
System Programming

Lecture Note 4.
Process Structure

October 9, 2023

Jongmoo Choi
Dept. of Software

Dankook University
http://embedded.dankook.ac.kr/~choijm

(Copyright © 2023 by Jongmoo Choi, All Rights Reserved. Distribution requires permission)

Objectives

Understand the definition of a process

Explore the process structure

Discuss the relation between program and process structure

Grasp the details of stack

Refer to Chapter 6 in the LPI and Chapter 8 in the CSAPP

2

Process Definition (1/2)

What is a process (also called as task)?
 Program in execution

 Having its own memory space and CPU registers

 Scheduling entity

 Conflict each other for resource allocation

 Parent-child relation (family)

3

(Source: CSAPP)

program

Process (task)

Process Definition (2/2)

Related terminology
 Load

 from disk into main memory

 carried out by OS (e.g. page fault mechanism)
• disk: file system (LN 3)

• main memory: virtual memory (CSAPP 9, OS Course)

 Fetch
 from memory into CPU

 carried out by hardware
• Transparent to OS

• instruction fetch and data fetch (LN 7)

4

Process Structure (1/6)

Conceptual structure
 text, data, heap, stack

5

(Source: LPI)

Process Structure (2/6)

Process structure in C program: function pointer

6

/* f_pointer.c: for function pointer exercise, by choijm, choijm@dku.edu */
#include <stdio.h>

int a = 10;

int func1(int arg1)
{

printf("In func1: arg1 = %d\n", arg1);
}

main()
{

int *pa;
int (*func_ptr)(int);

pa = &a;
printf("pa = %p, *pa = %d\n", pa, *pa);
func1(3);

printf("Bye..^^\n");
}

func_ptr = func1;
func_ptr(5);

Process Structure (3/6)

Process structure in C program: address printing

7

/* task_struct.c: display addresses of variables and functions, choijm@dku.edu */
#include <stdlib.h>
#include <stdio.h>

int glob1, glob2;

int func2() {
int f2_local1, f2_local2;

printf("func2 local: \n\t%p, \n\t%p\n", &f2_local1, &f2_local2);
}

int func1() {
int f1_local1, f1_local2;

printf("func1 local: \n\t%p, \n\t%p\n", &f1_local1, &f1_local2);
func2();

}

main(){
int m_local1, m_local2; int *dynamic_addr;

printf("main local: \n\t%p, \n\t%p\n", &m_local1, &m_local2);
func1();

dynamic_addr = malloc(16);
printf("dynamic: \n\t%p\n", dynamic_addr);
printf("global: \n\t%p, \n\t%p\n", &glob1, &glob2);
printf("functions: \n\t%p, \n\t%p, \n\t%p\n", main, func1, func2);

}

Process Structure (4/6)

Process structure in C program: address printing

8

stack for main

stack for func1

text for func2

text for func1

text for main

data

heap

0xffb5cf04

0xffb5cf00

0xffb5cec4

0xffb5cec0

0xffb5cea4

0xffb5cea0

0x080483c2

0x080483e4

0x0804840b

0x080497c4

0x080497c0

0x0819d410

 Addresses can be different based on Compiler, OS and CPU (32bit vs. 64bit)

stack for func2

Process Structure (5/6)

Summary
 Process: consist of four regions, text, data, stack and heap

 Text
 Program code (assembly language)

 Go up to the higher address according to coding order

 Data
 Global variable

 Initialized and uninitialized data are managed separately (for the
performance reason)

 Stack
 Local variable, argument, return address

 Go down to the lower address as functions invoked

 Heap
 Dynamic allocation area (malloc(), calloc(), …)

 Go up to the higher address as allocated

9

Also called as segment or vm_object

Process Structure (6/6)

Relation btw program and process

10

data

text

stack

Process Structure in CSAPP

Another viewpoint for process structure
 text, data, heap, stack + shared region, kernel

11

(Source: CSAPP)

Stack Details (1/6)

What is Stack?
 A contiguous array of memory locations with LIFO property

 Stack operation: push and pop

 Stack management: base (bottom) and top (e.g. Stack Segment
and ESP in intel)

(Source: CSAPP)

12

Stack Details (2/6)

Stack in Intel architecture
 How to access Intel manual?

13

Stack Details (3/6)

Stack in Intel architecture
 Real manipulation of push and pop

 ESP (Extended Stack Pointer): pointing the top position

 push: decrement the ESP and write data at the top of stack (down)

 pop: read data from the top and increment the ESP (up)

 What are in the stack?
 1) argument (parameters), 2) return address, 3) local variable, …

 Return address: an address that returns after finishing a function (usually
an address of an instruction after “call”)

14(Source: Intel 64 and IA-32 Architectures Software Developer’s Manual)

Stack Details (4/6)

Stack in Linux

15

int func2(int x, int y) {
int f2_local1 = 21, f2_local2 = 22;
int *pointer, i;

...
}

void func1()
{

int ret_val;
int f1_local1 = 11, f1_local2 = 12;

...
ret_val = func2(111, 112);
f1_local++;
...

}

int main()
{

...
func1();
...

}

arguments,
return address,
local variables

arguments,
return address,
local variables

argument 2

argument 1

return address

saved ebp

local variable 1

local variable 2
...

stack frame
for func2

 Compiler (and version) dependent (see Appendix 1)
 Especially, recent compiler makes use of obfuscation, where the locations

of local variables are changed according to program contents.
 But, gcc 3.* version comply with the Intel’s suggestion (like this figure)

For lecturing purpose, gcc 3.* is more effective (Use 3.4 in this lecture note)

...

stack frame
for func1

stack frame
for main

Stack Details (5/6)

Stack example 1

16

/* stack_struct.c: stack structure analysis, by choijm. choijm@dku.edu */
#include <stdio.h>

int func2(int x, int y) {
int f2_local1 = 21, f2_local2 = 22;
int *pointer;

printf("func2 local: \t%p, \t%p, \t%p\n", &f2_local1, &f2_local2, &pointer);
pointer = &f2_local1;

printf("\t%p \t%d\n", (pointer), *(pointer));
printf("\t%p \t%d\n", (pointer-1), *(pointer-1));
printf("\t%p \t%d\n", (pointer+3), *(pointer+3));

*(pointer+4) = 333;
printf("\ty = %d\n", y);
return 222;

}

void func1() {
int ret_val, f1_local1 = 11, f1_local2 = 12;

ret_val = func2(111, 112);
}

main() {
func1();

}

Stack Details (6/6)

Stack example 2

17

/* stack_destroy.c: 스택 구조 분석 2, 9월 19일, choijm@dku.edu */
#include <stdio.h>

void f1() {
int i;
printf("In func1\n");

}

void f2() {
int j, *ptr;
printf("f2 local: \t%p, \t%p\n", &j, &ptr);
printf("In func2 \n");

}

void f3() {
printf("Before invoke f2()\n");
f2();
printf("After invoke f2()\n");

}

main() {
f3();

}

ptr = &j;
*(ptr+2) = f1;

Summary

Understand the differences between process and program

Discuss the differences among text, data, heap and stack

Find out the details of stack structure
 Argument passing, Return address, Local variables

 Stack overflow

18

 Homework 4: Make a program of the stack example 2 and examine its results.
1.1 Requirements

- shows student’s ID and date (using whoami and date)
- discuss why the segmentation fault occurs in this program

1.2 Bonus: overcome the segmentation fault problem
1.3 Deadline: Next week (same time)
1.4 How to submit? Send 1) report and 2) source code to mgchoi@dankook.ac.kr

19

Homework 4: Snapshot example

Quiz for this Lecture

Quiz
 1. Explain the differences among 1) high-level program, 2) binary

program, and 3) process.

 2. In C language, the scope of local variables and global variables
are different. Discuss the reason of the differences using the process
structure.

 3. Discuss the differences between stack and queue.

 4. Describe what are in the stack? (three key components)

20

(Source: https://dasima.xyz/c-local-global-variables/)

Appendix 1

Assembly differences between gcc 9.* and gcc 3.4.*
 Using WSL (Windows subsystem for Linux) in my computer

21

Appendix 1

Assembly differences between gcc 9.* and gcc 3.4.*
 1) Obfuscation, 2) Optimization, 3) CFI, …

22

Appendix 1

Assembly differences between 32-bit and 64-bit CPU
 1) Register (eax vs rax), 2) PIC, 3) Argument passing, 4) …

 We will discuss further in LN6 and LN9

23

Appendix 2

Another code for process structure

24

(Source: LPI)(Source: CSAPP)

