
Yang, Shao-Peng, et al.

Overcoming the Memory Wall
with CXL-Enabled SSDs

(ATC 23')

Presented by Minguk Choi

B1. Memory Wall

2

B2. Compute Express Link (CXL)

3

▪ Compute Express Link™ (CXL™)

• Based on PCIe Physical layer, Add CXL "Memory Access“ and “Cache Coherence“

• Effective access mechanism of "shared memory pool“ of Heterogeneous computing

• Extended data flow and effective resource sharing between Accelerator and CXL devices

• Reduce access latency of distributed memory

B3. CXL-flash

4

▪ CXL Type 3

• allows the host CPU to directly manipulate the

device memory via load/store instructions

• currently only considers DRAM and PMEM

▪ Why CXL Type 3 with flash device?

• the high capacity and better scaling of flash-

based SSDs

• enabled by stacking in 3D and storing multiple

bits in a cell

B4. Challenges of CXL-flash

5

Challenge #1.

Granularity mismatch

Challenge #2.

Microsecond latency

Challenge #3.

Limited endurance

▪ Memory access trace with CXL-flash

simulator

• 5 synthetic workload

• VPN : Virtual Page Number

• PFN : Physical Frame Number

▪ Mismatch between virtual and physical

• Differences in access pattern and performance

• Should follow physical address trace

B5. Virtual vs Physical memory trace

6

Summary of Background

7

▪ Memory Wall

• HW memory size << ML(Data) Size → CXL Interface

▪ CXL-flash

• the high capacity and better scaling of flash-based SSDs

▪ Challenges of CXL-flash

1) Granularity mismatch, 2) Micro-second Latency, 3) Limited endurance

▪ Virtual vs Physical memory trace

• Different access pattern → should follow physical access pattern.

▪ Challenges of CXL-flash

1) Granularity mismatch

2) Micro-second Latency

3) Limited endurance

▪ Design objectives

• How effective is caching in improving performance?

• How can we effectively reduce flash memory traffic?

• How effective is prefetching in hiding the long flash memory

latency?

• What are the appropriate flash memory technology and

parallelism for CXL-flash?

Design of CXL-flash

8

D1. Cache

9

▪ Without cache

• high latency and short inter-arrival time (high traffic)

▪ With cache

• Low latency and high inter-arrival time (low traffic)

D2. MSHR

10

▪ Even with a large cache size (8GB),

• the average access latency is still high with cache

▪ Repeated flash reads on same block

▪ Non-blocking Cache

• do not stalls the pipeline on a cache miss

▪ Memory-level parallelism

• A miss-under-miss cache coupled with a parallel

lower-level memory system

▪ MSHRs: miss status holding registers

• If cache miss, the MSHRs are looked up determine if the

cache block is already being fetched

• If MSHR hit, then a cache miss is merged with the primary

miss

• If MSHR miss, read data from flash

D2. MSHR

11

▪ MSHR prevents repeated flash reads

• Leads better access (tail) latency

▪ Prefetch

• Hide the long latency of a load

▪ Next-N-line prefetcher

• Degree(N): the aggressiveness of the prefetcher

• Offset(O): how far ahead the prefetcher is fetching.

• If request X, prefetch X+O+1, X+O+2, ..., X+O+N

D3. Prefetcher

12

▪ Higher prefetch degree, better latency

▪ Higher prefetch offset, better(or worse) latency

Without prefetch With prefetch

D4. Flash technology

13

▪ With (larger) DRAM cache

• Lower average access latency

• Longer estimated lifetime

D5. Parallelism

14

▪ SSD

• Channel: separate interface between the SSD

controller and the NAND flash memory chips.

• Way: number of dies that can be accessed

simultaneously within a single channel.

▪ Higher parallelism, better latency

• Parallelism works well in CXL-flash, too.

Summary of Design

15

▪ Challenges and Design of CXL-flash

1) Granularity mismatch: Cache, MSHRs, Prefetcher

2) Micro-second Latency: Cache, MSHRs, Prefetcher, Parallelism

3) Limited endurance : Cache, Flash technology

▪ Design Details

• DRAM Cache : Lower latency and lower traffic

• MSHR : Lower latency and prevent repeated flash read

• Prefetcher : hide long flash read latency

• Flash technology: with DRAM Cache, better latency & lifetime

• Parallelism: higher parallelism, better latency

Evaluation

16

▪ Objectives

• How effective are the cache policies?

• How effective are the prefetchers?

• Is CXL-flash a good memory expansion option?

• How is the performance difference between virtual and physical traces?

E1. Cache replacement policy

17

▪ Cache replacement policy

• FIFO: evicts the oldest data

• Random: selects data arbitrarily to evict

• LRU: kicks out the least recently used data

• CFLRU: prefers to evict clean cache lines• How effective are the cache policies?

• CFLRU outperforms which prioritizes evicting clean cache lines

• Higher set associativity

→ Higher cache hit rate and performance.

E1. Cache replacement policy

18

▪ Cache replacement policy

• FIFO: evicts the oldest data

• Random: selects data arbitrarily to evict

• LRU: kicks out the least recently used data

• CFLRU: prefers to evict clean cache lines
• Workloads with high localities: Radiosity

• insensitive to cache replacement policies

• Workloads with low localities: Page rank, XZ

• perform poorly & less sensitive to policies.

E2. Prefetching policy

19

▪ Prefetch Policy

• NP (No prefetch): does not prefetch any data.

• NL (Next-N-line): brings in the next N data upon a demand miss

or prefetch hit.

• FD (Feedback-directed): dynamically adjusts the

aggressiveness of the prefetcher by tracking prefetcher accuracy,

timeliness, and pollution.

• BO (Best-offset): learns the deltas between consecutive

accesses by tracking the history of recent requests.

• LP (Leap): implements a majority-based prefetching with

dynamic window size adjustment.

• How effective are the prefetchers?

• Using a prefetcher can sometimes

improve or hurt performance

E2. Prefetching policy

20

▪ Prefetch Policy

• NP (No prefetch): does not prefetch any data.

• NL (Next-N-line): brings in the next N data upon a demand miss

or prefetch hit.

• FD (Feedback-directed): dynamically adjusts the

aggressiveness of the prefetcher by tracking prefetcher accuracy,

timeliness, and pollution.

• BO (Best-offset): learns the deltas between consecutive

accesses by tracking the history of recent requests.

• LP (Leap): implements a majority-based prefetching with

dynamic window size adjustment.

• Why does prefetcher improve performance?

• it is due to achieving high accuracy

E2. Prefetching policy

21

▪ Prefetch Policy

• NP (No prefetch): does not prefetch any data.

• NL (Next-N-line): brings in the next N data upon a demand miss

or prefetch hit.

• FD (Feedback-directed): dynamically adjusts the

aggressiveness of the prefetcher by tracking prefetcher accuracy,

timeliness, and pollution.

• BO (Best-offset): learns the deltas between consecutive

accesses by tracking the history of recent requests.

• LP (Leap): implements a majority-based prefetching with

dynamic window size adjustment.

• Why does prefetcher degrade performance?

• it is due to cache pollution

E3. Virtual vs Physical

22

▪ How is the performance difference between traces?

• The V2P address translation makes it difficult to accurately prefetch

data

E3. Virtual vs Physical

23

▪ How can the performance be further improved?

• Host-generated access pattern hints can improve performance

- the kernel has information on the top intensively accessed physical frames

- pass hints to the device prior to their actual accesses

• Data-intensive applications often iterate multiple times and their behaviors can be profiled.

E4. Lifetime

24

• Does CXL-flash have a reasonable lifetime?
• CXL-flash can last for at least 3.1 years

E5. Cost-Benefit

25

▪ Is CXL-flash a good memory expansion option?

▪ Cost

• CXL-flash: 0.05 ~ 0.30 $/GB

• DRAM: 5$/GB

▪ Metrics =

𝑆𝑢𝑏−µ𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 %𝐶𝑋𝐿_𝑓𝑙𝑎𝑠ℎ

𝐶𝑜𝑠𝑡𝑈𝐿𝐿 𝑓𝑙𝑎𝑠ℎ
𝑆𝑢𝑏−µ𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 %𝐷𝑅𝐴𝑀_𝑂𝑛𝑙𝑦

𝐶𝑜𝑠𝑡𝐷𝑅𝐴𝑀

Summary of Evaluation

26

▪ Cache Efficiency

• Cache CFLRU outperforms

▪ Prefetcher

• Higher prefetch accuracy, higher performance (lower accuracy pollutes cache)

▪ Virtual vs Physical

• V2P address translation makes prefetch difficult → kernel hint

▪ Lifetime

• CXL-flash can last for at least 3.1 years

▪ Cost-Benefit

• 11 - 91x performance-per-cost benefit

Conclusion

27

▪ CXL-flash can address the Memory Wall through its cost-effective high

capacity and scalability.

▪ However, CXL-flash faces challenges such as 1) granularity mismatch, 2)

micro-second latency, and 3) limited endurance, which can be partially

mitigated through caching and prefetching.

▪ Despite these mitigations, there are still performance limitations compared to

DRAM, and it raises the question of whether workloads that define a memory

wall without considering GPU accelerators actually exist.

Open Questions

28

▪ What is differences between flash device using:

• OS Block interface / CXL-flash interface / SPDK interface

▪ What is differences between KV-Store with flash device:

• In-memory KV-Store with CXL-flash interface

• Disk-based KV-Store with Block interface

▪ What is benefit of CXL-flash with ZNS SSD?

• Is it efficient for sequential write & read workload? (e.g., compaction)

Thank you

	슬라이드 1: Yang, Shao-Peng, et al. Overcoming the Memory Wall with CXL-Enabled SSDs (ATC 23')
	슬라이드 2: B1. Memory Wall
	슬라이드 3: B2. Compute Express Link (CXL)
	슬라이드 4: B3. CXL-flash
	슬라이드 5: B4. Challenges of CXL-flash
	슬라이드 6: B5. Virtual vs Physical memory trace
	슬라이드 7: Summary of Background
	슬라이드 8: Design of CXL-flash
	슬라이드 9: D1. Cache
	슬라이드 10: D2. MSHR
	슬라이드 11: D2. MSHR
	슬라이드 12: D3. Prefetcher
	슬라이드 13: D4. Flash technology
	슬라이드 14: D5. Parallelism
	슬라이드 15: Summary of Design
	슬라이드 16: Evaluation
	슬라이드 17: E1. Cache replacement policy
	슬라이드 18: E1. Cache replacement policy
	슬라이드 19: E2. Prefetching policy
	슬라이드 20: E2. Prefetching policy
	슬라이드 21: E2. Prefetching policy
	슬라이드 22: E3. Virtual vs Physical
	슬라이드 23: E3. Virtual vs Physical
	슬라이드 24: E4. Lifetime
	슬라이드 25: E5. Cost-Benefit
	슬라이드 26: Summary of Evaluation
	슬라이드 27: Conclusion
	슬라이드 28: Open Questions
	슬라이드 29: Thank you

