
System Programming

Lecture Note 6.
IA Assembly Programming

October 31, 2023
Jongmoo Choi

Dept. of Software
Dankook University

http://embedded.dankook.ac.kr/~choijm

(Copyright © 2023 by Jongmoo Choi, All Rights Reserved. Distribution requires permission)

Objectives

Understand various viewpoints about CPU
Apprehend the concept of ISA (Instruction Set Architecture)
ü Learn the IA Register model
ü Learn the IA Memory model
ü Learn the IA Program model

Make a program with IA assembly language

Refer to Chapter 3 in the CSAPP and Intel SW Developer
Manual

2

Introduction (1/2)

Summarizing what we have learnt
ü Program development: compile, linking, ELF, …
ü Program execution: task (text, data, stack), load, fetch, …

§ text: consists of machine instructions

3

버스

Introduction (2/2)

Assembly language
ü Language hierarchy

§ Locate between high-level language and machine language
§ Symbolic (mnemonic) representation of machine language

• One-to-one mapping, CPU dependent (Not easy)

ü Application field
§ Hardware control: system initialization, device driver, interrupt handler,

embedded systems, IoT, ECU, CPS, Wearable computer, …
§ Vulnerability test (Virus identification, IDS)
§ Optimization (HW-level, SW-level)
§ SW copyright protection, SW similarity analysis, …

ü Importance
§ Making a program, debugging, analyzing binary, …
§ Understand the behavior of hardware (especially CPU)
§ Grape the mechanism how hardware and software are cooperated

(hardware software co-design)

4

CPU (1/5)

What is a Processor?

Abstraction

5

CPU (2/5)

Various Viewpoints of Processor
ü 1. Transistor + Gate + Logic + Clock

ü 2. ALU (Arithmetic Logic Unit) + Registers + CU (Control Unit) + BUS

ü 3. Instruction Set Architecture (CISC, RISC, VLIW, EPIC, …)
ü 4. Performance Characteristics (Pipeline, Superscalar, Cache, …)

(Source: MU0 in Appendix 1)

6

CPU (3/5)

Instruction Set Architecture: Register + Instructions

ü Register model
ü Memory model
ü Instruction model

registers

instructions

data

processor

memory
0x00..00

0xFF..FF

instructions
and data

address

7

CPU (4/5)

Performance Characteristics: Pipeline, Superscalar, Cache

ü For efficient pipeline
• Similar latency of instructions (not complex)
• Conflict between I. fetch and D. fetch
• Branch prediction, Out-of order executions
• L1, L2, LLC cache …

Dec Dfet Exe ResIfet
Dec Dfet Exe ResIfet

Dec Dfet Exe ResIfet
Abbreviation
•Ifet: Instruction fetch
•Dec: Decode
•Dfet: Data fetch
•Exe: Execution
•Res: Results write

F Details will be discussed in LN 7

8

CPU (5/5)

Performance Characteristics: Pipeline, Superscalar, Cache
8086 Pentium

(Source: Intel SW Developer’s Manual, Volume 1: Basic Architecture)
9

Register Model (1/3)

Register definition
ü A small amount of memory available in a CPU
ü Can be accessed quickly, compared with main memory

IA registers

10

(Source: Intel SW Developer’s Manual, Volume 1: Basic Architecture)

Register Model (2/3)

Functionality of each register
ü Segment register

§ CS(code segment): the base location of all executable instructions
§ DS(data segment): the base location for variables
§ SS(stack segment): the base location of the stack
§ ES(extra segment): an additional base location for variables

ü General purpose register
§ EAX (accumulator): for arithmetic operation (operand and result data)
§ EBX (base): pointer to data in the DS segment
§ ECX (counter): counter for loop and string operations
§ EDX (data): I/O pointer, a special role in multiply and divide operations
§ ESP (stack pointer): pointer to the top of the stack
§ EBP (base pointer): used as base for accessing variables on the stack (base

for stack frame)
§ ESI (source index): source pointer for string operations
§ EDI (destination index): destination pointer for string operations
§ Having its specialty, but commonly being used for general purpose

ü EIP (instruction pointer): role of PC(Program counter)
ü EFLAGS: Control and Status Register

11

F rax, rbx, rip, … for Intel 64

Register Model (3/3)

Details of EFLAGS register
ü Set of control and status Flags

12

F Refer to the IA-32 Basic Architecture, Chapter 3.4.3 for the role of each bit
F Intel CPU has several additional registers such as CR0, CR2, CR3, IDTR, GDTR,

debugging registers, FPU registers, and MMX registers. (see LN_chapter 7)

Memory Model (1/6)

Memory abstraction in IA
ü logical address (virtual address)
ü linear address
ü physical address

logical
address

linear
address

physical
addresssegmentation paging

text

data

stack

logical memory
(virtual memory)

text

data

stack

linear memory

text

data

stack

Page 2

Page 1

physical memory
Page 4

Page 3

Page 1

Page 2

Page 3
Segment

Descriptor
Table

Page
Table

Page 5

Page 6

13

Memory Model (2/6)

Paging and Segmentation in detail
ü Segmentation: variable size

§ Address translation: base address + offset, using segment table
(segment descriptor table)

ü Paging: fixed size
§ page start address (PT + index) + offset, using page table

(commonly multi-level tables)

F Some CPUs make use of paging only or segmentation only
14

Memory Model (3/6)
Segmentation vs Paging example
ü Assumption

§ Physical memory is fragmented
§ Virtual memory consists of 12 elements

ü Segmentation vs. Paging
§ Address translation: segment table vs. page table
§ How to: seg # + offset vs. page # + offset

0
1
2
3
4
5
6
7
8
9

10
11

0
1
2
3
4
5
6
7
8
9

10
11

8

24

40

8

24

40

0 à 8, size = 5
5 à 40, size = 7
Segment table

0 à 8
4 à 44
8 à 24

Page table

44 44

VM
PM

VM
PM

F What is the PA of the VA 10 in segmentation? (or Paging)

15

Memory Model (4/6)

Revisit
ü Process structure in LN 4 vs. After fork in LN 5
ü Virtual memory vs. Using Segmentation

16

Memory Model (Optional) (5/6)

Segmentation on IA
ü Real Address Model: 8086 compatible, support 1MB (seg.<<4+offset)
ü Flat Model: protected mode with segment descriptor
ü Segmented Model: protected mode with segment descriptor table

real address model segmented model

17

Memory Model (Optional) (6/6)

Paging on IA
ü Usually make use of multi-level structure

§ 32 bit: 2-level paging
• Page directory, page table

§ 64 bit: 4-level paging
• PML4, page directory pointer, page directory, page table

32 bit CPU 64 bit CPU

F The basic concept of address mapping is similar to the indexing in the inode
(Source: Intel SW Developer’s Manual, Volume 1: Basic Architecture)

18

Instruction Model (1/2)

Instruction format
here: movl 0x8049388, %eax

addl 0x8049384, %eax
movl %eax, 0x804946c

here: movl 0x8049388, %eax
addl 0x8049384, %eax
movl %eax, 0x804946c

(Source: Intel SW Developer’s Manual, Volume 1: Basic Architecture)

(Source: CSAPP)

19

Instruction Model (2/2)
Opcode summary
ü General Purpose

§ Data Transfer Instruction: MOV, CMOVNZ, XCHG, PUSH, POP
§ Arithmetic Instruction: ADD, SUB, MUL, DIV, DEC, INC, CMP
§ Logical Instruction: AND, OR, XOR, NOT
§ Shift and Rotate Instruction: SHR, SHL, SAR, SAL, ROR, ROL
§ Bit and Byte Instruction: BT, BTS, BTC
§ Control Transfer Instruction: JMP, JE, JZ, JNE, LOOP
§ Function related Instruction: CALL, RET, LEAVE
§ String Instruction: MOVS, CMPS, LODS
§ Flag Control Instruction: STC, CLC, STD, CLD, STI, CLI
§ Segment Register Instruction: LDS, LES
§ Miscellaneous: INT, NOP, CPUID

ü Special Purpose
§ FPU Instruction: FLD, FST, FADD, FSUB, FCOM
§ SIMD Instruction (MMX) : MOVD, MOVQ, PADD, PSUB
§ SSE Instruction: MOVSS, ADDSS
§ System Instruction: LGDT, SGDT, LIDT, …

20

Instruction Detail: Component (1/11)

Data Transfer Instruction
ü Edit move_exam.c and create assembly program using gcc –S

§ Using gcc version 3.4.6 (Since the obfuscation techniques employed in
higher gcc version make learning rather complex)

F what if we execute “movl 2, a”?
comments: # or /* */

operand : reg, mem, literal
• reg: begin with %
• memory: alphanumeric
• literal: begin with $

21

Instruction Detail: Component (2/11)
Data Transfer Instruction (cont’)

Basic opcode(mov) + suffix [l|w|b|q]
• b: byte (1 byte)
• w: word (2 bytes)
• l: long (double) word (4 bytes)
• q: quad word (8 byte)
(refer to Figure 3.1 in CSAPP)

22

Instruction Detail: Component (3/11)

AT&T vs. Intel (cf. Microsoft ASM)

23

Instruction Detail: Component (4/11)

Arithmetic Instruction

“movl a, %eax”
“subl b, %eax”
“movl %eax, c”
are also feasible
(cf. load-store architecture)

mul: multiply operand with eax
result is stored in edx:eax

div: divide edx:eax by operand
the quotient is stored in eax,
while the remainder is in edx

24

Instruction Detail: Component (5/11)
Control Transfer Instruction: if

Compare instruction: Perform
subtraction, but not store the
result (only bits in EFLAGS are
changed)

Jump to the label .L2 if (SF == 1 or
ZF == 1) è (EIP = .L2)
Otherwise, go to the next instruction
è (EIP = EIP +1).
(precisely, if (SF == 1 or SF==OF))

Example of logic instruction

F switch statement: extension of “if else” statement

Types of jmp instruction: jmp,
je, jne, jg, jge, jl, jle, …

25

Instruction Detail: Component (6/11)
Control Transfer Instruction: for

F while, do while statements:
another form of “for” statement

26

Instruction Detail: Component (7/11)
Function-related Instruction: stack revisit
ü Stack operation: push and pop
ü Stack management: bottom and top (SS and esp)

(Source: CSAPP)
27

Instruction Detail: Component (8/11)
Function-related Instruction: before function call

Decrease ESP. Put operand on the
stack. (cf. movl $222, 4(%esp))

stack frame for main

222

111

ret. address

Push EIP. Jump to the operand
(EIP = func1).

28

29

Instruction Detail: Component (9/11)
Function-related Instruction: in function

stack frame for main

222

111

ret. address

saved ebp EBP
a

b ESP

Decrease ESP. Put operand on the
stack. (cf. movl $222, 4(%esp))

Push EIP. Jump to the operand
(EIP = func1).

F Use relative address based on ebp instead of variable name
29

30

Instruction Detail: Component (10/11)
Function-related Instruction: after function

stack frame for main

222

111

ret. address

saved ebp EBP
a

b ESP

ESP = EBP. Then pop.
(Eventually pop local variables
and saved ebp from the stack)

pop and set it into EIP
(EIP = return address)

Pop arguments from the stack.

Return value is in eax
F 64bit CPU: make use of registers to pass parameters

(rdi, rsi, rdx, rcx, r9, r8)

Decrease ESP. Put operand on the
stack. (cf. movl $222, 4(%esp))

Push EIP. Jump to the operand
(EIP = func1).

30

Instruction Detail: Component (11/11)
Function-related Instruction: stack frame illustration

31

Instruction Detail: in CSAPP
Assembly code example from CSAPP

F See Chapter 3 in CSAPP for more examples
32

Instruction Detail: Make a Program (1/6)
Practice1: function example
ü result = asm_sum(final_number), written by assembly language

.global directive: declare
“asm_sum” visible to the linker

Memory addressing: displacement(base)
or displacement(base, index, scale)

.text directive: declare text section
(the following instructions are
resided in the text section)

33

Instruction Detail: Make a Program (2/6)
Execution results of Practice 1

F Use “make” utility when there are a bunch of files

34

Instruction Detail: Make a Program (3/6)
Practice 2: Standalone assembly program

.data directive: declare data
section

.long directive: initialize 4B memory space
(address, initial value, expression, …)

.string directive: initialize string
(array of character)

35

Instruction Detail: Make a Program (4/6)
directive
ü Meta-statements (pseudo-instruction)
ü Used for giving information to assembler (affect how the assembler

operates. not directly executed on CPU)
ü Begin with . (period)
ü Representative directive

§ .file, .include
§ .text, .data, .comm, .section
§ .long, .byte,. string, .ascii, .float, .quad
§ .global, .align, .size
§ .set, .equal, .rept, .space
§ .macro, .endm
§ .if, .else, .endif
§ .cfi_startproc, .cfi_endproc for debugging
§ …

F refer to “GNU assembler” in the lecture site or “info as” on the Linux shell

36

Instruction Detail: Make a Program (5/6)
Software Interrupt
ü write() system call

system call arguments

system call index

IDT table index

37

Instruction Detail: Make a Program (6/6)
Software Interrupt (cont’)
ü Interrupt and system call handling

sys_call_table (sysent[])

sys_no_syscall()

sys_exit()

sys_fork()

sys_read ()

sys_write ()

….

0

1

2

3

4

sys_getpid()

….

255

47

sys_no_syscall()

Kernel

sys_fork()

sys_write()system_call()

IDT
divide_error()

debug()

nmi()

….

0x0

system_call()

….
0x80

F 64bit CPU: use “sysenter (syscall on AMD)” instead of “int”

38

39

Summary
Understand ISA
Know about IA register, memory, and instruction model
Learn the format of IA instruction
ü label, opcode, operands, comments

Learn the types of IA opcode
ü mov, add, cmp, jmp, push, call, ret, int, …

F Homework 6: Make an assembly program
1.1 Requirements

- print out the prime number from 1 to 50
- using a function
- shows student’s ID and date (using whoami and date)

1.2 Write a report
- 1) Introduction, 2) Design/Source code, 3) Snapshots 4) Discussion

1.3 How to submit? Send 1) report and 2) source code to mgchoi@dankook.ac.kr
1.4 Deadline: a week later (same time)
1.5 Warn: DO NOT utilize “gcc –S option” (easily detected)

(Source: http://melonicedlatte.com/
computerarchitecture/2019/01/30/192433.html)

Quiz for this Lecture

Quiz
1. Explain the differences between eax, rax and ax in the register

model of IA. What is the merit of the more registers?
2. Explain the three components of an IA instruction format. What are

the differences between “movl $2, a” and “movl 2, a”?
3. Explain two ways how the C statement “d = b * 7” is translated into

assembly language.
4. Discuss the differences between function call and system call (e.g.

printf() vs. write(), at least three).
5. There are various optimization options in gcc such as “O0, O1, O2,

O3 and Os”. What if we create an assembly program using O3
when we create the move_exam.s? What if we create an assembly
program using O3 when we declare the a, b, c as local variables?

40

41

Appendix1: MU0, A Simple CPU

Simple CPU from Manchester University
Architecture
ü Register set

§ PC : program counter
§ ACC : accumulator
§ IR : Instruction Register

ü ALU : Arithmetic-Logic Unit
ü CU : Control Unit (instruction decode and control logic)
ü Memory

(Source: ARM System-on-Chip Architecture, by S. Furber)

42

Appendix1: MU0, A Simple CPU

Data Transfer

ü 1) fetch, 2) execution, 3) flow control

43

Appendix1: MU0, A Simple CPU

MU0 instruction set
ü 16-bit machine with 12-bit address space
ü 8 instructions (4-bit opcode)
ü 12-bit operand (4096 address space)

44

Appendix1: MU0, A Simple CPU

Control Logic

ü FSM(Finite State Machine): Execute, Fetch state
§ Initialization: reset (known state) makes the ALU output as zero
§ Register change: when XXce is ‘1’
§ Multiplexer: Asel, Bsel

45

Appendix1: MU0, A Simple CPU

ALU logic for one bit
ü ALU functions required

§ A+B: normal adder
§ A-B: complement and adding
§ B: force A and carry-in to zero
§ B+1: force A to zero and carry-in to 1
§ 0: reset

46

Appendix1: MU0, A Simple CPU

MU0 extensions
ü Extending the address space
ü Adding more addressing modes
ü Allowing the PC to be saved in order to support a subroutine

mechanism
ü Adding more registers
ü Support interrupts
ü …

