
J. Choi, DKU

Lecture Note 7. Advanced
File System

May 16, 2022
Jongmoo Choi

Dept. of software
Dankook University

http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)

J. Choi, DKU

Contents

From Chap 41~45 of the OSTEP
Chap 41. Locality and the Fast File System
ü Performance requirement
ü Storage-aware performance enhancement

Chap 42. Crash Consistency: FSCK and Journaling
ü Consistency requirement
ü Journaling mechanism

Chap 43. Log-structured File Systems
Chap 44. Flash-based SSDs
Chap 45. Data Integrity and Protection
Chap 46. Summary
Summary. Features of Various FS: Ext2/3/4, FAT, Flash FS
and Lab3

2

J. Choi, DKU

Chap. 41 Locality and The Fast File System

UFS (Unix File System)
ü Layout

§ Boot sector
§ Superblock: how big FS is, how many inodes,

where is inode, …
§ Bitmap + Inode + User data
§ è Simple and easy-to-use

ü Access method
§ Inode access, data access alternately

• Look good, but consider disk geometry (see
chapter 37) and multiple I/Os per a write (see
chapter 40)

§ Concerns: 1) Long seek time, 2) Consistency
• Performance issue è This chapter
• Consistency issue è Next chapter

3

J. Choi, DKU

41.1 Poor Performance

UFS (also our VSFS)
ü poor performance
ü 1) Inode and User data are located in different tracks 2) A file is

fragmented as time goes (external fragmentation) è long seek

4

F How to overcome this problem?

J. Choi, DKU

41.2 FFS: Disk Awareness

New proposal: FFS (Fast File System from BSD OS)
ü Place inodes and user data blocks as close as possible
ü Disk-awareness

§ Data in the same cylinder è no seek distance (or closer cylinder è less
seek distance)

• Cylinder group is defined as a set of tracks on different surfaces that are the
same distance from the center

ü This idea is also used in Ext2/3/4 File system

5

(Source: https://slideplayer.com/slide/8117044/)

J. Choi, DKU

41.3 Organizing Structure: The Cylinder Group

FFS in detail
ü Partition(or a disk): divided into a number of cylinder groups
ü Cylinder group

§ N consecutive cylinders
§ Structure of each cylinder group

• Superblock (duplication for reliability)
• Per-group bitmap, inode and data blocks

§ Management
• Allocate an inode and data at the same group: e.g. Inode and data blocks for

file A in Group 0, those for file B in group 1, … è Small seek distance
• Ext2: similar approach called block group

ü Feature of FFS: Different internal implementation, but same external
interfaces

6

J. Choi, DKU

41.4 Policies: How to Allocate Files and Directories

Allocation in FFS
ü Idea: keep related stuff together

§ Data and related inode, file and its related directory, …
ü Allocation issue

§ E.g.) Create a file A. which group does it allocate?
§ E.g.) Create a directory B. which group does it allocate?

ü Allocation rules
§ Rule 1. Directory: place it into a cylinder group with a high number of free

inodes (a low number of allocated directories)
• To balance directories across groups

§ Rule 2. File: 1) put files in the cylinder group of the directory they are in,
2) allocate data blocks of a file in the same group as its inode

• To allocate inode, data blocks and directory as close as possible

7

J. Choi, DKU

41.4 Policies: How to Allocate Files and Directories

Allocation in FFS
ü Allocation rules

§ E.g.) create three directories (/, /a, /b) and four files (/a/c /a/d, /a/e, /b/f)
• Assumption: 1) Directory: 1 block, 2) file: 2 blocks

§ FFS allocates three directories at different group (rule 1, load balancing),
allocate files in the same directory (rule 2, namespace locality)

ü Analysis
§ “ls –l” in the “a” directory

• Within one group in FFS allocation vs Access 4 groups in even allocation
§ User usage pattern: strong namespace locality

8

(FFS allocation)(Even allocation)

J. Choi, DKU

41.6 The Large-File Exception

How to handle a large file for allocation in FFS?
ü Large file è fill up a cylinder group with its own data è undesirable

with the consideration of the namespace locality
ü Rule 3. For a large file

§ Allocate a limited number of blocks (called as chunks) in a group. Then,
go to another group and allocate a limited number of blocks there. Then,
move another one. …

§ Pros) locality among files, Cons) locality in a file

ü E.g.): 1) file A: 30 blocks, 2) limited number of blocks in a group: 5

9

(FFS allocation)

(Without Rule 3)

J. Choi, DKU

41.6 The Large-File Exception

How to handle a large file for allocation in FFS?
ü Analysis of Rule 3

§ How much is the seek overhead for accessing a large file?
• Seek and Transfer alternatively due to the Rule 3 in FFS

ü Example
§ Assumption: Seek=10ms, Bandwidth = 40MB/s
§ Example 1) limited number of blocks (chunks) in a group = 4MB

• Transfer time: 4MB / (40MB/s) = 100ms vs. seek time = 10ms è 90%(100 / 110)
bandwidth is used for data transfer

§ Example 2) limited number of blocks (chunks) in a group = 400KB
• Transfer time: 0.4MB / (40MB/s) = 10ms vs. seek time = 10ms è 50%(10 / 50)

bandwidth is used for data transfer
§ è Large chunks can amortize the seek overhead

10

J. Choi, DKU

41.7 A Few Other Things about FFS

Another features in FFS
ü Larger disk block size: 512B (sector) in UFS è 4KB (disk block) in

FFS
§ Pros) Larger size è Less seek and more transfer è Higher Bandwidth

usage in disk
§ Cons) Internal fragmentation

• Waste space (e.g. half when a file is 2KB)
ü Sub-blocks (fragment) allocation

§ To overcome the internal fragmentation
ü Parameterization

§ Sequential block requests: 1, 2, 3, …., (request 1, transfer, request 2,
transfer, …) è But when the request 2 is arrived in disk, the head has
already passed the location of 2 è solution: parameterized placement

§ c.f.) Modern disk: use track buffer

ü Others: Symbolic link (link across multiple file systems), atomic
rename(), long file name, …

11

J. Choi, DKU

Chap. 42 Crash Consistency: FSCK and Journaling

Non-volatility: no-free lunch
ü Can retain data while power-off
ü But, requires maintaining file system consistency

Consistency definition
ü Changes in a file system are guaranteed from a valid state to another

valid state
§ E.g.) inconsistent state: bitmap says that a block is free even though it is

used by a file
ü What happen if, right in the middle of creating a file, a system loses

power?
Solutions
ü FSCK (File System Check)
ü Journaling: employed many file systems such as Ext3/4, JFS, …
ü Others: Soft update, COW, Integrity checking, Optimistic, …

12

J. Choi, DKU

Quiz for 11th-Week 1st-Lesson

Quiz
ü 1. Discuss why FFS makes use of the rule 2 using the term of

namespace locality.
ü 2. Read page 2 in Chap. 41 of OSTEP and explain why fragmentation

(external fragmentation) happens and what is the benefit of a
defragmentation tool?

ü Due: until 6 PM Friday of this week (20th, May)

13

(Source: https://www.slideshare.net/parang.saraf/a-fast-file-
system-for-unix-presentation-by-parang-saraf-cs5204-vt)

J. Choi, DKU

42.1 A Detailed Example

Example
ü Simple FS: 8 inodes, 8 disk blocks, i-bitmap, d-bitmap
ü One file: size=4KB, owner =Remzi

ü Modify the file: appending, size=8KB
§ Note that we need to change three locations è need three writes

14

J. Choi, DKU

42.1 A Detailed Example

Crash scenario
ü Three writes: Db, I[v2], B[v2]
ü Delayed write using cache (or queuing) è Unexpected power loss or

system crash è Some writes can be done while others are not.
§ Db only is written to disk: no problem
§ B[v2] only is written to disk: space leak
§ I[v2] only is written to disk: 1) garbage read, 2) inconsistency: inode vs.

bitmap
§ Db and B[v2] are written to disk (except I[v2]): inconsistency
§ Db and I[v2] are written to disk (except B[v2]): inconsistency
§ I[v2] and B[v2] are written to disk (except Db): Garbage read

ü Need consistency: write all modifications or nothing (a kind of
atomicity)

15

J. Choi, DKU

42.2 Solution #1: The File System Checker

Traditional solution: fsck (file system checker)
ü Consist of several passes

§ Superblock: metadata for FS, usually sanity check
§ Free blocks: check all inodes and their used blocks. If there is an

inconsistent case in bitmaps, correct it (usually follow inode info.)
§ Inode state: validity check in each inode. reclaim wrong inodes

• Inode links: link counts check by scanning the entire directory tree. Move the
missed file (there is an inode but no directory entry points it) into the
lost+found directory

• Duplicate pointers: find blocks which are pointed by two or more inodes
• Bad blocks: pointer that points outside its valid ranges

§ Directory checks: fs-specific knowledge based directory check (e.g. “.”
and “..” are the first entries

ü Issue: too slow
§ Remzi says that “the fsck looks like that, even though you drop the key

in your bedroom, you start a search-the-entire-house-for-key algorithm,
scanning from the basement, kitchen, and every room.”

16

J. Choi, DKU

42.3 Solution #2: Journaling (or WAL)

Journaling
ü A Kind of WAL (Write-ahead logging)
ü Key idea: When updating disks, before overwriting the structure in

place, first write down a little note to somewhere in a well-known
location, describing what you are about to do.

ü Crash occur è The note can say what you intended è redo or undo
Journaling FS
ü Linux Ext3/4, IBM JFS, SGI XFS, NTFS, Reiserfs, …
ü Features of Ext3 file system

§ Integrate journaling into ext2 file system
§ Three types: 1) journal (data journal), 2) ordered (metadata journal,

ordered, default), 3) writeback (metadata journal, non-ordered)

(Ext2 disk layout, like FFS)

(Ext3 disk layout: Ext3 + Journaling)

17

J. Choi, DKU
18

42.3 Solution #2: Journaling (or WAL)

Data Journaling
ü Assume we want to do three writes (I[v2], B[v2], and Db)
ü Before writing them to their final locations, we first write them to the log

è step 1: journaling.

§ TxB: Transaction begin, include Tid and writes information
§ Log

• Physical logging: same contents to the final locations
• Logical logging: intent (save space, but more complex)

§ TxE: End with Tid
ü After making this transaction safe on disk, we are ready to update the

original data è step 2: checkpointing
ü Recovery (fault handling)

§ In the case of failures btw journaling and checkpointing, we can replay
journal (redo) è can go into the next consistent state

§ In the case of failures btw TxB and TxE, we can remove journal (undo) è
can stay in the previous consistent state

J. Choi, DKU

42.3 Solution #2: Journaling (or WAL)

How to reduce journaling overhead? è 1. performance
ü For journaling, we need to write a set of blocks

§ e.g. TxB, i[v2], B[v2], Db, TxE
ü Approach 1: issue all writes at once

§ Unsafe, might be loss some requests

§ Transaction looks valid (it has begin and end). Thus, replaying journal
leads wrong data to be updated.

ü Approach 2: issue each request at a time, wait for each to complete,
then issuing the next (e.g. fsync() at each write)
§ Too slow

ü Approach 3: employ commit
§ Separate TxE from all other writes (e.g. fsync() before TxE)
§ Recovery: 1) not committed è undo, 2) committed, but not in the

original locations è redo logging

ü Approach 4: issue all writes at once and apply checksum using all
contents in the journal (integrity example)

19

J. Choi, DKU

42.3 Solution #2: Journaling (or WAL)

How to reduce journaling overhead? è 2. write volume
ü Data journaling writes data twice, which increases I/O traffic (reducing

performance), especially painful for sequential large writes
Metadata Journaling
ü Journal Metadata Only

§ User data is not written to the journal (I and B, except D)

ü Question?
§ Does the writing order btw user data and journal become matter? è Yes,

writing journal before user data causes problems (garbage read)
ü Conclusion: ordered journaling

§ 1) Data write è 2) Journal metadata write è 3) Journal commit è 4)
Checkpoint è 5) Free

ü Real world
§ Ext3: support both ordered and writeback(non-ordered)
§ Windows NTFS and SGI’s XFS use non-ordered metadata journaling

20

J. Choi, DKU

42.3 Solution #2: Journaling (or WAL)

Timeline
ü Data journaling vs. Metadata Journaling

§ Horizontal dashed line is “write barrier”
§ Note that, in this figure, the order btw Data and Journaling is not

guaranteed in the metadata journaling timeline (writeback mode in the
ext3.)

21

J. Choi, DKU

42.4 Solution #3: Other Approaches

Summary
ü fsck: A lazy approach
ü Journaling: An active approach

§ Ext3, Reiserfs, IBM’s JFS, …
ü Soft update

§ Suggested by G. Ganger and Y. Patt
§ Carefully order all writes so that on-disk structures are never left in an

inconsistent state (e.g. data block is always written before its inode)
§ Soft update is not easy to implement since it requires intricate

knowledge about file system (On contrary, journaling can be
implemented with relatively little knowledge about FS)

ü COW (Copy on Write)
§ Used in Btrfs and Sun’s ZFS

ü Optimistic crash consistency
§ Enhance performance by issuing as many writes to disk as possible
§ Exploit checksum as well as a few other techniques

22

J. Choi, DKU

Features of Actual FS: Ext2/3/4 File System

Ext2
ü Reference: R. Card, T. Ts’o and S. Tweedie, “Design and

Implementation of the second extended FS”,
http://e2fsprogs.sourceforge.net/ext2intro.html

ü Performance enhancement: 1) cylinder group, 2) pre-allocation:
usually 8 adjacent blocks, 3) Read-ahead during sequential reads

Ext3
ü Ext2 + Journaling
ü Use a block group (or groups) for journaling
ü Three types: 1) data journal, 2) ordered, 3) writeback

23

BGs for journal Other BGs for dataOther BGs for data

J. Choi, DKU

Features of Actual FS: Ext2/3/4 File System

Ext4
ü Ext3 + Larger file system capacity with 64-bit

§ Supports huge file size (e.g. 16TB) and file system (e.g. 2^64 blocks)
§ Directory can contain up to 64,000 subdirs

ü Extent-based mapping
§ Extent: Variable size (c.f. Inode: fixed size (4KB))

• E.g. Contiguous 16KB è need one mapping vs need 4 mappings
• Ext4, BtrFS, ZFS, NTFS, XFS, …

§ Need split/merge in a tree structure (extent tree)
ü Hash based directory entries management

(Source: https://www.slideshare.net/relling/s8-filesystemslisa13,
https://blog.naver.com/PostView.nhn?blogId=jalhaja0&logNo=221536636378)

24

J. Choi, DKU

Features of Actual FS: FAT File System

Why?
ü Large vs Small storage (USB, Memory card, IoT device)

§ Space for Metadata is quite expensive

Solution: FAT file system
ü Originated by Microsoft
ü Idea: Bitmap, Inode è FAT (File Allocation Table)

§ 1) Used for used/free, 2) data location (link for next block)
• c.f.: inode: per file metadata vs. FAT: for all files (one in a file system)

§ Directory entry: point to the first index for FAT
§ Metadata (size, time, permission, ..) in directory entry

25

J. Choi, DKU

Features of Actual FS: FAT File System (optional)

Example
ü Layout assumption

§ 1 block for Boot Sector, 2 blocks FAT, 1 block for root directory
ü Working scenario

§ After initialization

B FAT R

Res Res Res 0xFF 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

• .: 3
• ..: 3

Res Res Res 0xFF 0x05 0xFF 0x07 0x08
0x09 0xFF 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

26

J. Choi, DKU

Features of Actual FS: FAT File System (optional)

Example
ü Layout assumption

§ 1 block for Boot Sector, 2 blocks FAT, 1 block for root directory
ü Working scenario (similar example in 40.3 The inode)

§ When we create a new file (named hello.c whose size is 7KB) in a root
directory?

§ Then, we compile it? (a.out whose size is 15KB)

B FAT R

Res Res Res 0xFF 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

• .: 3
• ..: 3

#include <stdio.h>
int main() …

457f 464c 0102 0001
0000 …

Res Res Res 0xFF 0x05 0xFF 0x07 0x08
0x09 0xFF 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

• .: 3
• ..: 3
• hello.c:4
• a.out: 6

27

hello.c a.out a.out

J. Choi, DKU

Features of Actual FS: Flash-aware FS

Why?
ü Disk vs. Flash memory

§ Same: non-volatile
§ Different: 1) need erase operation in flash, 2) endurance, 3) read/write:

small unit (4/8KB, usually called page), erase unit: large unit (512KB
called block), 4) performance, mechanical, price, shock resistance, …

<Read/Write> <Read/Write + Erase>

<page vs. block ><What is erase?>

28

J. Choi, DKU

1

4

7

Features of Actual FS: Flash-aware FS

Solution
ü Out place update (not in place update)

§ Allocate new disk blocks (erased) and write them è mapping (address
translation)

§ Reclaim the old invalidated disk blocks è garbage collection
§ Example

• A file whose size is 15KB è 4 data blocks
• Assume that disk blocks 1, 4, 7 and 8 are allocated for the file
• A user modify the file ranging from 0 to 10KB
• In place update è write on the already allocated blocks
• Out place update è allocate new blocks and write on them

ü Real file systems: F2FS, LFS

<Out place update> <In place update>

1

4

7

8 <after update 1,4,7>

<inode>

<data blocks>

1

4

7

8

<inode>

<data blocks>

1

4

7

8 <after update 1,4,7>

<inode>

<data blocks>

9

10

11

8

<inode>

<data blocks>

9

10

11

9

10

11

9

10

11

1

4

7

29

J. Choi, DKU

Features of Actual FS: Flash-aware FS (Optional)

F2FS: Flash Friendly FS by Samsung
ü Key idea

§ Use inode (like FFS) and Out-place update (like LFS)
§ Make new mapping in an inode and Invalidate old data (Translation)
§ Garbage collection to reclaim invalidated blocks

ü New features
§ 1) Multiple logging: hot/cold separation, 2) NAT: overcome wandering tree

problem, 3) GC Optimization (Fore vs back-ground, greedy vs cost)
ü Note: Can we use non flash-aware FS (e.g. Ext4, FAT)?

§ Yes: using FTL (Flash Translation Layer) è Abstract flash memory like disks
§ 1) Translation (mapping), 2) GC, 3) Wear-leveling è See Chapter 44 in

OSTEP

(Source: F2FS, FAST’15) 30 (Source: https://needjarvis.tistory.com/60)

J. Choi, DKU

Summary

File basic
ü Layout: superblock, bitmap, inode, data blocks
ü Access methods: open(), read(), write(), …

Optimization
ü Performance: FFS, Ext2, …

§ A watershed moment in file system research
§ Storage-awareness, simple but effective techniques

ü Consistency: Ext3/4, JFS, …
§ Change from valid state to another valid state
§ Journaling: Performance and Reliability tradeoff

Others
ü F2FS: for Flash memory file
ü FAT: for small storage

(Source: https://www3.cs.stonybrook.edu/~porter/courses/cse506/f14/slides/ext4.pdf)

31

J. Choi, DKU

Lab3 : Ext2 Analysis

Lab3: Analyze Ext2 file system internal (a kind of digital forensic!!)
ü What we need to do

§ 1. create ramdisk
§ 2. make ext2 file system on ramdisk and mount the ext2 file system
§ 3. run the script on the mount directory (./create.sh) è will generate dirs. and files
§ 4. find two files assigned to you and find blocks allocated for the files

• Assigned files: last three digits of a student number è directory + file name
• (e.g. *****550 è directory name is 5, file name is 50 and 05)
• How to: dump ramdisk (using xxd), examine Ext2 (or make a program that parsing Ext2)
• Superblock è Group descriptor è root inode è root data è dir. inode è dir. data ….

ü Requirement: report è 1) goal, 2) analysis results and snapshots, 3) discussion
ü Submission: 1) upload e-learning campus, 2) email to TA
ü Due: 6pm, 27th May (Friday)
ü Bonus

§ Print your name and student id while mounting Ext2
§ Ext2 source modification + make + module insert (e.g. insmod) + mkfs + mount

32

J. Choi, DKU

Appendix 1: Lab3 details

Main steps

(1) make a ramdisk and insmod it (2) mkfs and mount

33

(3) make file hierarchy by running script (4) Explore file system layout)

J. Choi, DKU

Appendix 1: Lab3 details

Key structures

(layout)

(group descriptor table)

(superblock)

(inode)

(directory entry)

34

J. Choi, DKU

Appendix 1: Lab3 details

Bonus

(make module: kernel loadable module)

(mkfs and mount)

35

(insmod: os_ext2)

(Your name and student ID are printed out
at the kernel level NOT at the user level!!)

(modify ext2 source: just add your name)

J. Choi, DKU

Quiz for 11th-Week 2nd-Lesson

Quiz
ü 1. We want to create a file whose size is 4KB, as shown in the below

left figure. Using the figure, explain the terms of “1) space leak“,
“2) garbage read“, “3) dangling reference”, and “4) inconsistent”.

ü 2. FTL (Flash Translation Layer) is a SW layer that abstracts flash
memory like disks. Three key roles of FTL are 1) address mapping, 2)
garbage collection and 3) wear-leveling. Explain these roles (refer to
Chapter 44 in OSTEP).

ü Due: until 6 PM Friday of this week (20th, May)

(Source: https://www.secmem.org/blog/2020/01/17/FTL/)

36

J. Choi, DKU

Appendix 2

41.5 Measuring File Locality: FFS relies on Common Sense
(What CS stands for ^^)
ü Files in a directory are often accessed together (namespace locality)
ü Measurement: Fig. 41.1

§ Using real trance called SEER traces
§ Path difference: how far up the directory tree you have to travel to find

the common ancestor btw the consecutive opens in the trace
• E.g.) same file: 0, /a/b and /a/c: 1, /a/b/e and /a/d/f: 2, …

§ Observation: 60% of opens in the trace è less than 2.
• E.g.) OSproject/src/a.c, OSproject/include/a.h, OSproject/obj/a.o, …

37

J. Choi, DKU

Appendix 2

42.3 Solution #2: Journaling (or WAL): Revoke record in
journal: for block reuse handling
ü Scenario: 1) there is a directory called foo, 2) a user adds an entry

to foo (create a file), 3) foo’s contents are written to block 1000, 4)
log are like the following figure (note that directory is metadata,
which is also logged)

ü 5) The user deletes the foo (and its subfiles), 6) The user creates
another file (say foobar), which uses the block 1000, 7) Writes for
foobar are logged (note that file contents themselves are not
logged)

ü 8) At this point, a crash occurs. 9) recovery performs “redo” from the
beginning of the log. 10) overwrites the user data of the file foobar
with the old directory contents.

ü Solution
§ Ext3 adds a new type of record, a revoke record, for the deleted file or

directory. When do replaying, any revoked records are not redo
38

J. Choi, DKU

Appendix 2

Features of Actual FS: LFS (Log-Structured File System)
ü Why? How to reduce seek distance?

§ Allocate related data as close as possible: FFS, Ext2, …
§ But, eventually fragmentation occurs

• E.g.) create a file 1 in a dir1, and a file 2 in a dir 2 è 8 random writes in FFS
ü Proposal: write data sequentially in new place (log) instead of original

place (out-place update vs in-place update)
§ Need to add new mapping information (inode map)

• E.g.) create a file 1 in a dir1, and a file 2 in a dir 2 è 8+1 sequential writes in
LFS

• Original data è invalidate
§ Need garbage collection for reclaiming invalidated data

(Source: https://work.tinou.com/2012/03/log-structured-file-system-for-dummies.html,
https://deepai.org/publication/ssdfs-towards-lfs-flash-friendly-file-system-without-gc-operation) 39

UFS

LFS

