DANKOOK UNIVERSITY

Lecture Note 7. Advanced
File System

May 16, 2022
Jongmoo Choi

Dept. of software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)
I

J. Choi, DKU

Contents

s From Chap 41~45 of the OSTEP
s Chap 41. Locality and the Fast File System

v Performance requirement
v Storage-aware performance enhancement

s Chap 42. Crash Consistency: FSCK and Journaling
v Consistency requirement
v Journaling mechanism

m Chap 43. Log-structured File Systems
m Chap 44. Flash-based SSDs

s Chap 45. Data Integrity and Protection
s Chap 46. Summary

s Summary. Features of Various FS: Ext2/3/4, FAT, Flash FS
and Lab3

I J. Choi, DKU
2

Chap. 41 Locality and The Fast File System

= UFS (Unix File System) ‘ .
v Layout Sytlak |Vl
= Boot sector Emuo;bkm Block
= Superblock: how big FS is, how many inodes, bt | O
where is inode, ... x
= Bitmap + Inode + User data Enough blks -

' hold M inodes
[] 9 S|mp|e and easy_to_use [0 hold M Inodes

v Access method

* |node access, data access alternately

Look good, but consider disk geometry (see
chapter 37) and multiple 1/Os per a write (see
chapter 40) File and directory

= Concerns: 1) Long seek time, 2) Consistency .
Performance issue = This chapter
Consistency issue =» Next chapter

'

N blocks

Block N - 1

I J. Choi, DKU

41.1 Poor Performance

s UFS (also our VSFS)

v poor performance

v 1) Inode and User data are located in different tracks 2) A file is
fragmented as time goes (external fragmentation) = long seek

data inode | root foo bar |root foo bar bar bar S Data
bitmap bitmap | inode inode inode|data data dafa[0] datafl] data[2]
read
read
open(bar) read
read
read
read gnetira
read() read daka an di
Nate Tracks Y iy "
read z %
read() read L\
write . Disk
read / Aotation
I'Ec’id{] read Head . .
wa - Motion ot Slispénsion
Figure 40.3: File Read Timeline (Time Increasing Downward) o S i v

< How to overcome this problem?

[J. Choi, DKU
4

41.2 FFS: Disk Awareness

s New proposal: FFS (Fast File System from BSD OS)

v Place inodes and user data blocks as close as possible

v Disk-awareness

» Data in the same cylinder =» no seek distance (or closer cylinder = less
seek distance)
Cylinder group is defined as a set of tracks on different surfaces that are the
same distance from the center

v This idea is also used in Ext2/3/4 File system

Single track (e.g., dark gray) Cylinder Groups
.
m . -
2 5 — =
88c ; <>
85 — Tom == |
EL s c 8% —
000 508
AD0
TEQ +— 00%¥5
SoE 308y
i 0 - o] 3 Q
o c o @ LZ0ga
dl o +— (EL 0
2 EE L w0 Og
£20% C00%0
>0 () 2 +— TUOLD
0ed, 58;2
ERy >00 9
oEe +— 051k
0oy Z2=
Ei‘ o~ B o 0 SUAMIARY INFO e
= (0} - ... TAE BLOCK TOTALS
ncm — P CYLINDER NUM LAST BLOCK POS FREE BLOCK POSITION
.‘d-D'_' UJ NUM CYLINDERS LAST BLOCK POSITION INODE MAFP
Uq_ UJ NUM INODE BLOCKS LAST INODE POSITION AMAGCIC NUMBER
E o NUAM DATA BLOCKS NUM FRAGS AVAIL BLOCK AMAP
I—

llllllllllllllllllllllllllllllllllll‘iagiﬁﬁ Aline: Shdeﬂ|a!QL£EHD[§EQ§L§1!QH}&&L)
. Choi, DKU

5

41.3 Organizing Structure: The Cylinder Group

s FFS in detall

v Partition(or a disk): divided into a number of cylinder groups
v Cylinder group
= N consecutive cylinders
= Structure of each cylinder group
Superblock (duplication for reliability)
Per-group bitmap, inode and data blocks

= Management

Allocate an inode and data at the same group: e.g. Inode and data blocks for
file A in Group 0, those for file B in group 1, ... = Small seek distance

Ext2: similar approach called block group

v Feature of FFS: Different internal implementation, but same external
interfaces

————— .- il T
——— - —————
———— - ——
——— Prd S ————
-—— - ————
- - -

>
-
-
.

J. Choi, DKU

41.4 Policies: How to Allocate Files and Directories

s Allocation in FFS

v |dea: keep related stuff together

» Data and related inode, file and its related directory, ...
v Allocation issue

= E.g.) Create a file A. which group does it allocate?

» E.g.) Create a directory B. which group does it allocate?

Inodes Data

v Allocation rules

————

-
————

Group O

Group 1

Group 2

-
-
PR
-

Ss
~
Ss
~

Data

» Rule 1. Directory: place it into a cylinder group with a high number of free
inodes (a low number of allocated directories)

. To balance directories across groups

= Rule 2. File: 1) put files in the cylinder group of the directory they are in,
2) allocate data blocks of a file in the same group as its inode

. To allocate inode, data blocks and directory as close as possible

J. Choi, DKU

41.4 Policies: How to Allocate Files and Directories

s Allocation in FFS

v Allocation rules
» E.g.) create three directories (/, /a, /b) and four files (/a/c /a/d, /ale, /b/f)
. Assumption: 1) Directory: 1 block, 2) file: 2 blocks

» FFS allocates three directories at different group (rule 1, load balancing),
allocate files in the same directory (rule 2, namespace locality)

group inodes data group inodes data
0/ fm———————— 0 /o fmm—
TE SEsss==temraes a———————— Laede ————7 accddee——
2 s Jo e = 2 e bff—————
3 e oo —— e R T S
g sl dd——————— e e e
5 e—mm——— Ee———————— P T e e
6 f——————— fFf———— e
i P RS S S SRSy S S S 7T —_—— -
(Even allocation) (FFS allocation)
v Analysis

11 7

= “Is —I" in the “a” directory
. Within one group in FFS allocation vs Access 4 groups in even allocation

» User usage pattern: strong namespace locality

I J. Choi, DKU
8

41.6 The Large-File Exception

= How to handle a large file for allocation in FFS?

v Large file =>» fill up a cylinder group with its own data = undesirable
with the consideration of the namespace locality
v Rule 3. For a large file

= Allocate a limited number of blocks (called as chunks) in a group. Then,

go to another group and allocate a limited number of blocks there. Then,
move another one. ...

» Pros) locality among files, Cons) locality in a file

v E.g.): 1) file A 30 blocks 2) limited number of blocks in a group: 5

0 _

1 ———————— aaaaa——— ————— —————— —————

E el = L = Yo e et e e e

F S AR e e e e e

4 -—————— gaaaa———— ———————— ——————— —————————

8 —————————— ARt T T T T T

(FFS allocation)
group inodes data

0 /a—————-——— /azaaaazaa azaaaazaaa aaaaaaaaaa a———————

1 S e S A ——

2 L L s CL L) IR L LTy L T =

e ‘Wlthout Rule 3) .

J. Choi, DKU

9

41.6 The Large-File Exception

= How to handle a large file for allocation in FFS?

v Analysis of Rule 3

= How much is the seek overhead for accessing a large file?
Seek and Transfer alternatively due to the Rule 3 in FFS

v Example
= Assumption: Seek=10ms, Bandwidth = 40MB/s

= Example 1) limited number of blocks (chunks) in a group = 4MB
Transfer time: 4MB / (40MB/s) = 100ms vs. seek time = 10ms =» 90%(100/110)
bandwidth is used for data transfer

= Example 2) limited number of blocks (chunks) in a group = 400KB
Transfer time: 0.4MB / (40MB/s) = 10ms vs. seek time = 10ms =» 50%(10 / 50)
bandwidth is used for data transfer

= =» [arge chunks can amortize the seek overhead

The Challenges of AdAmortization

|
0
<
|

D0, 3690

2
|

32K —

Log(Chunk Sizg Needed

1K T i T : 1
oo 25% 5092 T 5% 100
Percent BEBandw idth (Desired)

B Figure 41.2: Amortization: How Big Do Chunks Have To Be? J Choi, DKU

10

41.7 A Few Other Things about FFS

s Another features in FFS

v Larger disk block size: 512B (sector) in UFS =» 4KB (disk block) in
FFS

» Pros) Larger size = Less seek and more transfer = Higher Bandwidth
usage in disk

= Cons) Internal fragmentation
. Waste space (e.g. half when a file is 2KB)| Fagmentnumbers | 03 47 &11 1215
v Sub-blocks (fragment) allocation Block numbers o 1 2
» To overcome the internal fragmentation

v Parameterization

» Sequential block requests: 1, 2, 3,, (request 1, transfer, request 2,
transfer, ...) = But when the request 2 is arrived in disk, the head has
already passed the location of 2 =» solution: parameterized placement

= c.f.) Modern disk: use track buffer

Bits in map XXXX XXO0 OOXX 0000

Figure 41 .53: FFS: Standard WVersus Parameterized Placement

v Others: Symbolic link (link across multiple file systems), atomic

rename“I Iong file name,
J. Choi, DKU

11

Chap. 42 Crash Consistency: FSCK and Journaling

= Non-volatility: no-free lunch
v Can retain data while power-off
v But, requires maintaining file system consistency

s Consistency definition

v Changes in a file system are guaranteed from a valid state to another
valid state

= E.g.) inconsistent state: bitmap says that a block is free even though it is
used by a file

v What happen if, right in the middle of creating a file, a system loses
power?
s Solutions
v FSCK (File System Check)
v Journaling: employed many file systems such as Ext3/4, JFS, ...
v Others: Soft update, COW, Integrity checking, Optimistic, ...

F2 2B E

J. Choi, DKU

Quiz for 11t1"-Week 1st-Lesson

B QUiZ
v 1. Discuss why FFS makes use of the rule 2 using the term of
namespace locality.

v 2. Read page 2 in Chap. 41 of OSTEP and explain why fragmentation
external fragmentation) happens and what is the benefit of a
defragmentation tool?

v Due: until 6 PM Friday of this week (20, May)

Traditional File System

H

LOCALITY AN THE FAST FILE SYSTEM

Entire disk

Worse, the file systerm would end up getting gquite fragmented, as the
A S it e e i free space was not carcfully managed. The free st would end up point-
\ _,..—————"/’ l \\‘ ing to a bunch of blocks -=.|_11_u:—ac.i across the disk, and as files got allocated.
[me= M | I] ll'l:l_:i. would simply take the next free block. The result was that a logi-
cally contiguous file would be accessed by going back and forth across

the disk, thus reducing performance dramatically.
For example, imagine the following data block region. which contains

forar files (M, B, O, and), each of size 2 blocks:

oot o [Soper stocn [Free seace momt | 1mooes T T T — _ .
B‘IIEZI][&ID1IE}2‘|

If B and D are deleted, the resulbing layout is:

New File System - Structure _

N MAus wou can see, the free space is fragmented into two chunks of twao
Dk cArnnw e s -t b e [R— Blocks, instead of one nice contiguowus chunk of four Let™s say voll mow
wish o allocate a file E, of size four blocks:

500 = .

Fales mwsacnm L T] [- by Groaags

: E gets spread across the disk,. and as a
don’t get peak (seguential) performance

B A A e You can see what happen
- | [grverg | - — result, when accessing E,. ywo

; e - wlntn ko s from the disk. Rather, yvou frst read E1 and E2, then seek, then read E3
= = = - = and E4. This fragmentation problem happenced all the time in the old
Uisnx file systerm, and it hurt performance. A side note: this problem is
exactly what disk defragmentation tools help with; they reorganize on-
—— S c e disk data to place files contiguously and make free space for one or a few
contizuous regions, Mmoving data around and then rewriting inodes and
such bto reflect the changes.

(Source: https://www.slideshare.net/parang.saraf/a-fast-file- iy b i ars Pomen T Bl Dra s Tty It et e
bBlocks were good boecause they minimized internal fragmentation {(waste

system-for-unix-presentation-by-parang-saraf-cs5204-vt) e e it e i e e e

B

I J. Choi, DKU
13

42.1 A Detailed Example

Example
v Simple FS: 8 inodes, 8 disk blocks, i-bitmap, d-bitmap
v One file: size=4KB, owner =Remzi

Bitmaps
Inode Data Inodes Data Blocks
= . . Da
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

oWwner > remzi owner : remzi
permissions : read-write permissions : read-write
size : 1 size £ 2
pointer : 4 pointer T 4
pointer : AHLL pointer 3 5
pointer » mull pointer : null
pointer = aill pointer > null

v Modify the file: appending, size=8KB
* Note that we need to change three locations =» need three writes

Bitmaps

lInode Data Inodes Data Blocks
0o 1 0 1 2 3 4 5 6 Fi
[J. Choi, DKU

42.1 A Detailed Example

Cras

h scenario

v Three writes: Db, I[v2], B[v2]
v Delayed write using cache (or queuing) = Unexpected power loss or

Sy

stem crash =» Some writes can be done while others are not.
Db only is written to disk: no problem
B[v2] only is written to disk: space leak

I[v2] only is written to disk: 1) garbage read, 2) inconsistency: inode vs.
bitmap

Db and B[v2] are written to disk (except I[v2]): inconsistency
Db and I[v2] are written to disk (except B[v2]): inconsistency
I[v2] and B[v2] are written to disk (except Db): Garbage read

v Need consistency: write all modifications or nothing (a kind of
atomicity)

B) A S0P U A O

Destage writes
= = E s =1 =3 =3
reordered by disk

J. Choi, DKU

42.2 Solution #1: The File System Checker

s [raditional solution: fsck (file system checker)

v Consist of several passes
» Superblock: metadata for FS, usually sanity check

* Free blocks: check all inodes and their used blocks. If there is an
inconsistent case in bitmaps, correct it (usually follow inode info.)
* Inode state: validity check in each inode. reclaim wrong inodes

Inode links: link counts check by scanning the entire directory tree. Move the
missed file (there is an inode but no directory entry points it) into the
lost+found directory

Duplicate pointers: find blocks which are pointed by two or more inodes
Bad blocks: pointer that points outside its valid ranges

» Directory checks: fs-specific knowledge based directory check (e.g. “.”

(13 7

and “..” are the first entries
v Issue: too slow

» Remzi says that “the fsck looks like that, even though you drop the key
in your bedroom, you start a search-the-entire-house-for-key algorithm,
scanning from the basement, kitchen, and every room.”

I J. Choi, DKU
16

42.3 Solution #2: Journaling (or WAL)

= Journaling

v A Kind of WAL (Write-ahead logging)

v Key idea: When updating disks, before overwriting the structure in
place, first write down a little note to somewhere in a well-known
location, describing what you are about to do.

v Crash occur = The note can say what you intended =» redo or undo
= Journaling FS

v Linux Ext3/4, IBM JFS, SGI XFS, NTFS, Reiserfs, ...
v Features of Ext3 file system

» |Integrate journaling into ext2 file system

» Three types: 1) journal (data journal), 2) ordered (metadata journal,

ordered, default), 3) writeback (metadata journal, non-ordered)

Super

SGroup O

Group 1

Group N

(Ext2 disk layout, like FFS)

Super

Jourmnal

Group O

Group 1

Group ™

(Ext3 disk layout: Ext3 + Journaling)
I

17

J. Choi, DKU

42.3 Solution #2: Journaling (or WAL)

= Data Journaling
v Assume we want to do three writes (l[v2], B[v2], and Db)

v Before writing them to their final locations, we first write them to the log
=» step 1: journaling.

TxB| I[vZ] BlvZ2] Db TxE >

Journal

= TxB: Transaction begin, include Tid and writes information
= Log
Physical logging: same contents to the final locations
Logical logging: intent (save space, but more complex)

= TxE: End with Tid

v After making this transaction safe on disk, we are ready to update the
original data =» step 2: checkpointing
v Recovery (fault handling)

* |n the case of failures btw journaling and checkpointing, we can replay
journal (redo) =» can go into the next consistent state

» |In the case of failures btw TxB and TxE, we can remove journal (undo) =
can stay in the previous consistent state

I =r=a —= == = |J. Choi, DKU

42.3 Solution #2: Journaling (or WAL)

s How to reduce journaling overhead? = 1. performance
v For journaling, we need to write a set of blocks
= e.g. TxB, i[v2], B[v2], Db, TxE
v Approach 1: issue all writes at once
» Unsafe, might be loss some requests

Joumdl
o
0

I[v=] B[wv=] e Tx<E
id—1 id—1

» Transaction looks valid (it has begin and end). Thus, replaying journal
leads wrong data to be updated.

v Approach 2: issue each request at a time, wait for each to complete,
then issuing the next (e.g. fsync() at each write)

= Too slow
v Approach 3: employ commit
» Separate TxE from all other writes (e.g. fsync() before TxE)

= Recovery: 1) not committed =» undo, 2) committed, but not in the
original locations =» redo logging

TxB| Iv2] | B[v2] Db >
id=1

TxB| Iv2] | Bv2] | Db [TxE >
id=1 id=1

Journal
Journal

v Approach 4: issue all writes at once and apply checksum using all
contents in the journal (integrity example)

I J. Choi, DKU
19

42.3 Solution #2: Journaling (or WAL)

s How to reduce journaling overhead? = 2. write volume

v Data journaling writes data twice, which increases |I/O traffic (reducing
performance), especially painful for sequential large writes
s Metadata Journaling

v Journal Metadata Only

» User data is not written to the journal (I and B, except D)

Journal

T™>xB IfvZ2] Blvz2] |TxE

v Question?

» Does the writing order btw user data and journal become matter? = Yes,

writing journal before user data causes problems (garbage read)
v Conclusion: ordered journaling

= 1) Data write = 2) Journal metadata write = 3) Journal commit = 4)
Checkpoint = 5) Free

v Real world

= Ext3: support both ordered and writeback(non-ordered)
» Windows NTFS and SGI's XFS use non-ordered metadata journaling

J. Choi, DKU
20

42.3 Solution #2: Journaling (or WAL)

= limeline

v Data journaling vs. Metadata Journaling
= Horizontal dashed line is “write barrier”

» Note that, in this figure, the order btw Data and Journaling is not
guaranteed in the metadata journaling timeline (writeback mode in the

ext3.)
Journal File System
IxB Contents IXE |Metadata Data
(metadata) (data)
issue issue issue
complete
complete
complete
________________ issee |
complete
| issue issue
complete
complete

Figure 42.1: Data Journaling Timeline

Joumal

|

Journal File System
TIxB Contents TxE |Metadata Data
(metadata)
issue issue issue
complete
complete
complete
___________ issee |
complete
] iswe
complete

Figure 42.2: Metadata Journaling Timeline

i
Journal
Super

Tx1

Tx=2

Tx3

T TxS

J. Choi, DKU

42 .4 Solution #3: Other Approaches

= Summary
v fsck: A lazy approach

v Journaling: An active approach
= Ext3, Reiserfs, IBM’s JFS, ...

v Soft update
» Suggested by G. Ganger and Y. Patt

= Carefully order all writes so that on-disk structures are never left in an
inconsistent state (e.g. data block is always written before its inode)

» Soft update is not easy to implement since it requires intricate
knowledge about file system (On contrary, journaling can be
implemented with relatively little knowledge about FS)

v COW (Copy on Write)
» Used in Btrfs and Sun’s ZFS
v Optimistic crash consistency

= Enhance performance by issuing as many writes to disk as possible
= Exploit checksum as well as a few other techniques

I J. Choi, DKU
22

Features of Actual FS: Ext2/3/4 File System

s Ext2

v Reference: R. Card, T. Ts'o and S. Tweedie, “Design and
Implementation of the second extended FS”,
http://e2fsprogs.sourceforge.net/ext2intro.html

v Performance enhancement: 1) cylinder group, 2) pre-allocation:
usually 8 adjacent blocks, 3) Read-ahead during sequential reads

s Ext3

v Ext2 + Journaling
v Use a block group (or groups) for journaling
v Three types: 1) data journal, 2) ordered, 3) writeback

Figure 18-1. Layouts of an Ext2 partition and of an Ext2 block group

WRITEBACK ORDERED DATA
EI?::L Block group 0 Block group n Fixed (Data)
Sync
[Journal (Inode)] [Jouma] (Inodc+Data)J Journal Write
Super Grou Data block | inode inode & Sync ¢ Sync
E!g(ek I}ES{ripfms Bitmap | Bitmap | Table Data blocks Y ?
1 black n blocks 1 block Tblock nblocks n blocks S Journal (Commit) Journal (Commit) Journal Commit
- E| - mmmmm -
Other BGs for data BGs for journal Other BGs for data I ————
- I
{1 i i E F g ; , |
IB DB INODE | LISL vee Dgpieee fgei e £ 4 2 ¢
] { ! i : § ! ; ’ié Fixed (Inode) [Fixed (Inode)] (Fixed (Inode+Data) J Checkpoint Write
2
; ; ; ; T —
IB = Inode Bitmap, DB = Data Bitmap, JS = Journal Superblock, JD = Journal Descriptor Block, JC = Journal Commit Block sl
|

I
L o s e

23

Features of Actual FS: Ext2/3/4 File System

s Ext4

v Ext3 + Larger file system capacity with 64-bit
= Supports huge file size (e.g. 16TB) and file system (e.g. 264 blocks)
» Directory can contain up to 64,000 subdirs

v Extent-based mapping

= Extent: Variable size (c.f. Inode: fixed size (4KB))
E.g. Contiguous 16KB = need one mapping vs need 4 mappings
Ext4, BtrFS, ZFS, NTFS, XFS, ...

» Need split/merge in a tree structure (extent tree)

v Hash based directory entries management

Dhirect
Dimect
Direct
Direct

=1~ Q
@ = w
I;EH

Block-based

Metadata is list of (direct) pointers to fixed-size blocks

Extant

Exfent
Eaxctent

Extent-based

Metadata is list of extent structures (offset + length) to mixed-size blocks

extd inocde

i_block

Frreaoer]

root

index node

|

extent index4

leaf nodes

B

extent

—

extent

e =

disk blocks

extent index

extent

extent

——T1

—

(Source: https://www.slideshare.net/relling/s8-filesystemslisal3,

httBs: ‘ ‘bloa.naver.com‘PostView.nhn?bIogId =jalhaja0&IlogN0=221536636378)

24

J. Choi, DKU

Features of Actual FS: FAT File System

B Why?
v Large vs Small storage (USB, Memory card, |oT device)
= Space for Metadata is quite expensive

s Solution: FAT file system
v Qriginated by Microsoft
v ldea: Bitmap, Inode = FAT (File Allocation Table)

» 1) Used for used/free, 2) data location (link for next block)
. c.f.: inode: per file metadata vs. FAT: for all files (one in a file system)

= Directory entry: point to the first index for FAT
» Metadata (size, time, permission, ..) in directory entry

One Directory Entry

32 bytes
7»——-‘(—. \7R
I Kaf

File Size

Start-of-File Cluster
(example: 6,230)

(example: 40)

File Name
(example: file.dat)

-

44 45 46 a7 48 49 S50

43 EOF 00 00 EOF 00 00 00

File Allocation Table
4 bytes per entry B - % i o a8
. y N

J. Choi, DKU

Features of Actual FS: FAT File System (optional)

s Example

v Layout assumption
= 1 block for Boot Sector, 2 blocks FAT, 1 block for root directory

v Working scenario
= After initialization

Res | Res | Res | OxFF [Ox05 | OxFF | 0x07 | 0x08 . -3
0x09 [OXFF [0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x00 . .3
0x00 | 0x00 | 0x00 [0x00 | 0x00 | 0x00 | 0x00 | 0x00
0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x00
(AT T QYY) T N (Y

| L |
0 7 8 15186 23 24 31

T) I N Y () R A R)) O
32 39 40 47 48 55 56 63
I J. Choi, DKU

Features of Actual FS: FAT File System (optional)

s Example
v Layout assumption
* 1 block for Boot Sector, 2 blocks FAT, 1 block for root directory

v Working scenario (similar example in 40.3 The inode)

» \WWhen we create a new file (named hello.c whose size is 7KB) in a root
directory?

= Then, we compile it? (a.out whose size is 15KB)
Res | Res | Res | OxFF [Ox05 [OxFF | 0x07 | 0x08 . 23
0x09 | OxFF | 0x00 [0x00 | 0x00 | 0x00 | Ox00 | 0x00 ¢« .03
0x00 | 0x00 | 0x00 [0x00 | 0x00 | 0x00 | Ox00 | 0x00 * hello.c:4

0x00 OX%‘ a.out: 6
| BIFAT [Rhelloda.out| [acout] | | [[[|| 1] N VA [|

il
)]

|
0 R\ 15
LA T T TSI T Sl L U i F g gl oo]
32 39 40 \ 48 55 56 63
#include <stdio.h> 457f 464c 0102 0001
int main() ... 0000 ...
J. Choi, DKU

27

Features of Actual FS: Flash-aware FS

B Why?
v Disk vs. Flash memory

= Same: non-volatile

» Different: 1) need erase operation in flash, 2) endurance, 3) read/write:
small unit (4/8KB, usually called page), erase unit: large unit (512KB
called block), 4) performance, mechanical, price, shock resistance, ...

- Plane 0 : Block 0
Chip Page 0
Block 0

- < Die 0 Die Page 1
<Read/Write> <Read/Write + Erase> 1T TN T Page 2
=11E= = S| = = P mn—1
R EEEEE P
Control Gate Control Gate ER n &la i
ol 18 Qe o
Page 4
Block n-1

Drain (D)

Drain (D) Source (S)

Source (8)

Main Area (Data)

No Current - Floating Gate Programmed Current Flows - Floating Gate Erased

<What is erase?> <page vs. block >

I J. Choi, DKU
28

Features of Actual FS: Flash-aware FS

s Solution

v Out place update (not in place update)

= Allocate new disk blocks (erased) and write them =» mapping (address
translation)
» Reclaim the old invalidated disk blocks =» garbage collection
= Example
A file whose size is 15KB = 4 data blocks
Assume that disk blocks 1, 4, 7 and 8 are allocated for the file
A user modify the file ranging from 0 to 10KB
In place update = write on the already allocated blocks
Out place update =» allocate new blocks and write on them

v Real flle systems: F2FS, LFS

.......... >4 10 10, T :::::.'::_:;.._‘,::._ __________ >4 10
<inode> . . | Dcinode> <inode> ,,,,,,,,,,,,,, |:><inode> EUY

.............. _ 11 L7 11
8 <after update 1,4,7> ” 8 e 8 <after update 1,4,7> :
<data locks> <data blocks> <cdata blocks> <date backes
<In place update> <Out place update>

J. Choi, DKU
29

Features of Actual FS: Flash-aware FS (Optional)

s F2FS: Flash Friendly FS by Samsung
v Key idea
» Use inode (like FFS) and Out-place update (like LFS)
= Make new mapping in an inode and Invalidate old data (Translation)
» Garbage collection to reclaim invalidated blocks
v New features

= 1) Multiple logging: hot/cold separation, 2) NAT: overcome wandering tree
problem, 3) GC Optimization (Fore vs back-ground, greedy vs cost)

v Note: Can we use non flash-aware FS (e.g. Ext4, FAT)?
» Yes: using FTL (Flash Translation Layer) =» Abstract flash memory like disks

= 1) Translation (mapping), 2) GC, 3) Wear-leveling = See Chapter 44 in
OSTEP

ﬂ File System H

[FTL Interface l

File data o ;
i

Table (SIT)

J. UlIVIl, UNU

(Source: F2FS, FAST'15) 30 (Source: https://needijarvis.tistory.com/60)

Summary

s File basic
v Layout: superblock, bitmap, inode, data blocks
v Access methods: open(), read(), write(), ...

s Optimization
v Performance: FFS, Ext2, ...

» A watershed moment in file system research
» Storage-awareness, simple but effective techniques

v Consistency: Ext3/4, JFS, ...

» Change from valid state to another valid state
» Journaling: Performance and Reliability tradeoff

s Others

v F2FS: for Flash memory file
v FAT: for small storage

+ ext2 - Great implementation of a “classic” file system

+ ext3 - Add a journal for faster crash recovery and less
risk of data loss

+ extd - Scale to bigger data sets, plus other features

(Source: https://www3.cs.stonybrook.edu/~porter/courses/cse506/f14/slides/ext4.pdf)
[J. Choi, DKU
31

Lab3 : Ext2 Analysis

s Lab3: Analyze Ext2 file system internal (a kind of digital forensic!!)

v What we need to do

= 1. create ramdisk

= 2. make ext2 file system on ramdisk and mount the ext2 file system

= 3. run the script on the mount directory (./create.sh) =» will generate dirs. and files

= 4. find two files assigned to you and find blocks allocated for the files
Assigned files: last three digits of a student number =» directory + file name
(e.g. *****550 =>» directory name is 5, file name is 50 and 05)
How to: dump ramdisk (using xxd), examine Ext2 (or make a program that parsing Ext2)
Superblock = Group descriptor = root inode = root data =» dir. inode = dir. data

v Requirement: report = 1) goal, 2) analysis results and snapshots, 3) discussion
v Submission: 1) upload e-learning campus, 2) email to TA

v Due: 6pm, 27t May (Friday)

v Bonus

» Print your name and student id while mounting Ext2
= Ext2 source modification + make + module insert (e.g. insmod) + mkfs + mount

) Google 2AI()= =71

2022 OS L AB3

concept (10th edition) , by A. Silberschatz, P. B. Calvin and G. 1 . 1 Dankook University
rr Principles (9th edition) , by W. Stalling e 1 = g
aum. Korean version e e ; Hojin Shin

Content

1. File system layout analysis with Digital Forensic)Kl l

= 2. File system modification with Module Programmina

o M& =m: MST (ghwlsO3s@gmail.com, SW-ICT 5155, 031-8005-3247)
H: A" (45%), Lab1/2/3 (35%), THRI/EE (10%), BA/FI= (10%)

Appendix 1: Lab3 details

= Main steps

5y5321535506E 5L -LeedY 1 ~/workspace/2026_1/05 Lab3s 1s
append.c Vakefile ramdisk.c
9y532133350E 5L -LeelY i~/ workspace/2026_1/05 Lab3s sudo su
rootEESL-LeelY: /home/sys32153550/ workspace/ 2028 1/05 Lab3# make
make -C /lib/modules/5.3.8-42-gener1c/buzld Me/home/sys 32153550 workspace/2626_1/05_Lab3 modules
make[1]: Entering directory 'fusr/sre/linux-headers-5.3.8-42-generic’
(C [M] /home/sys32153550/workspace/2820_1/05 Lab3/ ramdisk.o
Building modules, stage 2.
MODPOST 1 modules
« /hame/5ys32153550/warkspace/ 2828 1/0S Lab3/ramdisk.mod.o
LD [M] /home/sys32153556/ workspace/2626_1/0S Lab3/randisk.ko
make[1]: Leaving directory 'Jusr/sre/linux-headers-5.3.9-42-generic’
rontEESL-LeelV: /home/sy532153550 workspace/ 2628_1/05 Lab3# 1s
append..c O Mekefile modules.order PFodule.symvers ramdisk.c ramdisk.ko ramdisk.mod ramdisk.mod.c ramdisk.mod.o ramdisk.o

root@ESL-LeedY: /home/sys32153558/workspace/2620 1/0S Lab3# insmod ramdisk.ko
root@ESL-LeelY: /home/sys32153550/workspace/2020 1/05 Lab3# lsmod | grep ramdisk
ramdisk 16384 ©

root@ESL-LeedY: /home/sys32153556/workspace/2020 1/05 Lab3¢ mkfs.ext2 /dev/randisk
mkedfs 1.44,1 (24-Har-2618)
Creating filesystem with 262144 &k blocks and 65536 inodes
Filesysten UID: 5f31367-3aaf-4833-0813- Te3ab16RAffd
Superblock backups stored on blocks:
32768, 98304, 163840, 220376

Allocating group tables: done
Writing inode tables: done
Writing superblocks and filesysten accounting infomation: done

root@eSL-LealY: fhome/sys32153550/ workspace/2029_1/05 Lao3# mount /dev/randisk ./mnt

(1) make a ramdisk and insmod it

root@ESL-LeelY: /home/sys32153550/workspace/2820 1/05 Lab3# ./create.sh
create files ...

done

root@ESL-LeelY: /home/sys32153550/workspace/2020 1/05 Lab3# 1s mnt

8 1 2 3 456 7 8 9 lostifound

root@ESL-LeeY: /nome/sys32153550 workspace/ 2620 1/05 Lab3# 1s mnt/0

B2 BRUBALOL N0 BB MABILHHNND
1 BT AUBLBILES ITOMRNIHDNBREI] BY
BUBRALDRNBL BTN RBLEEN2HE BTN YR
N 92263 BT HLYMBSIRG7 378 88IULBN

(3) make file hierarchy by running script

33

(2) mkfs and mount

roat@eSL-Lee]Y: /hamey/sys32153550/ warkspace/2620 1/05 Lan3¥ xxd -q 4 -1 8x108 -5 6x38426000 /dev/ ramdisk
38426000 352f3530 2d316a60 00BOOOCR ARAB00D 5/56-1..........
38426010: £0A0200C £A0000CA 00OA0000 0AABER0Dw.

root@eSL-LeedY: /home/sys32153558) workspace/ 2620 1/05 Lab3# wid -q 4 -1 X180 -5 Ox18bcHO8 /dev/ randisk
10bc6086: 35213530 24320300 66060000 00G0A0RE. 5/30-2..........
16bc6010: 6909605 HEARA0%6 COPAE0D BBOOBERD

rootESL-Lee]Y: /home/sys32153550/workspace/ 2620 1/05 Lab3# xud - 4 -1 G160 -5 Ox10c67800 /dev/ ramdisk
10c67009: 3523330 2433000 00BO0AEA AA000S 5/50-3..........
10c67610: 08GA00AA GAEA0000 AOAEO0D 00AABED.

rootGESL-Lee]Y: /home/sys32153550/ workspace/2028 1/05 Lab3# wod -g 4 -1 Bx100 -5 Ox1162a009 /dev/ randisk
116226000: 35213530 24313%a 00000000 900GC0 5/%0-13.........
11623610: DEGACRAE E6AeEe0 BESBEEna BOBBEBED.

(4) Explore file system layout)
J. Choi, DKU

Appendix 1: Lab3 details

s Key structures

.S_E"‘:"f“ Elock Grosp O Elock Gooesgs 1 Blcck Srowap F-ow Elock Gerowpr B
= e =T
" - T - B 1 i ExB Rt
Elock :.Eble-nlc Einrrea e Eicreag | sl TR [e e BN A i
AT =u
SR - Bl b [l == I o n B
Bl ke Drescripior (=0 =] Batera g ! Tattle [ey e e T
F=— = . = Bl b [T pe—t— . = = oot S
Bl k -t i Eitrmresps Bstsra s - - = CaraescEcsry -

T b=

(Iayout)

(supe

rblock)

00 | 01 | 02 | 03|04 |05[06|07 08|09 |0afob|oc|od]oe]| of 00 [o1 [02| 03] 04 05 06 07| 08]09]0aob|oc]od]|oel]of
00 inode count block count res block count free block count 00 block bitmap inode bitmap inode table free blk cnt | free ino cnt
10 free inode count first data block log block size log frag size 10 | used dir cnt l padding reserved (padding)

20 block per group frag per group inode per group mtime (rou descri tOI‘ table)
30 wiine mount max mount madic alite — minor g p p

! count size g a err version
40 last check check interval creator OS major version 00 | 01 02 | 03 04 I 05 ‘ 06 \ 07 08 | 09 | 0a | 0b 0c | 0d | Oe | of

block grp 00 mode uid size access time change time
50 | def _res uid | def_res gid | first non-reserved inode | inode size compatible feature flag P - X - - -
A 10 madification time deletion time gid | link count blocks
60 | incompatible feature flag | feature read only compat uuid (16 byte) 20 flags 0S description 1
70 volume name (16 byte) 10
80 40 block pointer (60 byte)
90 prealloc dir block 50
a0 last mounted (64 byte) prealloc block 60 generation , file access control list dir access control list
bo \ 70 | fragmentation blk addr OS description 2
c0 ‘ algorithm usage bitmap I v | ' ‘ padding
do journal uuid (and e)
el journal inode number | journal device ‘ last orphan 00 | 01 | 02 | 03 04 | 05 06 07 08 ’ 09 | 0a | ob | oc | od | e | of
fo hash seed (16 byte) t | pad] padding) name | file
- 00 inode record len en name (~255 byte)

100 default mount option [first meta block \ default hash version type

(directo

ry entry)

J. Choi, DKU

Appendix 1: Lab3 details

s Bonus

static int ext? fill super{struct super_bleck *sb, void *data. int silent)

: struct dax_device *dax_dev — fs_dax_get_by bdev(sb-=s_bdev); root@ESL-Lee]Y: /hame/sys32153556/workspace/ 2020 1/05 Lab3/os ext2# 1nsmod o5 extl.ko
i L L root@ESL-Lee]Y: /home/sys32153550/workspace/2620 1/05 Lab3/os ext2# Tsmod | grep o5 ext2
e s eit T ¢
L s v s bt S Ak TR root@ESL-LeelY: /home/sys32153550 workspace/2020 1/05 Lab3/os ext2# cd .
st namiboen ol L e rOOtEESL-Leal: /home/sys 32153558 workspace/ 2628 1/05 Labd 1s
ertmeg. lmg Sofsount aptss append.c Makefile modules.order os ext? ramdisk.ko randisk.mod.c ramdisk.o

(modify ext2 source: just add your name) i mt Module.symvers ramdisk.c ramdisk.mod ramdisk.mod.o
(TOUTAESL-Lee]Y: hane/5y532 153500 W TRepace/ Z020_L7US Lab3/05_extzE make (insmod: os_ext2)

make -C /11b/modules/5.3.0-42-gener1c/build M=/home/sys32153550/workspace/2020 1/05 Lab3/os_ext2 modules
make[1]: Entering drectory '/usr/src/linux-headers-5.3.0-42-generic’
(C [M] /home/sys32133350/workspace/2620_1/08 Lab3/os_ext2/balloc.o

: root@ESL-LeelY: /home/sys32153558/workspace/2020 1/05 Lab3# mkfs.ext2 /dev/ramdisk

21 it e

J BacEiencd v o Rl P Rel S0 Creating filesystem with 262144 4k blocks and 63536 inodes
CC [M] /home/sys32153556/workspace/2626_1/0 Lab3/os_ext2/1alloc,o Filesysten UID: 820655ee- 130b-4475-8b87- 1c851acaf 33
CC (M) /hame/sys32153550/workspace/2028_1/05 Lab3/os_ext2/Inode.o Superblock backups stored on blocks:
CC M1 /home/sys32153550/workspace/2020 1/05 Lab3/os ext2/10ctlo 32768, 98304, 163340, 729376
(C [M] /home/sys32153558/warkspace/2620 1/05 Lab3/os ext2/namel.o
(C [M] /home/sys32153550/warkspace/2620 1/05 Lab3/0s_ext2/super.o Mlocating group tables: done
CC [M] /home/sys32153550/workspace/2620 1/05 Lab3/os_ext2/symlink.o Writing inode tables: done
LD [M] /home/sys32153550/workspace/2020 1/05 Lab3/os_ext2/os ext2.0 Writing superblocks and filesystem accounting information: done
Building modules, stage 2. ;
MODPOST 1 modules ront@ESL-LeelY: /home/sys32153550/workspace/2020 1/05 Lab3# mount -t os ext2 /dev/ramdisk ./mnt

« /home/sys32133530/workspace/2020 1/05 Lab3/os ext2/os ext2.mod.0

LD [M] /heme/sys32133558/workspace/2026 1/05 Lab3/os_ext2/os_exi2.ko
make[1]: Leaving directory '/usr/src/linux-headers-5.3.0-42-generic’
root@ESL-LeelY:/hae/sys32133556)/ workspace/2020_1/05 Lab3/os_ext2# 1s _
he ge Gl e Bede imda G ethey ek i ro0tGESL-LeelY: /home/sys 32153556/ workspace/ 2626 1/05 Lao3# dnesq | grep 05 ext)

aclh - diro 1allec.c 1octlic modules.order o5 ext2.bo o5 ext2.o symlink.o xatir_securify.c

balloc.c ext2.h ialloc.o ioctlo Module,symvers os ext2mod super.c tags xattr_trusted.c [2510165993925] a5 ext? @ Lee JE‘?E‘DH 05 Lab3

balloc.o file.c inode.c Kconflg mamel.c 0s_ext2.mod.c super.o attr.c xattr_user.c

(mkfs and mount)

. (Your name and student ID are printed out
(make module: kernel loadable module) at the kernel level NOT at the user level!!

I J. Choi, DKU
35

lf@@@| Quiz for 11th-Week 2nd-Lesson
TIRAE]

s Quiz

v 1. We want to create a file whose size is 4KB, as shown in the below
left figure. Using the figure, explain the terms of “1) space leak”,
“2) garbage read®, “3) dangling reference”, and “4) inconsistent”.

v 2. FTL (Flash Translation Layer) is a SW layer that abstracts flash
memory like disks. Three key roles of FTL are 1) address mapping, 2)
garbage collection and 3) wear-leveling. Explain these roles (refer to
Chapter 44 in OSTEP).

v Due: until 6 PM Friday of this week (20, May)
[
L

Bitmaps
Inode Data Inodes Data Blocks

Application |

3 Standard File System
4 I3 T

o [[vi]

. 0:1 3 4:5 6:7 0 1 2 3 7 4 5 6 7 [Cache mechanism |
]Wear Levetingl I\Address Mappirlg]
OWner - remzi [Gartrage Cotiection) crRL
. 1 ’ . FTL
permissions : read-write =
size 5 @ 3
pointer : 4 Foar 2] LPmae s
pointer : null DR s R A TN
pointer : null Flash Memory Disk
pointer : null (Source: https://www.secmem.org/blog/2020/01/17/FTL/)
[J. Choi, DKU

36

Appendix 2

41.5 Measuring File Locality: FFS relies on Common Sense
(What CS stands for M)

v Files in a directory are often accessed together (namespace locality)

v Measurement: Fig. 41.1
» Using real trance called SEER traces

» Path difference: how far up the directory tree you have to travel to find
the common ancestor btw the consecutive opens in the trace

E.g.) same file: 0, /a/b and /a/c: 1, /a/b/e and /a/d/f: 2, ...

= Observation: 60% of opens in the trace = less than 2.
E.g.) OSproject/src/a.c, OSproject/include/a.h, OSproject/obj/a.o, ...

FFS Locality

100 — _ -
- ::::
® Trac /
»< andom
80%% — =
= /"
=
S e0°% b o
L .-'ll.
2 /
‘; A OSe — J’
= F
= /
> _.-"I
20% — ' i
y ;
L agf"f
o9 — T T T . %
(8] =2 1 = a8 10
Path Difference
[Figure 41.1: FFS Locality For SEER Traces J. Choi. DKU
.)

37

Appendix 2

s 42.3 Solution #2: Journaling (or WAL): Revoke record in
journal: for block reuse handling

v Scenario: 1) there is a directory called foo, 2) a user adds an entry
to foo (create a file), 3) foo’s contents are written to block 1000, 4)
log are like the following figure (note that directory is metadata,
which is also logged)

I[Tfoo] DJfoo] TxE -
id=1| ptr:1 000 [fimal addr:1 000] id=1

Journal
7
0

v 5) The user deletes the foo (and its subfiles), 6) The user creates
another file (say foobar), which uses the block 1000, 7) Writes for
foobar are logged (note that file contents themselves are not
logged)

TxB I[foo] D[foo] TxE|TxB|l[foobar] | TxE L
id=1| ptr:1 000 [final addr:1 000] id=1|i 2| ptr:1000 |id=2

Joumal

o}
I

v 8) At this point, a crash occurs. 9) recovery performs “redo” from the
beginning of the log. 10) overwrites the user data of the file foobar
with the old directory contents.

v Solution

» Ext3 adds a new type of record, a revoke record, for the deleted file or

E——CEECIony- VW hen do replaying, any revoked records,are.notredo., | choi, oku

Appendix 2

s Features of Actual FS: LFS (Log-Structured File System)

v Why? How to reduce seek distance?
» Allocate related data as close as possible: FFS, Ext2, ...
= But, eventually fragmentation occurs
E.g.) create afile 1 in a dir1, and a file 2 in a dir 2 =» 8 random writes in FFS
v Proposal: write data sequentially in new place (log) instead of original
place (out-place update vs in-place update)

» Need to add new mapping information (inode map)

E.g.) create afile 1 in a dir1, and a file 2 in a dir 2 = 8+1 sequential writes in
LFS

Original data =» invalidate
» Need garbage collection for reclaiming invalidated data

r} Fres segment
|

I (4) Mlocation froe space

SR lzii

i [2} Uhpdiate | 1
1 - S R

LFS

uctured-file-system-for-dummies.html, J. Choi. DKU

s-flagh-friendly-file-system-without-gc-operation)

