
[Eurosys 23’]
SiloD: A Co-design of Caching and 

Scheduling for Deep Learning Clusters

Minguk Choi

mgchoi@dankook.ac.kr



Background 1: Separation of Storage and GPU Clusters

2

• Deep learning training jobs read training data hosted in a separate cluster (storage services).

• Decouples the storage service from the compute service

• Modular and simple solution

• Bottleneck : Remote IO between compute and storage services

• Leverage local storage of compute services as cache to alleviate the bottleneck.

• Cache & Compute services operates independently

• Both do not aware each other.

• Decoupled design leads to sub-optimal cluster performance.



Background 1: Separation of Storage and GPU Clusters

3

1. Increasingly large training datasets [Tb. 1]

2. Remote I/O as a bottleneck

(1) Performance enhancement [Fig. 1]

- In the last seven years, GPU: 125x, Remote I/O: 12x

(2) GPU ideal(aggregated) I/O demand

- 1923 MB/s for ResNet-50 with 8*A100 [Tb. 2]

- GPU(up to 200 Gbps) >> Remote I/O (up to 120 Gbps)

[Fig. 2]



Background 1: Separation of Storage and GPU Clusters

4

3. Cache subsystem for DL Training

(1) Built-in data loading library (CoorDL)

- isolated cache in training job’s local storage with a static 

allocation

- cannot satisfy diverse demands on cache and remote I/O

(2) Distributed Cache (e.g., Alluxio, Quiver)

- shared cache in training cluster’s local storage

- fast peer network as local storage (high-speed storage fabric) 

[Fig. 3]



Background 1: Separation of Storage and GPU Clusters

5

3. Cache subsystem for DL Training

(3) Built for general workloads

- do not exploit the characteristics of DL training: 

repetitive computation, predictable performance

- different scheduling objective: 

JCT, cluster throughput, fairness

- unawareness of the impact to other training jobs, 

missing global optimization [Fig. 4]



Summary of Background 1

6

Separation of Storage and GPU Clusters

▪ Bottleneck : Remote IO << GPU

• Leverage local storage as cache

▪ Cache subsystem for DL Training

• shared cache in training cluster’s local storage

• fast peer network as local storage

▪ Cache & Compute services operates 

independently

• Both do not aware each other.

• Decoupled design leads to sub-optimal cluster 

performance.



Background 2: Opportunities of DL Training

7

1. Special data access pattern

within each epoch, access each data randomly, and exactly once.

2. Uniform Caching 

(1) optimal for single training job

(2) all accessed data items are cached until the cache capacity

- constant and predictable cache hit ratio

(3) No eviction unless the cache capacity is reduced.

- cache eviction problem == cache space allocation problem



Background 2: Opportunities of DL Training

8

3. Diverse cache and I/O demands

(1) In shared cluster, uniform caching may not be optimal.

(2) Cache efficiency = 
𝑓∗

𝑑

𝑓∗ = I/O demand to achieve the ideal training speed

𝑑 = the dataset size

→ how much remote IO is saved if the entire dataset of a job 

is cached.

(3) Diverse cache efficiency

→ I/O demand ↑, dataset ↓ >> cache efficiency ↑



Background 2: Opportunities of DL Training

9

4. Co-designing cache and cluster scheduler

(1) Schedules as if the entire dataset of a job is cached.

(2) Cache and remote I/O could significantly affect performance 

when data loading is bottleneck.

(3) Necessary to co-design the cache and cluster scheduler to 

optimize scheduling objectives accurately



Summary of Background 2

10

Opportunities of DL Training

▪ Special data access pattern

• within each epoch, access each data randomly, and 

exactly once.

▪ Uniform Caching 

• optimal for single training job,  but not for shared cluster

▪ Diverse cache and I/O demands

• Cache efficiency = 
f∗

d

• Diverse cache efficiency

▪ Co-designing cache and cluster scheduler

• cluster schedules as if the entire dataset of a job is cached

• cache and remote I/O significantly affect the training 

performance



Design: SiloD Overview

11

GOAL. Incorporate the diverse scheduling policies 

while exploiting the heterogeneous cache 

efficiency in a unified framework.

Design 1. Allocates compute and cache-related 

resources jointly to training jobs.

Design 2. Preserve original scheduling objectives.



c

d
: cache hit ratio

1 −
c

d
: cache miss ratio

b = f × 1-
c

d
: job’s remote IO demand

∵ data loading throughput × cache miss ratio

f =
b

1-c/d
: a job’s IO throughput 

∵ remote IO bandwidth is limited, therefore throttling 

the remote IO to jobs when the sum of remote IO

demand exceeds the bandwidth

SiloDPerf = min f ∗, f = min f ∗,
b

1−c/d

Cache Efficiency = -
𝜕b

𝜕c
=

f*

d

∵ the negative derivative of b = f × 1 −
c

d

I/O demand ↑, dataset ↓ → cache efficiency ↑

Design 1: SiloD-Enhanced 
Performance Estimator 

12

Design 1. Allocates compute and 

cache-related resources jointly to training jobs.

Consider uniform data access and 

pipelined execution of computation and data loading.

f : IOPerf (j, R) : jobs computation throughput

f ∗: Perf (j,R) : jobs IO throughput

SiloDPerf = min f ∗, f : end-to-end throughput 

determined by bottle neck

c: allocated cache size

d: dataset size

b: remote IO demand of job



Design 2: SiloD Policies

13

Design 2. Preserve original scheduling objectives.

(1) Shortest Job First (SJF): prioritizes the job with the 

least duration

score = weighted sum of resource demand of 

all resource types multiplied by its duration

The jobs with the least score will be scheduled first by 

the multi-resource SJF policy

𝑤𝑡 =
1

totalResource[t]
: weight of the 𝑡-th resource type

R : a vector of allocation of all resource types

𝑅𝑡 : the allocation of the 𝑡-th resource type in R, 

𝑗.numSteps :  the job 𝑗’s total number of steps 

𝑗.stepDataSize:  the size of data consumed per step.

SiloDPerf = min f ∗, f



Design 2: SiloD Policies

14

Design 2. Preserve original scheduling objectives.

(2) Gravel: max-min fairness

maximizes the job with the least performance 

improvement over the equal resource division

𝑅[𝑗] : the resource allocated to job 𝑗 and 

𝑅 𝑒𝑞𝑢𝑎𝑙 : the equal resource division among all jobs.



Design 2: SiloD Policies

15

Design 2. Preserve original scheduling objectives.

(3) A Greedy Policy for All Schedulers : do not rely on a 

performance estimator (e.g., FIFO)

- directly leverages the cache efficiency

- allocating more cache to the most cache-efficient jobs



Summary of Design

16

Design 1. Allocates compute and cache-related resources 

jointly to training jobs.

SiloDPerf = min f ∗, f = min f ∗,
b

1−c/d

→ end-to-end throughput determined by bottle neck

→ I/O demand ↑, dataset ↓ >> cache efficiency ↑

Design 2. Preserve original scheduling objectives.

(1) Shortest Job First (SJF): prioritizes the job with the least 

duration

(2) Gravel: max-min fairness

(3) A Greedy Policy for All Schedulers : do not rely on a 

performance estimator (e.g., FIFO)

→ allocating more cache to the most cache-efficient jobs

GOAL. Incorporate the diverse scheduling policies 

while exploiting the heterogeneous cache efficiency 

in a unified framework.



Evaluation 1-1

17



▪ SiloD

Evaluation 1-1

18

Model Cache Efficiency Cache Usage Remote IO

ResNet-50 87 MB/s/TB 1.3TB +0.7TB 0 + 52.6 MB/s

EfficientNetB1 53 MB/s/TB - 2 ∗ 69 MB/s 

BERT 0.4 MB/s/TB - 8 MB/s



▪ CoorDL (data-loading library)

• caches data for each job. unaware of the cache efficiency

• wastes half of the total cache capacity (1TB) on BERT.

▪ Alluxio

• LRU often evicts cached items that have not been read

Evaluation 1-1 

19

Quiver’s
caches one of the ResNet-50 jobs (1.3TB) and wastes the rest 0.7TB 

cache space.

Quiver’s claim: jobs do not benefit if it cannot entirely fit into the cache.



Evaluation 2

20

▪ Environment: 96 V100s 

▪ Remote IO bandwidth: 8 Gbps (1GB/s) 

▪ Scheduling: FIFO

▪ Workload: a trace reported by Microsoft [41], (single-GPU + distributed multi-GPU training) 

▪ More datasets and diverse combinations of models and datasets



Evaluation 2

21

▪ CoorDL (data-loading library)

• benefits the least from cache. 

• only saves at most 490 MB/s remote IO

▪ Alluxio (LRU)

• Fast jobs are more cache-efficient

• Fast jobs evict the data of slow jobs that consume less IO. 

▪ Quiver

• Wasted cache space due to not supporting partial caching

• Evict wrongly due to the unstable caching priority



Evaluation 3

22

▪ Environment: 400 V100s 

▪ Remote IO bandwidth: 32 Gbps (1GB/s) 

▪ Scheduling: FIFO

▪ Same workload with evaluation 2 with more jobs and longer running times (~ 4 weeks)



Evaluation 3

23

Gavel on Quiver achieves slightly lower makespan

than SiloD. Because Gavel optimizes for fairness, 

instead of makespan.

SiloD achieves the highest fairness ratio due to the co-

scheduling directly optimizes the fairness objective



Conclusion

24

▪ SiloD is co-design of data caching and job scheduling based on 

the unique characteristics of deep learning training

▪ SiloD derive performance estimator to calculate the performance 

impact of both computation and storage. 

▪ SiloD shows great improvement on their respective scheduling 

objectives.



Thank you



What is SJF

26



What is min-max fairness?

27



What is min-max fairness?

28



What is min-max fairness?

29



What is min-max fairness?

30


	슬라이드 1: [Eurosys 23’] SiloD: A Co-design of Caching and Scheduling for Deep Learning Clusters
	슬라이드 2: Background 1: Separation of Storage and GPU Clusters
	슬라이드 3: Background 1: Separation of Storage and GPU Clusters
	슬라이드 4: Background 1: Separation of Storage and GPU Clusters
	슬라이드 5: Background 1: Separation of Storage and GPU Clusters
	슬라이드 6: Summary of Background 1
	슬라이드 7: Background 2: Opportunities of DL Training
	슬라이드 8: Background 2: Opportunities of DL Training
	슬라이드 9: Background 2: Opportunities of DL Training
	슬라이드 10: Summary of Background 2
	슬라이드 11: Design: SiloD Overview
	슬라이드 12: Design 1: SiloD-Enhanced  Performance Estimator 
	슬라이드 13: Design 2: SiloD Policies
	슬라이드 14: Design 2: SiloD Policies
	슬라이드 15: Design 2: SiloD Policies
	슬라이드 16: Summary of Design
	슬라이드 17: Evaluation 1-1
	슬라이드 18: Evaluation 1-1
	슬라이드 19: Evaluation 1-1 
	슬라이드 20: Evaluation 2
	슬라이드 21: Evaluation 2
	슬라이드 22: Evaluation 3
	슬라이드 23: Evaluation 3
	슬라이드 24: Conclusion
	슬라이드 25: Thank you
	슬라이드 26: What is SJF
	슬라이드 27: What is min-max fairness?
	슬라이드 28: What is min-max fairness?
	슬라이드 29: What is min-max fairness?
	슬라이드 30: What is min-max fairness?

