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Scalability of Multicore In-Memory Databases
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▪ In-Memory Databases

• backends for large-scale web applications, public clouds 

• simultaneously write and read intensive

• both low transaction commit latency and high transactional throughput

▪ Yet, database scalability is still limited



Database Scalability Limited by Range Indexes
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▪ Range indexes remain difficult to scale

• B+Tree, ART, MassTree, Skiplist, BwTree, OpenBwTree

• “under high contention, none of these six data structures perform well”

▪ Fundamental problem: Hierarchical structure limits scalability

• But they are required for fast scans in sorted order



Range Index Contention
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Range Indexes in Context
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▪ Synchronous range index updates → Poor database scalability

▪ Synchronous range index updates can cause Mechanism Contention

• Not fundamentally required for serializable isolation guarantee

• Arising from mechanisms (range indexes) used in database implementation



Range Indexes in Context

6

▪ Synchronous range index updates → Poor database scalability

▪ Synchronous range index updates can cause Mechanism Contention

• Not fundamentally required for serializable isolation guarantee

• Arising from mechanisms (range indexes) used in database implementation



ScaleDB: Beyond Synchronous Range Indexes 
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▪ Can we avoid range index mechanism contention to scalably 

guarantee serializability, with high performance?

▪ Implicit assumption of prior database architectures

• Immediately after transaction commit, its writes may be read in a range 

scan

▪ But is this assumption exercised in the common case?

• Experiment to measure Write-to-Range Scan (W-to-RS) latency



Long W-to-RS Latencies are Common
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▪ Reading recently written records → exception for range queries



ScaleDB Design
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▪ Revisit database architecture, not range index scalability

▪ Design principle: range indexes are asynchronously updated

▪ Two key ideas:

• Asynchronous range index updates using Indexlets

• Asynchronous Concurrency Control (ACC)



Indexlets
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▪ Hash-based indexlets as a temporary store for writes

▪ No mechanism contention on internal structure

• Fixed size -> no need to rehash

▪ One per table (indexlet key = primary range index key)

▪ Indexlets written synchronously at transaction commit 

• For inserts, updates, deletes

▪ Periodically flush to range indexes as a batch at end of per-thread merge

epochs



Indexlets
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Indexlets
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Indexlets
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Indexlets
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Asynchronous Concurrency Control (ACC)
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▪ Extends Optimistic Concurrency Control (OCC) with 

asynchronously updated range indexes

▪ Point Queries:

• Search indexlet

• Not found in indexlet → Search primary range index

▪ Range Scans: directly search relevant range index

• But how to deal with phantoms?



Avoiding Phantoms in ACC
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▪ Phantom: range scan misses a prior committed insert

▪ Difficult to handle, due to asynchronously updated range indexes

▪ Solution: Phantomlets

• Phantom detection indexlets

• Inserting transactions insert phantom indicators into phantomlets

• Range scans validated at commit → Check for phantom indicators



Phantomlets
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Phantomlets
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Evaluation
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▪ Compare ScaleDB with Peloton/Cicada

▪ Goal understand the impact of range index mechanism contention on 

database scalability

▪ Evaluate on TPC-C benchmark

• Configure for low contention (# of warehouses = # of threads)

• Evaluate using both partitioned and shared range indexes

▪ Intel Xeon machine with 36 cores (over 2 sockets)



YCSB Scalability

20

▪ Asynchronous updates to a single range index and compare to Peloton.

(b) fixing the number 

of terminals to 160.



TPC-C Scalability
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▪ Asynchronous scalability with serializable transactions on the TPC-C

• multiple tables and several primary and secondary range indexes.



Abort Rate on TPC-C
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Conclusion
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▪ ScaleDB: a scalable, serializable in-memory database

• Asynchronous architecture to avoid range index mechanism contention

▪ Two key ideas to build an asynchronous database

• Asynchronous range index updates using Indexlets

• Asynchronous Concurrency Control (ACC)

▪ ScaleDB transcends limitations of a decade of isolated approaches 

• 1.8x better goodput than Cicada on TPC-C
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