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Background 1: Separation of Storage and GPU Clusters
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« Deep learning training jobs read training data hosted in a separate cluster (storage services).
Decouples the storage service from the compute service
Modular and simple solution

« Bottleneck : Remote 10 between compute and storage services
Leverage local storage of compute services as cache to alleviate the bottleneck.

« Cache & Compute services operates independently

I~ DANKOOK UNIVERSITY

Both do not aware each other.
Decoupled design leads to sub-optimal cluster performance.
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Background 1: Separation of Storage and GPU Clusters

1. Increasingly large training datasets [Th. 1] Dataset size Year 2020 1In 24 months 5 2GRl Single Frodicion Peft. | 05 _
Task #1 25TB 100 TB '§ @ 0 Storage Egress Limit . '§ §
Task #2 100 GB 1TB A e 600 §2
Task #3 100 GB 3 TB A 360 % E
Task #4 5TB 10 TB @ 1% 0 55 i
2. Remote I/O as a bottleneck Task #5 L5 TR 100 TB O 6 g 0 g b g
(1) Performance enhancement [Flg 1] Table 1. The .Si'ZC and ' grOWth of Figure 1. The trend of GPU perf. V.S. egress
datasets for training at Microsoft. limits of cloud storage [10, 11].
- In the last seven years, GPU: 125x, Remote I/O: 12x
(2) GPU ideal(aggregated) I/O demand
- 1923 MB/s for ResNet-50 with 8*A100 [Th. 2]
GPU Speed IO 200
- GPU(up to 200 Gbps) >> Remote 1/O (up to 120 Gbps) 1'V100 1003 images/s 114 MB/s o & 150
[F| 2] 1*A100 2930 images/s 333 MB/s 25 100
g. 8*V100 7813 images/s 888 MB/s 58
8*A100 16925 images/s 1923 MB/s a %0
1"Gaudi2 5325 images/s 614 MB/s 09 2500 5000 7500 10000 12500 15000
Time (mins)
Table 2. Mixed-precision training and Figure 2. The 10 demand of a 400-GPU (V100) cluster run-
IO speeds of ResNet-50 on ImageNet. ning a production trace. The peak IO achieves up to 200 Gbps.
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Background 1: Separation of Storage and GPU Clusters

3. Cache subsystem for DL Training

-
o
o

(1) Built-in data loading library (CoorDL)

o ---- Linear Scaling (No Data Bottle c/lg)/
. . . . . y . . ~~ 80 Local Read o
- isolated cache in training job’s local storage with a static O mmm PeorRead
allocation = |
- cannot satisfy diverse demands on cache and remote 1/O 5 40 "8
3
(2) Distributed C_)ache_ (_e.g., Alluxio, Quiver) o~ W W =B N N
- shared cache in training cluster’s local storage Number of servers
B f_aSt peer network as local storage (high-speed storage fabric) Figure 3. The throughput of distributed cluster running jobs
[Flg. 3] with IO of 1923 MB/s (ResNet-50 on 8 A100s). All datasets

are evenly distributed to all servers’ cache. In n servers, each
job will load % data locally and "T_l data from peer servers.
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Background 1: Separation of Storage and GPU Clusters

3. Cache subsystem for DL Training

(3) Built for general workloads

- do not exploit the characteristics of DL training:
repetitive computation, predictable performance

- different scheduling objective:
JCT, cluster throughput, fairness

- unawareness of the impact to other training jobs,
missing global optimization [Fig. 4]
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Figure 4. The training speeds of two ResNet-50 jobs training
1.36TB ImageNet-22k. The 2-GPU cluster has 1.4TB cache
with 50 MB/s remote IO bandwidth. Quiver spends all cache
to Job-0. The optimal max-min fair policy allocates half cache
and remote IO to each of the jobs.
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Summary of Background 1

Separation of Storage and GPU Clusters

= Bottleneck : Remote 10 << GPU
* Leverage local storage as cache

»  Cache subsystem for DL Training
» shared cache in training cluster’s local storage
« fast peer network as local storage

= Cache & Compute services operates
independently

« Both do not aware each other.

* Decoupled design leads to sub-optimal cluster
performance.

%~ DANKOOK UNIVERSITY
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Figure 2. The IO demand of a 400-GPU (V100) cluster run-
ning a production trace. The peak IO achieves up to 200 Gbps.
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Figure 1. The trend of GPU perf. v.s. egress
limits of cloud storage [10, 11].
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Background 2: Opportunities of DL Training

1. Special data access pattern

within each epoch, access each data randomly, and exactly once.

2. Uniform Caching
(1) optimal for single training job

(2) all accessed data items are cached until the cache capacity
- constant and predictable cache hit ratio

(3) No eviction unless the cache capacity is reduced.
- cache eviction problem == cache space allocation problem

I~ DANKOOK UNIVERSITY

] --- RemotelO

[ Remote Storage Local 10

[ Local Cache ]

I PE SRR EREF R
Data Loader 0| 7 21 3 |Batch-2/10 '8 9q 11 2 |1 4Batch-39 3090 (\q ......
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Figure 5. The pipeline of data loading and computation of
deep learning training with uniform caching. Each data item
has a unique ID. The missed data items are fetched from the
remote storage. Because each epoch shuffles the data loading
order, the expected cache hit ratio is uniform for all items.
The example shows the training has a bottleneck on data
loading.
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Background 2: Opportunities

3. Diverse cache and I/0O demands

(1) In shared cluster, uniform caching may not be optimal.

(2) Cache efficiency = %
f* =1/0 demand to achieve the ideal training speed
d = the dataset size

- how much remote 10 is saved if the entire dataset of a job
Is cached.

(3) Diverse cache efficiency
- 1/0 demand 1, dataset | >> cache efficiency 1

i~ DANKOOK UNIVERSITY 6

of DL Training
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Figure 6. Cache efficiency on a V100 GPU. IO demand to
achieve the ideal speed: ResNet-50 (114 MB/s), ResNet-152
(43 MB/s), EfficientNetB1 (69 MB/s), VLAD (10 MB/s), BERT
(2 MB/s). The sizes of the datasets are listed in Table 1.

Dataset Size Model
ImageNet-22k [24] | 1.36 TB | AlexNet [43], EfficientNetB0 [64],
Open Images [2] 660 GB EfficientNetB1 [64],
InceptionV3 [62], ResNet-50 [36],
ImageNet-1k [24] | 143 GB ResNet-152 [36]
Youtube-8M [13] | 1.46 TB VLAD [40]
Web Search 20.9 TB BERT [25]

Table 4. Dataset and models used in the evaluation.
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Background 2: Opportunities of DL Training

4. Co-designing cache and cluster scheduler
(1) Schedules as if the entire dataset of a job is cached.

(2) Cache and remote 1/O could significantly affect performance
when data loading is bottleneck.

(3) Necessary to co-design the cache and cluster scheduler to
optimize scheduling objectives accurately

JM” DANKOOK UNIVERSITY o
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Summary of Background 2

Opportunities of DL Training

Special data access pattern

« within each epoch, access each data randomly, and
exactly once.

Uniform Caching
« optimal for single training job, but not for shared cluster

Diverse cache and I/O demands

» Cache efficiency = %*

« Diverse cache efficiency

Co-designing cache and cluster scheduler
« cluster schedules as if the entire dataset of a job is cached

« cache and remote I/O significantly affect the training
performance

" DANKOOK UNIVERSITY 10

--- Remote IO
Remote Storage ] Local 10
[ Local Cache ]

[ [ [ [ [ 1]
Data Loader 0 7 |21 3 Batch-2/10 8 9;| 11 2 '1|4Batch-39 3090 Gq

GPU

1
. Batch-2 Time

0.0

EH L9
& &8
.. o
,_) L)
DAY Y Y GPU

Cache efficiency
(MB/s per GB)
o o o o
N = [«)] o]
-

>

~ ~
SL [Vo OoOF e {/F D> s
35 58 &€ 38 ¢ §F¥ L vy 9
EF EF £8 & & £8 ¢ ¢ 0F
§ ¢ v § T« ¢
Shortest Job First (SJF) Preemptive Algorithm
o 1 2 4 7 10 15
| |
- - N -
Time
Process Arrival Time CPU Burst Time
Pl o \5’
P2 1 v
P3 2 A
= 3 15\

M e Dankook University
nOE:" System Software Laboratory



Design: SiloD Overview

GOAL. Incorporate the diverse scheduling policies
while exploiting the heterogeneous cache
efficiency in a unified framework.

Design 1. Allocates compute and cache-related
resources jointly to training jobs.

Design 2. Preserve original scheduling objectives.

¥~ DANKOOK UNIVERSITY "

def schedule(jobs, totalResource, perf):

# perf(j, R): the performance estimator for
estimating the compute throughput of job j under
resource allocation R

# totalResource: the total resource of the cluster

SiloDPerf = lambda j, R: min(perf(j,R), IOPerf(j,R))
# SiloD's enhanced performance estimator to
jointly consider the impact of compute and storage

resources

alloc = Policy.Schedule(jobs, totalResource,
SiloDPerf)
return alloc
Algorithm 1. The workflow of SiloD. The underlined
variables and functions are introduced/extended by SiloD
and the others are inherited from existing schedulers.

SiloD Data SiloD Scheduler [] Dataset 1

Manager — [¢—> Job Compute Storage [ ] Dataset 2

e Scheduling Allocation Allocation \:I Dataset 3
Manager Server 1 Server 2

Remote 10 H:]Joh#l | Job#2 H:]Job#3 I [E]Job#4
Manager | [ NSNS s |

gﬁ:ﬂi | SﬁoD‘Cache“ g‘fjft | lSrfoDJCache |

Compute Fabric
1 Storage Fabric

[ Cloud Storage ]

Figure 7. SiloD architecture.
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Design 1: SiloD-Enhanced
Performance Estimator

Design 1. Allocates compute and
cache-related resources jointly to training jobs.

Consider uniform data access and
pipelined execution of computation and data loading.

f:10Perf (j, R) . jobs computation throughput
f*: Perf (j,R) . jobs 10 throughput
SiloDPerf = min{f*, f} . end-to-end throughput

determined by bottle neck
c: allocated cache size

d: dataset size
b: remote 10 demand of job

JI¥i” DANKOOK UNIVERSITY 12

} ---+ Remote IO

[ Remote Storage Local 10

Local Cache ]

$LL¢
Data Loader [© 7 21 3 Batch-2 10 & ‘Ill 21 Batch 39 30 90 @u

6P

% - cache hit ratio
1 —% - cache miss ratio
b= fx (1-3) : job’s remote 10 demand

-+ data loading throughput x cache miss ratio

b

" 1-¢c/d
~ remote |O bandwidth is limited, therefore throttling
the remote 10 to jobs when the sum of remote IO
demand exceeds the bandwidth

: a job’s 10 throughput

SiloDPerf = min{f*, f} = min {f* /d}

ob _f
Cache Efficiency = -— = -
+ the negative derivative of b = f X (1 — g)

I/O demand 1, dataset | - cache efficiency T
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Design 2: SiloD Policies

Design 2. Preserve original scheduling objectives.

(1) Shortest Job First (SJF): prioritizes the job with the
least duration

score = weighted sum of resource demand of
all resource types multiplied by its duration

The jobs with the least score will be scheduled first by
the multi-resource SJF policy

%Y~ DANKOOK UNIVERSITY

13

L Steps - j.stepDataSi
score = minzwt'Rr'(J numoteps - j S epData 1ze)
R 5 perf(j,R)

. —

job duration

, j.numSteps - j.stepDataSize
score = mmZ w; Ry ( : . )
R & SiloDPerf(j,R)

SiloDPerf = min{f*, f}

wt = totalResourcelt] . weight of the t-th resource type
R . a vector of allocation of all resource types
Rt . the allocation of the t-th resource type in R,

j.numSteps : the job j’s total number of steps
j.stepDataSize: the size of data consumed per step.

| 1o®E]| Dankook University
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Design 2: SiloD Policies

Design 2. Preserve original scheduling objectives.

(2) Gravel: max-min fairness

maximizes the job with the least performance
improvement over the equal resource division

Y Satisfied
m demand
nsati

tisfied

A 4

Agents (ordered by demand)

Q3 DANKOOK UNIVERSITY 14

_ perf(RLj])

max min
R perf(j,Reaue)

s.t. Sum(R) < totalResource,

. SiloDPerf(j,R[j])
max min
R j SiloDPerf(j, Requal)
s.t. Sum(R) < totalResource.

R[j] : the resource allocated to job j and
R equal : the equal resource division among all jobs.

Ml 1«®E]| pankook University
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Design 2: SiloD Policies

Design 2. Preserve original scheduling objectives.

Algorithm 2 Greedy cache allocation policy

(3) A Greedy Policy for All Schedulers : do not rely on a

i 1: for job j in all jobs do
performance estimator (e.g., FIFO) Job] )

Jj-f*
j.datasetSize

2: j.CacheEfficiency =

3: for job j in descending order of j.CacheEfficiency do
4: alloc.Cache[j] = min(j.datasetSize, totalCache)
5 totalCache -= alloc.Cache[]]

6: return alloc

- directly leverages the cache efficiency

- allocating more cache to the most cache-efficient jobs

@
OB 6
arrivals time
arrivals departures ot g
—_— —> packet in
service 0 6 6 ¢
: _?_ueue " link ) departures time
walting area server
OO0 0 ®
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Summary of Design

Design 1. Allocates compute and cache-related resources
jointly to training jobs.

SiloDPerf = min{f*, f} = min {f*, 1_12/(1}

- end-to-end throughput determined by bottle neck
- 1/0 demand 1, dataset | >> cache efficiency 1

1 def schedule(jobs, totalResource, perf):

# perf(j, R): the performance estimator for
estimating the compute throughput of job j under
resource allocation R

3 # totalResource: the total resource of the cluster
4

SiloDPerf = lambda j, R: min(perf(j,R), IOPerf(j,R))
# SiloD's enhanced performance estimator to
jointly consider the impact of compute and storage

resources

alloc = Policy.Schedule(jobs, totalResource,
SiloDPerf)
return alloc

Algorithm 1. The workflow of SiloD. The underlined
variables and functions are introduced/extended by SiloD
and the others are inherited from existing schedulers.

JI¥i” DANKOOK UNIVERSITY 10

GOAL. Incorporate the diverse scheduling policies
while exploiting the heterogeneous cache efficiency
in a unified framework.

Design 2. Preserve original scheduling objectives.

(1) Shortest Job First (SJF): prioritizes the job with the least
duration

.numSteps - j.stepDataSize
score:minwa-Rt-(J ps - J-Step )
R4

SiloDPerf(j,R)
(2) Gravel: max-min fairness max min SiloDPerf(j,R[j])
R j SiloDPerf(j, Requal)

s.t. Sum(R) < totalResource.

(3) A Greedy Policy for All Schedulers : do not rely on a
performance estimator (e.g., FIFO)

—> allocating more cache to the most cache-efficient jobs

Ml 1«®E]| pankook University
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Evaluation 1-1

Model # of jobs | GPU/job | dataset size | # of epochs
ResNet-50 2 1 GPU 1.3TB 13
EfficientNetB1 2 1 GPU 1.3TB 10
BERT 1 4 GPU 209 TB 0.07

I~ DANKOOK UNIVERSITY

. Environment. 2 * 4-V100 VMs (=total 8 V100 GPUs)

. 2TB Storage Cache
. Remote |O bandwidth: 1.6 Gbps (200 MB/s)

. All dataset for each job is different

. # of epochs to let jobs run for 3,500 minutes

17
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Evaluation 1-1

=  SiloD
Model Cache Efficiency Cache Usage Remote IO
ResNet-50 87 MB/s/TB 1.3TB +0.7TB 0+ 52.6 MB/s
EfficientNetB1 53 MB/s/TB 2 * 69 MB/s
BERT 0.4 MB/s/TB 8 MB/s
Average JCT (relative error)
Real V100 | Accelerated K80 | Simulation m
[SiloD 3366 3339 (0.7%) | 3403 (1.1%) £ 400
CoorDL 4278 4328 (1.1%) | 4406 (3.0%) = 300
Alluxio 4378 4519 (3.2%) | 4484 (2.4%) B 500 -
Quiver 3609 3534 (2.1%) | 3592 (0.4%) @
. & 100
Makespan (relative error) .
Real V100 | Accelerated K80 | Simulation —O; 0
[SiloD 3807 3747 (1.5%) | 3718 (2.3%) 0
CoorDL 4870 4925 (1.1%) | 4918 (0.9%)
Alluxio 5080 5272 (3.7%) | 4986 (1.8%)
Quiver 3933 3767 (4.4%) | 3915 (0.4%)

Table 6. Average JCT and makespan (in minutes) in the
8-V100 experiment (bold), and relative error using the accel-

eration approach and the simulator.

%~ DANKOOK UNIVERSITY

Model # of jobs | GPU/job | dataset size | # of epochs
ResNet-50 2 1 GPU 1.3TB 13
EfficientNetB1 2 1 GPU 1.3TB 10
BERT 1 4 GPU 209TB 0.07

] Environment: 2 * 4-V100 VMs (=total 8 V100 GPUs)

] 2TB Storage Cache

] Remote 10 bandwidth: 1.6 Gbps (200 MB/s)

=  All dataset for each job is different

= # of epochs to let jobs run for 3,500 minutes

Job starts to finishes

P A WY 4
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Alluxio — -----
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2 R} Y
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R ——=—= T
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b |
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: 1
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Makespan of SiloD

Figure 9. The time-varying total job throughput in the 8-
V100 experiment.
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Model # of jobs | GPU/job | dataset size | # of epochs
- ResNet-50 2 1 GPU 1.3TB 13
EV al u at I O n 1 - 1 EfficientNetB 1 2 1 GPU 1.3TB 10
BERT 1 4 GPU 209TB 0.07

] Environment: 2 * 4-V100 VMs (=total 8 V100 GPUs)

_ ] 2TB Storage Cache
st
1 epOCh JOb StartS tO flﬂISheS Remote 10 bandwidth: 1.6 Gbps (200 MB/s)
© 400 ' All dataset for each job is different
=300 | r; ——————————————————————— Rempte 10 Capacity = #of epochs to let jobs run for 3,500 minutes
i\ g o o & -
o ) On T . Wy A W) W Y S N h
O 200 — —ssssssssls —igoesd — Boetei— —eotts —SPee — o
Q 100 T [SileD ——~ CoorDL 1
2 Alluxio  ----- Quiver . |
o O ! 1}
. 0 1000 2000 3000 4000 5000

Time (mins) Makespan of SiloD
Figure 9. The time-varying total job throughput in the 8-
V100 experiment.

Quiver’s
caches one of the ResNet-50 jobs (1.3TB) and wastes the rest 0.7TB
cache space.
Quiver’s claim: jobs do not benefit if it cannot entirely fit into the cache.

= CoorDL (data-loading library)

« caches data for each job. unaware of the cache efficiency

« wastes half of the total cache capacity (1TB) on BERT.

m Alluxio

. LRU often evicts cached items that have not been read

Ml 1«®E]| pankook University
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Evaluation 2

= Environment: 96 V100s

= Remote 10 bandwidth: 8 Gbps (1GB/s)

= Scheduling: FIFO

= Workload: a trace reported by Microsoft [41], (single-GPU + distributed multi-GPU training)

= More datasets and diverse combinations of models and datasets

o@F]| Dankook University
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Evaluation 2

—-— Real Throughput Remote 10 Usage
------- Ideal Throughput ---- Remote |0 Capacity
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Figure 11. The total remote IO consumption, ideal training
throughput, real training throughput in the 96-GPU cluster.
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Figure 10. The average JCT, makespan and JCT distribution
of the four policies in the FIFO-scheduled 96-GPU cluster.

= CoorDL (data-loading library)

. benefits the least from cache.

« only saves at most 490 MB/s remote 10

=  Alluxio (LRU)

« Fastjobs are more cache-efficient

« Fast jobs evict the data of slow jobs that consume less IO.

= Quiver
« Wasted cache space due to not supporting partial caching
«  Evict wrongly due to the unstable caching priority

Ml 1«®E]| pankook University
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Evaluation 3

= Environment: 400 V100s
= Remote 10 bandwidth: 32 Gbps (1GB/s)
= Scheduling: FIFO

= Same workload with evaluation 2 with more jobs and longer running times (~ 4 weeks)

o@F]| Dankook University
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Evaluation 3
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. e Figure 13. The fairness ratio over time in the 400-GPU clus-
Figure 12. The performance of FIFO, SJF, Gavel using SiloD, pHEE L & : e GPU clus
ters scheduled by Gavel. The higher the better.

Alluxio, CoorDL and Quiver in the 400-GPU simulation.

SiloD achieves the highest fairness ratio due to the co-

Gavel on Quiver achieves slightly lower makespan
scheduling directly optimizes the fairness objective

than SiloD. Because Gavel optimizes for fairness,
instead of makespan.

o@F]| Dankook University
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Conclusion

= SiloD is co-design of data caching and job scheduling based on
the unique characteristics of deep learning training

» SiloD derive performance estimator to calculate the performance
Impact of both computation and storage.

= SiloD shows great improvement on their respective scheduling
objectives.
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Thank you
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What i1s SJF

Example of Non-Preemptive

SJF

Process Arrival Time Burst Time

P, 0.0 7

Py 20 4

P, 4.0 1

P, 5.0 4

F, P, . F,
1 S I o e

[u} | b3 12 ]

average waiting time=(0+6+3+7)/4 =4

COWEFIX

Example of Preemptive SJF
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What I1Is min-max fairness?

lte Iteration 2:

compute the fair share of each unsatisfied flow:
Example of a Max-Min Fair Bandwidth assignment

o Consider the following 4 flows sharing a commeon bottle neck link: 0.5 Hbps
————————— = 0.16666 Wbps fper flow)
3
= Assignment:
10 Mps

1. Flow 2: 2.5 + 0.1 Mbps = 2.6 Mbps (because demand = 2.6 Mbps)
2. Flow 3: 2.5 + 0.16666 Mbps = 2.66666 Mbps
3. Flow 4: 2.5 + 0.16666 Mbps = 2.66666 Mbps

= Residual:

Notes: | = Unused bandwidth = 0.06666 Mpbs|

= The bottleneck link has a bandwidth of 10 Mbps

» There are 4 flows sharing the bottleneck link

After the minimum demand (i.e., flow 1 with 2 Mbps) has been maximized, the
second lowest demand (i.e., flow 2 with 2.6 Mbps) is now maximized;

» The demands of each flow is given in the figure

I| maximized |I
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What I1Is min-max fairness?

Iteration 2:

Example of a Max-Min Fair Bandwidth assignment = compute the fair share of each unsatisfied flow:

o Consider the following 4 flows sharing a commeon bottle neck link:

————————— = 0.16666 Mbps (per flow)

= Assignment:

1. Flow 2: 2.5 + 0.1 Mbps = 2.6 Mbps (because demand = 2.6 Mbps)
2. Flow 3: 2.5 + 0.16666 Mbps = 2.66666 Mbps
3. Flow 4: 2.5 + 0.16666 Mbps = 2.66666 Mbps

m Residual:

Notes:

| = Unused bandwidth = 0.06666 Mpbs|

= The bottleneck link has a bandwidth of 10 Mbps

» There are 4 flows sharing the bottleneck link Note:

» The demands of each flow is given in the figure

= After the minimum demand (i.e., flow 1 with 2 Mbps) has been maximized, the
second lowest demand (i.e., flow 2 with 2.6 Mbps) is now maximized;
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What I1Is min-max fairness?

Example of a Max-Min Fair Bandwidth assignment lteration 3:

o Consider the following 4 flows sharing a commeon bottle neck link:

» compute the fair share of each unsatisfied flow:

0.06666 Hbps
10 Mps = 0.03333 Mbps (per flow)
= Assignment:
1. Flow 3: 2.66666 + 0.03333 Mbps = 2.7 Mbps
2. Flow 4: 2.66666 + 0.03333 Mbps = 2.7 Mbps
MNotes:
= The bottleneck link has a bandwidth of 10 Mbps = Residual:
» There are 4 flows sharing the bottleneck link -
» Unused bandwidth = 0.0 Mpbs

» The demands of each flow is given in the figure
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What I1Is min-max fairness?

o Max-min fair assignment:
Example of a Max-Min Fair Bandwidth assignment

1. Flow 1: 2 Mbps

2. Flow 2: 2.6 Mbps
3. Flow 3: 2.7 Mbps
4. Flow 4: 2.7 Mbps

o Consider the following 4 flows sharing a commeon bottle neck link:

MNotice that:

n the Jowest demand (= flow 1 with its 2 Mbps) is maximized;

» the second lowest demand (= flow 2 with its 2.6 Mbps) is maximized;

N » the third lowest demand (= flow 3 with its 4 Mbps) is maximized;
otes:

(Note that maximized is not the same as satisfied. We gave flow 3 the highest
s The bottleneck link has a bandwidth of 10 Mbps possible assignment that is fair)

» There are 4 flows sharing the bottleneck link

« The demands of each flow is given in the figure » the fourth lowest demand (= flow 4 with its 5 Mbps) is maximized;

(Note that maximized is not the same as satisfied. We gave flow 4 the highest
possible assignment that is fair)
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