DANKOOK UNIVERSITY

Lecture Note 8: Memory
Management

May 23, 2022
Jongmoo Choi

Dept. of Software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(This slide is made by Jongmoo Choi. Please let him know when you want to distribute this slide)
I

J. Choi, DKU

Contents

s From Chap 12~17 of the OSTEP

s C
s C
s C

nap
nap

nap

N\

2. A Dialogue on Memory Virtualization

13. The Abstraction: Address Space
14. Interlude: Memory API

v malloc(), free(), brk(), mmap(), ...

s Chap 15. Mechanism: Address Translation
v Base & Limit (Bound), Dynamic Relocation

s Chap 16. Segmentation

v Generalization, Sharing, Protection

s Chap 17. Free-Space Management

v Fragmentation, Splitting and Coalescing
v Strategies: Best fit, First fit, Worst fit, ...
v Segregated list, Buddy algorithm, ...

J. Choi, DKU

Chap 12. Dialogue

s Memory virtualization

Student: So, are we done with virtualization?

Professor: No!

Student: Hey, ro reason to get so excited; I wwas just asking a guestion. Students
are supposed to do that, right?

Professor: Well, professors do always say that, but really they mean this: ask
guestions, if they are good guestions, and you have actually put a little thought
irito therni.

Student: Well, that sure takes the wind out of my sails.

Professor: Mission accomplished. In any case, we are not nearly done with
virtualization! Rather. you have just seey howo to virtuaglize the CPLI but really
there is a big monster waiting in the closet: mermory. Virtualizing rmiermory is
complicated and requires us to understarnd many more intricate details about
how the hardware and OS interact.

Student: That sounds cool. Why is it so hard?

Praofessor: Well, there are a lot of details, and you have to keep them straight
inn your head to really develop a mental model of what is going on. We'll start
simple, with very basic techn:gues like base/bounds, and slowly add complexity
to tackle new challenges, including fun topics like TI.Bs and multi-level page
tables. Eventually, we’ll be able to describe the workings of a fully-functional
moderrn virtual memory manager.

Student: Neat! Any tips for the poor student, inundated with all of this infor-
mation and generally sleep-deprived?

Professor: For the sleep deprivation, that’s easy: sleep miore Carnd party less).
For understanding virtual memory, start with this: every address generated
by a user programnt is a virtual address. The OS is just provxd:ng art Ifluszon

-

to each process, specifically -z
sorie hnrdtuare help, the OS will turn these pretend virtual addresses irnto real

__phiysical addresses. gnd thus be able to locate the desirved information.

Mress space (Large and Private), Virtual/Physical Address, Address Translation, Iéo(rg?‘ODKU

Chap 13. The abstraction: address space

Early system

Multiprogramming and Time sharing

Address space
Goals

Virtual address space

for Notepad.exe

Q000000000

TFF93951000

\

TF3952000

TFFFFFFFFFE

Physical memary

pages
33CEODOD

E3AZDOD0

-

Lyl AFDAGO00

i BZBASODD

—

4

Virtual address space

for MyApp.exe
DO0DD OO

FFTA3951000

TFFFFFFFFFF

(Source: https://msdn.microsoft.com/en-us/windows/
hardware/drivers/gettingstarted/virtual-address-spaces)

J. Choi, DKU

13.1 Early Systems

s Use physical memory directly
v OS and current program =» single programming system
v No (limited) protection
v Larger program than physical memory =» Overlay

OKB
Operating System

(code, data, etc.)

64KB

Current Program
(code, data, etc.)

max
Figure 13.1: Operating Systems: The Early Days

I J. Choi, DKU
5

13.2 Multiprogramming and Time sharing

s Computer becomes bigger

v Multiprogramming: multiple processes are ready to run
v Time sharing: switch CPUs among ready processes

v lssues

= Protection becomes a critical issue
= How to find suitable free space

oKB

c64KB

128KEB

192KB

256KB

320KB

384KB

448K B

512KB

Figure 13.2: Three Processes: Sharing Memory

Operating System
(code, data, etc.)

{(free)

Process C
(code, data, etc.)

Process B
(code, data, etc.)

(free)

Process A
(code, data, etc.)

(free)

(free)

6

J. Choi, DKU

13.3 Address space

s Abstraction
v A process has an illusion that it uses exclusively all memory even
though it is shared by multiple processes = virtual memory

v Well defined layout =» address space

» Code (instruction), Data (statically-initialized variables), Stack (function
call chain and local variables), Heap (dynamically allocated)

» Code is located at virtual address 0x0, but not physically

Procm== & P povoemn ¥ OKB
the code segment:
Program Code i e [
— _ vERN KB g where instructions live
the heap segment:
Heap contains malloc’d data
VEPM & Proces 3 Paoces ¥ | wemie KB dynamic data structures
Pogs Totd= Bage Tabe= | (it grows downward)
VPPN 5 . 1 sall VPEN 5
-l -
ey 11 |_. : : Y
B Pud VEPR 4
(free)
VPPN 3 —t PRI Vi 7
[
WPEM 1 FEW 2 ¥PEN T
(it grows upward)
VEPN | L g bk L vemia the stack segment:
15KB contains local variables
arguments to routines,
S | - I Stack return values, etc.
— 16KB
Virtual memory Physical memory Virtual memory

Figure 13.3: An Example Address Space
J. Choi, DKU

7

13.4 Goals

Transparency (easy to use)
v Programmer: no need to aware the memory size or available space

Efficiency

v Both in terms of time and space (not slow and not requires much
additional overhead) = Various HW support (e.g. TLB)

Protection (isolation)

v Protect processes from one another
Note: every address you see is virtual

#include <stdie.h>

#inclade <stdlib.h>

ankt main{int arge, <char
pranEE (M location oF
pranEE (M location oFf
int x = 3;
erinefE{"locaktion of
return x;

}

*xargv[]) {
code

: Epha™, (void =) main);
heap : Epha™, (void) malloc (1));
stack : Sphn", ((woid) &x);

When run on a 64-bit Mac OS5 X machine, we get the following output:

location of code
location cof heap
location of stack =

O0x1095afes0
O0x1096008Bc0
Ox7EftfFFf691l acabd

J. Choi, DKU
8

Chap 14. Interlude: Memory API

Types of Memory

The malloc() call

The free() call
Common errors
Underlying OS Support
Other Calls

I I L0

free ()

| | LI

#malloc (|)

_ 1 | LI

J. Choi, DKU

14.1 Types of Memory

= [wo types of memory
v Static: Code (also called as text), Data

v Dynamic: Heap, Stack
= Stack

Implicitly by the compiler (hence sometimes called automatic memory)

Short-lived memory

volid func() |{

int x; // declares an integer on the stack

» Heap
Explicitly by the programmer
(relatively) Long-lived memory

vold func() {

int: #x — {dint:-) malloc{sizeocf{int)) ;

J. Choi, DKU

14.2/3 The malloc()/free() call

= [he malloc() call
v Input: memory size (how many bytes you need)
v Output: pointer to the newly-allocated space (or NULL if it fails)

v Use well-defined macros or routines, instead of number as input
v' malloc(sizeof(int));

v malloc(strlen(s) + 1);

s [he free() call

v Input: pointer (size is not specified, meaning that it is managed by the
library)

int #x = malloc (10 % sizeof(int));

free(x);

I J. Choi, DKU

14.4 Common errors

Common errors
v Forgetting to allocate memory

char *src = "hello®;
char *dst; // oops! unallocated
strcpy (dst, src); // segfault and die

= Correct version (or strdup())

char *src = "hello";
char xdst = (char x) malloc(strlen(src) + 1);
strcpy (dst, src); // work properly

= We frequently meet the segmentation fault. Hence =

When you run this code, it will likely lead to a segmentation fault’
which is a fancy term for YOU DID SOMETHING WRONG WITH
MEMORY YOU FOOLISH PROGRAMMER AND I AM ANGRY.

* Make use of a debugger (e.g. gdb)

12

J. Choi, DKU

14.4 Common errors

= Common errors
v Not allocating enough Memory

char *src = "hello";
char *dst = (char *) malloc(strlen(src)); // tooc small!
strcpy (dst, src); // work properly

» |t seems work, but not correctly (\O’), which causes buffer overflow,
leading to several security vulnerabilities.

= Some library allocates a little extra space.
v Forgetting to initialize allocated memory
» Heap has data of unknown value.
v Forgetting to free memory
= Memory leak

= Some languages support the garbage collection mechanism that
manages memory automatically without requiring explicit free() by
programmers = but if you still have a reference, the collector will never
free it (still problem)

I J. Choi, DKU

14.4 Common errors

s Common errors
v Freeing memory before you are done with it
= Dangling pointer
» Subsequent use can crash the program and even system

v Freeing memory repeatedly
= Double free

v Calling free() incorrectly
» |nvalid free
= [ools for solving memory-related problems
v Purify
v Valgrind

Vo

memory leak dangling pointer

I J. Choi, DKU

14.5/6 Underlying OS Support/Other Calls (Optional)

= Underlying OS Support
v malloc()/free() =» library

v It internally allocates several pages using the sys_brk() or
sys_mmap() system call and manages them to serve the malloc()

and free() request

v If its space becomes too small, it requests more pages to OS again
using the sys brk() or sys mmap() =» system call

s Other Calls

v calloc(): allocate and zero space

v realloc(): allocate a new larger region, copy the old region into it and
returns the pointer of the new region

glibc so

e .
- - heap 2= A
Heap Manager
- -——‘t_—— E
AP THRESHEI R VBS
T oo—azsold@ey -

: i

HE M2 =

e J. Choi, DKU

| IR

Chap. 15 Mechanism: Address Translation

s CPU virtualization

v Limited Direct Execution
» Direct execution: process run independently for the most time (efficiency)
» Limited: OS get involved (control)

v Two mechanisms

» Restricted operations (e.g. system call): user mode = kernel mode (OS
control)

= Timer interrupt: user mode =» kernel mode (OS control), do periodic jobs
such as scheduling and context switch

s Memory virtualization

v Address Translation
» Address space: virtual memory (using virtual address)

= During execution: physical memory (using physical address which is
translated from virtual address)

v Again, we will pursue both efficiency and control
» Efficiency: small overhead = hardware-based address translation

= Control: OS ensures that no processes is allowed to access any memory
but its own =» OS memory management

I J. Choi, DKU
16

15.1 Assumption/15.2 An Example

OKB 128 | movl Cxdi%eabx), Yeoax
= A program e
. . . 18 Program Code
v High-level viewpoint .
vold func() f{ 3KB Heap
int x = 3000; // thanks, Perry.
X=%+ 3; // this is the line of code we are interested in 4KB l
v Assembly viewpoint
128: movl Ox0(%ebx), %eax ; load O+ebx into eax
132: addl 50x03, %eax ;add 3 to eax register
135: movl %eax, 0x0(%ebx) ;store eax back to mem
v Process viewpoint (address space) (froe)

» |nstructions: address 128 ~ 135 at code
= Variable x: address 15KB (15,360B) at stack

v Execution viewpoint (fetch + execution)

e Fetch instruction at address 128 l

e Execute this instruction (load from address 15 KB)

e Fetch instruction at address 132 R

e Execute this instruction (no memory reference) iEikE 200

e Fetch the instruction at address 135 Stack
e Execute this instruction (store to address 15 KB) 16KB

Mee O aCCess memory , 1DKB, ...) during &eeeitioh A Process And Its Address Spa

15.1 Assumption/15.2 An Example

= Focusing on memory e

v Address space (virtual memory)
= Starts at address 0
= Grows to maximum of 16 KB 16KR

v Physical memory

= Can place any free space, not necessarily at
address 0 = relocation
pp MNNS

v Address translation o

J
= Assume that the process is located at

32KB~48KB in physical memory ‘a'ma*e““;‘“"“““w

= Then the virtual address 0 needs to be 49K i
translated into the physical address 32KB
=» address translation (notin use)

v Other slots (e.g. 16~32KB) are not used =
free space management

v OS also locates in physical memory

Operating System

(notin use)

L |
Relocated Process

64KB
Figure 15.2: Physical Memory with a Single Relocated Process

I J. Choi, DKU

15.3 Dynamic (Hardware-based) Relocation

s Integration of Virtual and Physical memory

v Virtual memory: 0~16KB vs Physical Memory: 0~64KB
» Being loaded into 32KB~48KB

v Address translation: virtual address =» physical address
» First instruction: 128 =» 32KB + 128 (32768 + 128 = 32896)

= Variable x: 15KB = 32KB + 15KB = 47KB
* |n general: base address + offset (instruction or variable’s address)

oKB

1KB

2KB

3IxKkKB

4K B

14akKB

15KB

16KEB

Figure 15.1: A Process And Tis Aiddress Space

128
2=

1
125

(frea)

|

3IC00

Stack

< \What if a virtual address is Iarger than the limi

Base regisnf"er...._,.__.‘

Limit register ...~

0KB
Operating System
16KB
(notin use)
e &
32KB — g
Heap 0
| o
{aflocatad but not in use) E
—
48(B.- R T
i
(notin use)
64KB

Figure 15.2: Physical Memor{ with a Single Relocated Process

19

register?

J. Choi, DKU

@@@l Quiz for 12"-Week 1st-Lesson

TIME]
s Quiz

v 1. Discuss the differences between virtual memory and physical
memory (at least 3).

v 2. Explain the definition of the following terms using the below figure :
1) address space, 2) address translation, 3) base register, 4) limit
register, and 5) relocation.

v Due: until 6 PM Friday of this week (27", May)

oKBE -
152 | BuE SrER R R e 0KB
TKE 5 | mow | Foaan, O Yoaxb k) ..
Program Code
— Operating System
KB Heap
AKB -
| Base register 16KB
(notin use)
(frea) Hefp 0
i
(allocated but not in use) E
T
- - - 48KB Stack 5
I Limit register ™™ v o
rake e (not in USB)
1s5KB e R
1EeKEB Staek L 64KB
I Figure 15.2: Physical Memory with a Single Relocated Process hoj, DKU

20

15.3 Dynamic (Hardware-based) Relocation

s Summary of address translation (and relocation)
v Virtual memory: per process (exclusive), start at 0x0 (size: 16KB)
v Physical memory: shared by processes, start at any address (different
among processes)
v Three main components: Compiler, OS and Hardware (Architecture)
= A program is compiled as if it is loaded at address O (virtual memory).

= The program is loaded any space in physical memory, while setting base and
limit registers appropriately = relocatable

= An address requested by CPU is translated into a physical address while
running (and protected)

O 12 pp o e i T
13 | oo @, ox03eebx) .. ettt 1 Feoax, Ox0(¥oabx)
1KB TTKB
Program Code e Program Code
2KB Tl 2KB
KB ——
ok Heap Base register ske Hoap
4KB l Operating System | . AHCES l
Base register ke — &7
(not in use)
(fres) &
ree (free)
32KB Code 8 ree
Heap Qe
1 o e
(allocated but not in use) E """"""
T T
1
] 49KE. Sk § L|m|t reglster]
s Limit register (notin use) T, 1K
15KB sooo | e . 15KB C
Stack | e Stack
16k L |7 64KB 1EKE . 2
Figure 15.1: A Process And Its Address Space Figure 15.2: Physical Memory with ;1 Single Relocated Process Figure 15.1: A Process And Its Address Space

y5|§af MeMmory Virtual' memory (fot prté§§JB)

15.3 Dynamic (Hardware-based) Relocation

s Summary of address translation (and relocation)

v How to translate? Using two hardware registers

= Base register: start address (30004 in this example)
physical address = base register + virtual address
E.g. virtual address = 10 =» physical address = 30014

= Limit register (Bound register): upper bound (or size, 12090 in this

example)

E.g. virtual address = 13000 =» segmentation fault

» Base/Limit registers are switched at each context switch time
E.g. base register: 30004 = 25600

25600

30004

42094

88000

102400

operating
system

process

pProcess

base

process

limit

base base + limit

Y) 4

| 30004

CPU

address yes
— > > <

I —
12090

no

k Y

trap to operating system
monitor—addressing error

no

yes

memory

(Source: A. Silberschatz, “Operating system Concept”)

22

J. Choi, DKU

15.4 Hardware Support: A Summary

= MMU (Memory management unit)
v Part of CPU that helps with address translation

v E.g.) Base/limit registers, Segmentation related registers, Paging
related registers, TLB (Translation Lookaside Buffer) + circuitry

s Summary of HW support for Dynamic relocation

Hardware Requirements Notes
Privileged mode Needed to prevent user-mode processes

- from executing privileged operations
Base/bounds registers Need pair of registers per CPU to support

address translation and bounds checks
Ability to translate virtual addresses Circuitry to do translations and check

and check if within bounds limits; in this case, quite simple
Privileged instruction(s) to OS must be able to set these values
update base /bounds before letting a user program run
Privileged instruction(s) to register OS must be able to tell hardware what
exception handlers code to run if exception occurs
Ability to raise exceptions When processes try to access privileged

instructions or out-of-bounds niemory

Figure 15.3: Dynamic Relocation: Hardware Requirements

I J. Choi, DKU
23

15.5 Operating Systems Issues

s OS responsibilities

v Memory management
= Allocation for new processes, free list manipulation, ...
= Reclaim the space of terminated processes

v Base/limit registers management during Context switch
= Save/restore base/limit registers into/from PCB (MMU)
» Process relocation if necessary

v Exception handling
» Handlers + Table (e.g. segmentation fault handler + IVT)

OS Requirements Notes
Memory management Need to allocate memory for new processes;
| Reclaim memory from terminated processes;
Generally manage memory via free list
Base/bounds management Must set base/bounds properly wupon context switch
Exception handling Code to run when exceptions arise;
likely action is to terminate offending process

Figure 15.4: Dynamic Relocation: Operating System Responsibilities

I J. Choi, DKU
24

15.5 Operating Systems Issues

s Global view

S & boot Hardswvare
L N
imitialize trap table
remember addmesses of L.
gy - - spr=erm call hamd ler
Initialization simer handier
illesal merm—acoess hamd ler
iifegmal instrscton handler
start imberrmpt Some r
sizrt timmer; imbermape after X
imitialize process takble
imitialize free list
S & ran Hardsware Frogram
o bswcaclet {uase r muoede §

T start prooess M \
alioca entry in process t@bile
alloca memuory for prooess

mhpei el S diain® Laieeis ebiars Direct execution

refturm-frome-traps (Grcko M) / . \
mestore e gisbers of

o o b mEser mmoesde

jurmmp o As imitial) PO

Frocess & rmams
Fetch imnstruction
Translat: virtual address
and performm fetch
Fowcerurt imstrsctioem
If exprlicit load f store:
Ensure address is i bowuwnds;

OS inVOIVEd Tramslate wirtu=al address

and perform load stome

Timeer interrupt
mowe to ke rmel mmod e
~N Jump to interruapt hamnd lber

Handle the trap

Call switch () romtieses
savre reEsld) o proc-stract A)
[Enclhodinges bass Sbound=s)
restone egsi B froon proc-struact (B}
Limncluodinge bass Sbounds)

returm-from-trap (into: B) J

(restore e Emsters of B
mrorwe o mser mmoacle
jurmmnp o B's PO
FProcess B runs
FEececuts Bad load
Load is oast—ob boerrmed s
o o kermrel mmaod e
\\ jurnmp b brap handlers

Hamndle tive trap
Decide o berminate poooess B
die—allocate B s o ooy
oo B's endry in poocess table

ecubtion {(Dynamic Relocation} & Runtiome

I Choi, DKU
25

15.6 Summary

= Memory virtualization

v Address translation

= OS: memory allocation/free, base/limit initialize, exception control
(infrequent event)

= HW: virtual to physical at every execution (frequent event, MMU)
» Support transparency: users have no idea where their processes are

v Mechanisms

= Contiguous allocation
1) Base and limit registers elocation
Pros: Simple and Offer protection Jegister

_ 14000
Cons: Internal fragmentation logical physical

address address

= Non-contiguous allocation chl) @ 1 renon
2) Segmentation: Variable size 348 14346
3) Paging: Fixed size

MMU

(Source: A. Silberschatz, “Operating system Concept”)

I J. Choi, DKU

26

Chap. 16 Segmentation

= Issues of the base/limit register based dynamic relocation

v A big chunk of “free” space in the middle of address space
= Even though they are free, they are taking up physical memory

v Hard to run a program when the entire address space does not fit
Into an available space in physical memory

oKB 128 | mowvl oxo (2 abxl, Y am OKB
i 5 | mowl Suaax oxoicabx)
Program Code
e Operating System
IKB Heap
aKB l 16KB
Base register... .
(notin use)
32KB A Code 8
(frea) Helap E
{aflocated but not in usa) E
1 :
I Limit register .. -
ek —— e (nOt in U59)
1BKE e
stack | e
ek L0000 L. 64KB

Figure 15.1: A Process And Iis Alddress Space

<« How large the free space between heap and stack in 32-bit CPU?
L

27

Figure 15.2: Physical Memory with a Single Relocated Process

J. Choi, DKU

16.1 Segmentation: Generalized Base/Limits

s Key idea
v Contiguous = Non-contiguous
v Segment: divide a program into multiple segments (each segment is

a contiguous portion of the address space)

oxKBE

1KB

KB

aKB

4K B

sKB

sKB

14KB

1s5KB

1s8KB

Figure 16.1: An A ddress Space (Again)

= E.g.) code segment, data segment, stack segment, heap segment, ...
v Support base/limit per segment
= OS places segments independently in physical memory

Program Code

Heap

(free)

|

Stack

0KB

Operating System
16KB
(not in use) SEgTHEHt Base Size
Sflck Code 32K 2K
39KB LAl Heap 3K 2K
Q Stack 28K 2K
- _ Figure 16.3: Segment Register Values
{not in-use)
64KB
Figure 16.2: Placing Segments In Physical Memory)
- J. Choi, DKU

28

16.1 Segmentation: Generalized Base/Limits

s Address translation
v virtual address 100 (e.g. PC) = physical address: 32KB + 100
v virtual address 4200 (e.g. pointer x) = physical address 34K + 104
v virtual address 7000 (or 3000) =» segmentation fault

v virtual address: segment number + offset
= Segment number: choose appropriate segment register (or table entry)
» Offset: location within the segment (assume that it begins with 0)

oKB

1KB Program Code OKB
3KE Operating System
Zi: Heap 16KB
s I Segment Base Size R
] Stack
Code 32K 2K e Tatin\ea)
Heap 34K 2K E§
troe) Stack 28K 2K
: Figure 16.3: Segment Register Values 48KB DN
:: Stack 64KB

Figure 16.1: An Address Space (A gain) . . .
Figure 16.2: Placing Segments In Physical Memory

I J. Choi, DKU
29

16.2 Which Segmentation Are We Referring To?

s Segment encoding in virtual address
v Segment number part + offset part

v In the previous example
» Address space size: 16KB = 2414 = 14 bit
Number of segment: 3 = 2 bit
Number of offset: remaining 12 bit = maximum size of a segment: 4KB

131211105 8 ¥ 6 5 4 3 2 1 0 o FEREE—
I) r 7
Segment Offset !
= Segment: 00 =» code, 01 =» heap, 11 = stack =
= virtual address 4200 = 4096 + 64 + 32 + 8 e e e
13 12 11 10 8 8 7 6 5 4 3 2 1 0O Segment Base Size
|[oj1|0/0|/a/o|D|1]/1|D|1|0|0|0] Code 32K 2K
L I . i Heap 4K 2K
Segment Offset Stack 28K 2K

Figure 16.3: Segment Register Values
Segment number: Used for searching its related base register
Offset: If this offset is larger than the limit, trigger the segmentation fault.

Otherwise, add offset with the value of the base register, generating the
physical address (4200 = “01 (heap) + 104" = 34K + 104)

o v aaaresees 100 and;4000 discussed in the previous slide??- “het OKU

Quiz for 12t"-Week 2"9-L_esson

I’@@@|

TIME]
s Quiz

v 1. Discuss the roles of 1) compiler, 2) operating system, and 3) CPU
(or MMU) for memory virtualization (hint: 21 and 23 page).

v 2. Using the below figures, calculate the physical addresses of the
virtual addresses of 100, 5000 and 7000 (using the terms of segment
number and offset)

v Due: until 6 PM Friday of this week (27", May)

{

— S
- ®© Limit)[Rase Add
B Logical Address
Heap Segment Base Size 18 CPU 4’{ 5 d
l Code 2K 2K (nctir;) segment Table
Stack
Hﬂap MK XK - {notin use)
Cade
Stack XK K e
::::: i 4 ' 3
Figure 16.3: Segment Register Values / VES T Base Add
it i d < Limit + —=p
I RHK Base Add. + Limit
NO
64KB '
Stack
Error
Figure 16.1: An Address Figure 16.2: Placing Segments In Physical Memory
=] a i [=] e

Physical Address Space

(Source: www.geeksforgeeks.org/segmentation-in-operating-system/)

I J. Choi, DKU
31

16.3 What About the Stack?

aaaaaaaaaaaaa

s Stack issue

v It grows backward = translation must proceed differently
= Need extra HW support

Segment Base Size (max 4K) Grows Positive? “”

CDdEU['} 32K 2K 1
He ap 01 34K 3K 1
Stack 11 28K 2K 0

Figure 16.4: Segment Registers (With Negative-Growth Support)

Figure 16.1: An Address Space (Again)

v Instead of offset, adding “virtual address - total address
space size” (or “offset in stack - maximum segment size”)
with the value in base register

{nctn e

» Virtual address: 15KB = 11 1100 0000 0000
. Segment number 11 =» stack &

[neinvse)

. Offset 1100 0000 0000 = 3KB e

» Physical address: 28KB + (15KB - 16KB) or 28KB + (3KB — ‘
4KB) = 27KB o

= Another example: 16KB — 4B = 16380 =b 11 1111 1111 1100
= seg. Number = 11 + offset = 1111 1111 1100 = 4902 =>

hysical address = 28KB + (4902B — 4096B) = 28KB — 4B i
3

2 Figure 162 Placing Seaments In Physical Memory

Operaling Sysem

(retintse)

16.4/5 Support for Sharing/ Granularity

s Benefit of segmentation

v Sharing among multiple processes -

v Protection support i 1588
Segment Base Size (max4K) Grows Positive? Protection 1 o
Codegy 32K 2K 1 Read-Execute
Heapsn 34K 3K 1 Read-Write editor i
Stacky; 28K 2K 0 Read-Write — 98553

Figure 16.5: Segment Register Values (with Protection) data 2 [ohysical memory

segment table
process P,

logical memory
process P,

ul Seg ment size (Source: A. Silberschatz, “Operating system Concept”)
v Coarse-grained
» Relatively large size, small # of segments in a process (around 4)
v Fine-grained
= Relatively small size, large # of segments in a process
= Make use of a table (segment table) for manipulating large # of segments.

I J. Choi, DKU

33

16.6 OS Support

s For segmentation support
v Context switch: save/restore segment related registers
v Free space management

= Try to reduce external fragmentation =» coalescing and compaction

oKB

sKB

16KB

24KB

32KB

40KB

48KB

56KB

s4KB

Figure 16.6: Non-compacted and Compacted Memory

v Allocation

» Best-fit, worst-fit, first-fit, buddy algorithm (= see chapter 17)

Mot Compacted

Operating System

{not in usa)

Allocated

(notin use)

Allocated

(not inruse)

Allocated

16KEB

24KB

32KEBE

40KB

48KB

56KB

s4KB

Compacted

Opearating System

Allocated

{not in use)

o= Compaction in memory: prepare for large free space vs Compaction in disks: reduce seek time

34

J. Choi, DKU

16.7 Summary

s Segmentation
v Divide address space into logical regions called segment

v Overcome the memory wasted between segments (e.g. heap and
stack in the base/limit mechanism)

v Flexible: support sharing and protection

s But, still have some problems

v Variable size = relatively hard to implement in hardware, may cause
external fragmentation which complicate free space management

v Memory waste within a segment, especially sparse segment = need
to allocate address space that are actually used by a process

v Alternative: fixed size =» Paging (chap 18.)

uuuuuuuu
= segment o

segment o

segment 3|

segment table

segment 2

segment 4

segment 1

EESSSSSS———— J. Choi. DKU
35

Chap. 17 Free Space Management

s Free-space management
v Variable size (e.g. malloc() or segmentation)
= Complicate, need to handle external fragmentation = in this chapter
v Fixed size (e.g. paging)
» Relatively easy, usually a list of free fixed-size units =» later chapters

5 TR | e Ayt wEwn g-ﬁ-m- -SE—"-
Proscesss 1 % O Froscesss 1 } b, L | Prosaceses 1 s 0
SEh Proecesss 2 1apet FProcesss 2 LaAh
Bfaha
—=ma Processs 5 TN
<A M1
LS L =5 LE) Cally
Bl i T Baiay i T B e i 7w Bl s i T
|___Sysetesws | | Syseteawns | | Syoeteaws | e

[t |
oo e s < W e e s 3 W Lag 2 | W
[| L5 [

Frosceses X lamT
Proscesss 1 O Frocesss 1 2Ok 200

I -3hT

FProscesss 8 I =N Pruoceses 1 =D Froeceses R 1 =T Froceses A B E .

P At EEV | AP RN

e () gy 1 F]

(Source: A. Silberschatz, “Operating system Concept”)

= Process 2 is “relocated” dynamically
% Need the swap space (in a disk) when a process is suspended.

= How to handle when a new process is forked at (h) step whose size is 3 or 10M§7DKU

36

17.1 Assumptions

s Interfaces
v malloc()/free()

s Free space
v Managed by a list (free list)

v In actual OSes, free space is managed by various data structures
including a hashed list or tree (e.g. buddy system)

= Fragmentation s ok
v External: variable-size allocation used ;g;;?:;mrmn? 5
v Internal: fixed-size allocation | e
v Focus on external fragmentation —
wed | /T
used

internal fragmentation
used

I J. Choi, DKU

37

17.2 Low-level Mechanisms

= Splitting and Coalescing

v Memory: 30-byte heap free used free
0 10 20 30
v Free list i) I adc!r:{] I add[':ED > NULL
len:10 len:10
v Request

= 10B =>» allocate one of the free entries
» Larger than 10B =» fail or need compaction

= Smaller than 10B = need splitting

Allocate 1 byte
addr:0 addr:21

len:10 len:9 NULL

head —p
v Free

* Free the used space 10~19 =» need coalescing
Sort free entries, check neighbors when inserting into the free list

addr:0
len:10

addr:10

ddr:20 -
i Senig — NULL head —p 30AE0 o iy

e appenalx !page z!'*z!, and 17.2 in £ASTEP for real free space managen‘{'e%ht?i’ PKU

head =—p — —

17.3 Basic Strategies

s Free-space allocation policy
v Bestfit
= allocate from the smallest chuck which is bigger than the request size
v Worst-fit
= allocate from the largest chuck which is bigger than the request size
v First-fit

= allocate from the first chuck which is bigger than the request size,
search start from head

v Next-fit

» allocate from the first chuck which is bigger than the request size,
search start from the last allocated chunk

Head Last aIIocated block (14MB)

. l:- | | |

8MB 12?43 22MB 17MB 18MB i14MB 4MB 36MB

< Need to allocate 16MB available space. Which one by each policy?

J. Choi, DKU
39

17.4 Other Approaches

= Buddy allocation
v To make splitting/coalescing simple
v Allocate a free memory with the size of 2" (e.g. 4KB, 8KB, ...)

s Segregated Lists
v Some applications have one (or a few) popular-sized request

v Manage them in a segregated list = same size = easier to split and
coalescing

v Popular example: slab allocator in Solaris (and in Linux)

s Others

v More complex data structure for fast searching (e.g. balanced B-tree)

1 Mbyte block |

1M

Request 100K [A=128K[128K |

256 K

Request 240K [A=128 K] 128K |

B =256 K

Request 64 K [A= 128 Kfc=esx[64 K|

[
[
B=256 K | 512K

Request 256 K [A =128 Kf-sx]64 K| B =256 K | D=256K | 256 K
Release B [A =128 Kf=esx[64 K] 256 K | D=256 K [256 K
Release A [128K [-esx[64 K] 256 K | D=256K [256 K
Request 75K [E= 128K k=stx[64 K| 256 K | D=256K | 256 K
Release C [E=128K[128K | 256 K | D=25K | 256 K
| D=25 K | 256 K

Release E | 512K

Release D |

1M

™M

512K

256K

128K

64K

v
[A=128Kk=a1x]64 K] 256 K D =256 K | 256 K]

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU
40

17.5 Summary

= Memory virtualization
v Goal: Transparency, isolation, efficiency
v Virtual memory (Address space) and Physical memory
v Address translation: virtual to physical address

= Dynamic relocation
v Base & Limit (Bound) approach
v Generalized approach = segmentation

s Free-Space Management
v Reduce fragmentation (external/internal)
v Mechanism: Splitting, Coalescing and Compaction
v Policy: Best fit, First fit, Worst fit, Buddy algorithms, Slab,
v =» Variable size makes management complex (1000 solutions)

TIiP: IF 1000 SOLUTIONS EXI1sT, NO GREAT ONE DOES
The fact that so many different algorithms exist to try to minimize exter-
nal fr’lgmentatlon is indicative of a stronger underlying truth: there is no
one “best” way to solve the problem. Thus, we settle for something rea-
sonable and hope it is good enough. The onlv real solution (as we will
see in forthcoming Chapter‘-.) is to avoid the problem altogether, by never
allocating memory in variable-sized chunks.

I J. Choi, DKU
41

@@@. Quiz for 13th-Week 1st-Lesson

TIME]
s Quiz

v 1. Discuss the following terms using the below left figure : 1) swap
out (also called as “suspend” in LN 2), 2) relocation, 3) external
fragmentation, 4) compaction, 5) splitting, and 6) coalescing

v 2. Discuss the values of SEG_MASK, SEG_SHIFT and
OFFSET_MASK in the below right figure (hint: see 5 page in the
OSTEP, Chapter 16)

v Due: until 6 PM Friday of this week (3", June)

v | SR |] op) e Pseudo code for address translation
_ T(M - {,m e }m in segmentation (OSTEP, Chap. 16, 5 page)
o proems [t | prcen [| // get top 2 bits of 14-bit VA
v } = Proces 3 {. ™ } Seqgment = (VirtualAddress & SEG_MASK) »> SEG_SHIFT
an 3 // now get offset
 Offset = Virtualhddress ¢ OFFSET_MASK
— R S S— 5 1if (Offset >= Bounds[Segment])
— N jr— e | i RaiseException (PROTECTION_FAULT)
— } — } } .
rane e~ M ™ e § PhysAddr = Base[Seqment] + Offset
Procem [§ 1am Frvcim ™ Procem [b 15 Vol f i § Register = AccessMemory (PhysAddr)
FaM Foam M Foam e o - - . _ = _ ; . . ; -
(e) in (Z (hy ! - -_” - — - = - - - — — — - — !
I Segrment Offset

42

Appendix: 17.2 Low-level Mechanisms

s [racking the size of allocated regions

v free(): argument =» pointer only, not size
» Need to track the size of a unit that is freed for coalescing
» Most allocators utilizes a header block, usually just before the handed-

out chunk of memory

Size, magic number for integrity checking, additional pointer to speed up

deallocation, and other information

typedef struct _ header t {
int size;
int magic;

} header t;

} The header used by malloc library

ptr >

= The 20 bytes returned to caller

Figure 17.1: An Allocated Region Plus Header

hptr

ptr

43

void free (void »xptr) {
header t

shptr = (void «)ptr - sizeof (header_t);

>

size: 20

magic: 1234567

>

The 20 bytes returned to caller

Figure 17.2: Specific Contents Of The Header

J. Choi, DKU

s Embedding the free list into a heap

Appendix: 17.2 Low-level Mechanisms

v Figure 17.3: initial stage, build a free list inside the free space

* Free space: 4KB (4096 byte), entry of the free list: 8 byte (size, next) = size
becomes 4088.

v Figure 17.4: after “malloc(100)”
» Header for the allocated space: 8 byte (size, magic #) = 3980 (split occurs)
» Head: pointer for the free list, ptr: pointer returned to malloc()

v Figure 17.5: after three “malloc(100)"’s =» 3764

head —»

ptr ————

head ———-»

size: 4088

next: (8]

[virtual address: 16KE]
header: size field

header: next field (NULL is O)

} the rest of the 4KB chunk

Figure 17.3: A Heap With One Free Chunk

size: 100

magic: 1234567

size: 3980

next: o

[virtual address: 16K.E]

} The 100 bytes now allocated

} The free 3980 byte chunk

Figure 17.4: A Heap: After One Allocation

et

size: 100

magic: 1234567

size: 100

magic: 1234567
sptr o

size: 100

head —»

magic: 1234567

size:

3764

next: 0

[virtual address: 16KB]

= 100 bytes still allocated

= 100 bytes still allocated

(but about to be freed)

= 100-bytes still allocated

The free 3764-byte chunk

KU

Figure 17.5: Free Space With Three Chunks Allocated

Appendix: 17.2 Low-level Mechanisms

s Embedding the free list into a heap
v Figure 17.5: after three “malloc()’s, trigger one “free(sptr)” request

v Figure 17.6: after “free(sptr)”
= Two entries in the free list: head - (100, 16708) - (3764, 0 (NULL))

= Virtual address 16708 =16 x 1024 + 3 x 108

v Figure 17.7: after three “free()’s
= Compaction-less version (c.f. Compaction version: Figure 17.3)

[virtual address: 16KE]
size: 100

magic: 1234567

= 100 bytes still allocated

size: 100

magic: 1234567

sptr ——»

= 100 bytes still allocated
(but about to be freed)

size: 100

magic: 1234567

= 100-bytes still allocated

head —»

size: 3764

next: o]

The free 3764-byte chunk

Figure 17.5: Free Space With Three Chunks Allocated.

head —»

sptr —»

size: 100

magic: 1234567

size: 100
next: 16708
size: 100

magic: 1234567

size: 3764

next: 0]

[virtual address: 16KE]

] 100 bytes still allocated

(now a free chunk of memory)

= 100-bytes still allocated

= The free 3764-byte chunk

Figure 17.6: Free Space With Two Chunks Allocated

45

head —»

[virtual address: 16KB]

size: 100
next: 16492
size: 100
next: 16708
size: 100
next: 16384
size: 3764
next: 0

(now free)

(now free)

(now free)

The free 3764-byte chunk

Figure 17.7: A Non-Coalesced Free List

