.edu/classes/cs3733/notes/USP-05.html)
I

55

J. Choi, DKU

