
[OSDI 23`]
ScaleDB: A Scalable, Asynchronous 

In-Memory Database

Syed Akbar Mehdi, The University of Texas at Austin; Deukyeon Hwang and Simon 
Peter, University of Washington; Lorenzo Alvisi, Cornell University

Presentation by Minguk Choi



Scalability of Multicore In-Memory Databases

2

▪ In-Memory Databases

• backends for large-scale web applications, public clouds 

• simultaneously write and read intensive

• both low transaction commit latency and high transactional throughput

▪ Yet, database scalability is still limited



Database Scalability Limited by Range Indexes

3

▪ Range indexes remain difficult to scale

• B+Tree, ART, MassTree, Skiplist, BwTree, OpenBwTree

• “under high contention, none of these six data structures perform well”

▪ Fundamental problem: Hierarchical structure limits scalability

• But they are required for fast scans in sorted order



Range Index Contention

4



Range Indexes in Context

5

▪ Synchronous range index updates → Poor database scalability

▪ Synchronous range index updates can cause Mechanism Contention

• Not fundamentally required for serializable isolation guarantee

• Arising from mechanisms (range indexes) used in database implementation



Range Indexes in Context

6

▪ Synchronous range index updates → Poor database scalability

▪ Synchronous range index updates can cause Mechanism Contention

• Not fundamentally required for serializable isolation guarantee

• Arising from mechanisms (range indexes) used in database implementation



ScaleDB: Beyond Synchronous Range Indexes 

7

▪ Can we avoid range index mechanism contention to scalably 

guarantee serializability, with high performance?

▪ Implicit assumption of prior database architectures

• Immediately after transaction commit, its writes may be read in a range 

scan

▪ But is this assumption exercised in the common case?

• Experiment to measure Write-to-Range Scan (W-to-RS) latency



Long W-to-RS Latencies are Common

8

▪ Reading recently written records → exception for range queries



ScaleDB Design

9

▪ Revisit database architecture, not range index scalability

▪ Design principle: range indexes are asynchronously updated

▪ Two key ideas:

• Asynchronous range index updates using Indexlets

• Asynchronous Concurrency Control (ACC)



Indexlets

10

▪ Hash-based indexlets as a temporary store for writes

▪ No mechanism contention on internal structure

• Fixed size -> no need to rehash

▪ One per table (indexlet key = primary range index key)

▪ Indexlets written synchronously at transaction commit 

• For inserts, updates, deletes

▪ Periodically flush to range indexes as a batch at end of per-thread merge

epochs



Indexlets

11



Indexlets

12



Indexlets

13



Indexlets

14



Asynchronous Concurrency Control (ACC)

15

▪ Extends Optimistic Concurrency Control (OCC) with 

asynchronously updated range indexes

▪ Point Queries:

• Search indexlet

• Not found in indexlet → Search primary range index

▪ Range Scans: directly search relevant range index

• But how to deal with phantoms?



Avoiding Phantoms in ACC

16

▪ Phantom: range scan misses a prior committed insert

▪ Difficult to handle, due to asynchronously updated range indexes

▪ Solution: Phantomlets

• Phantom detection indexlets

• Inserting transactions insert phantom indicators into phantomlets

• Range scans validated at commit → Check for phantom indicators



Phantomlets

17



Phantomlets

18



Evaluation

19

▪ Compare ScaleDB with Peloton/Cicada

▪ Goal understand the impact of range index mechanism contention on 

database scalability

▪ Evaluate on TPC-C benchmark

• Configure for low contention (# of warehouses = # of threads)

• Evaluate using both partitioned and shared range indexes

▪ Intel Xeon machine with 36 cores (over 2 sockets)



YCSB Scalability

20

▪ Asynchronous updates to a single range index and compare to Peloton.

(b) fixing the number 

of terminals to 160.



TPC-C Scalability

21

▪ Asynchronous scalability with serializable transactions on the TPC-C

• multiple tables and several primary and secondary range indexes.



Abort Rate on TPC-C

22



Conclusion

23

▪ ScaleDB: a scalable, serializable in-memory database

• Asynchronous architecture to avoid range index mechanism contention

▪ Two key ideas to build an asynchronous database

• Asynchronous range index updates using Indexlets

• Asynchronous Concurrency Control (ACC)

▪ ScaleDB transcends limitations of a decade of isolated approaches 

• 1.8x better goodput than Cicada on TPC-C


	슬라이드 1: [OSDI 23`] ScaleDB: A Scalable, Asynchronous In-Memory Database
	슬라이드 2: Scalability of Multicore In-Memory Databases
	슬라이드 3: Database Scalability Limited by Range Indexes
	슬라이드 4: Range Index Contention
	슬라이드 5: Range Indexes in Context
	슬라이드 6: Range Indexes in Context
	슬라이드 7: ScaleDB: Beyond Synchronous Range Indexes 
	슬라이드 8: Long W-to-RS Latencies are Common
	슬라이드 9: ScaleDB Design
	슬라이드 10: Indexlets
	슬라이드 11: Indexlets
	슬라이드 12: Indexlets
	슬라이드 13: Indexlets
	슬라이드 14: Indexlets
	슬라이드 15: Asynchronous Concurrency Control (ACC)
	슬라이드 16: Avoiding Phantoms in ACC
	슬라이드 17: Phantomlets
	슬라이드 18: Phantomlets
	슬라이드 19: Evaluation
	슬라이드 20: YCSB Scalability
	슬라이드 21: TPC-C Scalability
	슬라이드 22: Abort Rate on TPC-C
	슬라이드 23: Conclusion

