
J. Choi, DKU

Lecture Note 2: Processes

March 11, 2024
Jongmoo Choi

Dept. of Software
Dankook University

http://embedded.dankook.ac.kr/~choijm

(Copyright © 2024 by Jongmoo Choi, All Rights Reserved. Distribution requires permission.)

J. Choi, DKU

Contents

From Chap 3~6 of the OSTEP
Chap 3. A Dialogue on Virtualization
Chap 4. The abstraction: The Process
ü Process, Process API, Process State and Data Structure

Chap 5. Interlude: Process API
ü System calls: fork(), wait(), exec(), kill() , …

Chap 6. Mechanism: Limited Direct Execution
ü Basic Technique: Limited Direct Execution
ü Switch between Modes
ü Switch between Processes

2

J. Choi, DKU

Chap 3. A Dialogue on Virtualization

Virtualization

3

J. Choi, DKU

Chap 4. The Abstraction: The Process

Process definition
ü A program in execution
ü Scheduling entity (CPU), has its memory (DRAM)

§ c.f.) program: a lifeless thing, sit on the disk and waiting to spring into
action

ü There exist multiple processes (e.g. ppt, browser, word, player, …)
§ Each process has its own memory (address space), virtual CPU, state, …

4

(Source: computer systems: a programmer perspective)

program

Process (task)

J. Choi, DKU

Chap 4. The Abstraction: The Process

How to virtualize CPU? Time sharing system

ü Mechanism
§ context switch: an ability to stop running one program and start running

another on a given CPU
ü Policy

§ scheduling policy: based on historical information or workload knowledge
or performance metric.

5

E Time sharing vs. Space sharing

CPU1

CPU1

CPU1

(initial)

(when ppt scheduled)

(when chrome scheduled)

J. Choi, DKU

4.1 Process

Process structure
ü Need resources to run:

§ CPU
• Registers such as PC, SP, ..

§ Memory (address space)
• Text: program codes
• Data: global variables
• Stack: local variables, parameters, …
• Heap: allocated dynamically

§ I/O information
• Opened files (including devices)

ü Program vs. Process
§ Program: passive entity, a file containing instructions stored on disk

(executable file or binary)
§ Process: active entity, having CPU and memory, doing I/Os
§ Execute a program twice è result in creating two processes (from one

program) è text is equivalent while others (data, stack) vary (1-to-n)
6

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

4.2 Process API

Basic APIs for a process

7

E Related system calls are discussed in the chapter 5 of OSTEP

J. Choi, DKU

4.3 Process Execution: A Little More Detail

How to start a program
ü Load

§ Bring code and static data into the address space
§ Based on executable format (e.g. ELF, PE, BSD, …)
§ Eagerly vs. Lazily (paging, swapping)

ü Dynamic allocation
§ Stack
§ Initialize parameters (argc, argv)
§ Heap if necessary

ü Initialization
§ file descriptors (0, 1, 2)
§ I/O or signal related structure

ü Jump to the entry point: main()

8

J. Choi, DKU

4.4 Process States

State and transition

ü State
§ ready, running, waiting(blocked) + new(created, embryo), terminated (zombie)

ü Transition
§ dispatch (schedule), timeout (preemptive, descheduled), wait (sleep, I/O

initiate), wakeup (I/O done) + admitted, exit
§ suspend and resume: to Disk (swap) or to RAM

9

timeout

(Source: A. Silberschatz, “Operating system Concept”)

dispatch

J. Choi, DKU

(blocked)

4.4 Process States

Example
ü Used resources: CPU only è Figure 4.3
ü Used resources: CPU and I/O è Figure 4.4

§ Note: I/O usually takes quite longer than CPU

10

E At the end of time 6 in Figure 4.4, OS can decide to 1) continue running the
process1 or 2) switch back to process 0. Which one is better? Discuss tradeoff.

J. Choi, DKU

4.5 Data Structure

PCB (Process Control Block)
ü Information associated with each process

§ Process state
§ Process ID (pid)
§ Program counter, CPU registers

• Used during context switch
• Architecture dependent

§ CPU scheduling information
§ Memory-management information
§ Opened files
§ I/O status information
§ Accounting information

ü Managed in the kernel’s data segment

11

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

4.5 Data Structure

PCB Implementation example in OSTEP
ü OS is a program, implementing a process using data structure (e.g.

struct proc and struct context)
ü All “proc” structures are manipulated using a list

12

J. Choi, DKU

4.5 Data Structure (Optional)

PCB in real OS (task structure in Linux)

13

<https://elixir.bootlin.com/linux/latest/source/include/linux/sched.h > (Source: 리눅스 커널 내부구조)

J. Choi, DKU

Chap 5. Interlude: Process API

Comments for Interlude by Remzi

14

J. Choi, DKU

5.1 fork() system call

fork()
ü Create a new process: parent, child
ü Return two values: one for parent (>0) and the other for child (0)
ü Non-determinism: not decide which one run first.

15

J. Choi, DKU

5.2 wait() system call

wait()
ü Block a calling process until one of its children finishes
ü Now, deterministic è synchronization

16

J. Choi, DKU

5.3 exec() system call

exec()
ü Load and overwrite code and static data, re-initialize stack and heap,

and execute it (never return) è refer to 8 page
ü 6 variations: execl, execlp, execle, execv, execvp, execve

17

E Comments from Remzi: Do it on a Linux system. “Type in the code and run it is better for understanding”

J. Choi, DKU

5.4 Why? Motivating the API (optional)

Why separate fork() from exec()?
ü Modular approach of UNIX, support extensibility

18

J. Choi, DKU

5.5 Other parts of the API

Other APIs
ü getpid(): get process id
ü kill(): send a signal to a process
ü signal(): register a signal catch function
ü scheduling related
ü …

Command and tool
ü ps, top, perf, …
ü read the man pages for commands and tools

19

J. Choi, DKU

Chap 6. Mechanism: Limited Direct Execution

Time sharing
ü Key technique for virtualizing CPU
ü Issues

§ Performance: how to minimize the virtualization overhead?
§ Control: how to run processes while retaining control over the CPU?

20

(Source: Google image. Users can be replaced with programs or processes)

J. Choi, DKU

6.1 Basic Technique: Limited Direct Execution

Performance-oriented è Direct execution
ü Run the program directly on the CPU
ü Efficient but not controllable

21

E What is the problem of the above example?

E See 8 page in LN2

E Control is particularly important to OS. Without control, a process
could run forever, monopolizing resources.

J. Choi, DKU

6.2 Problem #1: Restricted Operation

Control mechanism 1: Restrict operations
ü Most operations can run directly (e.g. arithmetic, loop, branch, …)
ü Some operations that should run indirectly (privileged operations)

§ Gain more system resources such as CPU and memory
§ Issue an I/O request directly to a disk

ü Through a well defined APIs (system call)
§ E.g.) fork(), nice(), malloc(), open(), read(), write(), …

How to: User mode vs. Kernel mode
ü User mode: do privileged operation è cause exception and killed
ü Kernel mode: do privileged operation è allowed
ü Mode switch: using trap instruction, two stacks (user and kernel stack)

22

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

6.2 Problem #1: Restricted Operation

How to handle trap in OS?
ü Using trap table (a.k.a interrupt vector table)
ü Trap table consists of a set of trap handlers

§ Trap (interrupt) handler: a routine that deals with a trap in OS
§ system call handler, div_by_zero handler, segment fault handler, page fault

handler, and hardware interrupt handler (disk, KBD, timer, …)
§ Initialized at boot time

ü E.g.: System call processing
§ System call (e.g. fork()) è trap è save context and switch stack è jump to

the trap handler è eventually in kernel mode
§ Return from system call è switch stack and restore context è jump to the

next instruction of the system call è user mode

23

divide_by_zero()
page_fault()
segment_fault()
…
system_call()

trap table

0
1
2
..
80

J. Choi, DKU

6.2 Problem #1: Restricted Operation

Global view

24

Initialize
(Boot)

Process
create

Limited
(syscall)

Process
destroy

Direct execution

Direct execution

J. Choi, DKU

6.2 Problem #1: Restricted Operation (optional)

System call Implementation: Linux case study

25

Trap Table

(IVT, IDT)
divide_error()

debug()

nmi()

….

0x0

system_call()

….

Kernel
user task
main()
{

….
fork();

}

libc.a
….
fork()
{

….
movl $2, %eax
int $0x80
….

}
….

ENTRY(system_call) /* arch/i386/kernel/entry.S */
SAVE_ALL
….
call *SYMBOL_NAME(sys_call_table)(,%eax,4)
….
ret_from_sys_call (schedule, signal, bh_active,

nested interrupt handling)

0x80

sys_call_table

sys_exit()

sys_fork()

sys_read ()

sys_write ()

….

1
2
3
4

sys_fork()

/* arch/i386/kernel/process.c */

/* kernel/fork.c */

(Source: 리눅스 커널 내부구조, 6장)
E Note: This mechanism is a little different in 64bit CPU, but the concept is the same

J. Choi, DKU

6.3 Problem #2: Switching between Processes

Control mechanism 2: Context switch with Timer interrupt
ü Time sharing: Process A è Process B è Process A è ….
ü By the way, how can OS regain control of the CPU so that it can

switch between processes?
Two approach
ü A cooperative approach: exploiting system calls

§ Processes use a system call è control transfer to OS è do scheduling
(and switching)

§ A process causes exception (e.g. page fault or divide by zero) è
transfer control to OS

§ A process that seldom uses a system call è invoke an yield() system
call explicitly

§ No method for a process that does an infinite loop
ü A Non-cooperative approach: using timer interrupt

26

J. Choi, DKU

6.3 Problem #2: Switching between Processes

A Non-cooperative approach: using timer interrupt
ü Interrupt: a mechanism that a device notify an event to OS

§ Interrupt happens è current running process is halted è a related
interrupt handler is invoked via interrupt table è transfer control to OS

ü Timer interrupt (like a heart in human)
§ A timer device raises an interrupt every milliseconds (programmable) è

a timer interrupt handler è do scheduling (and switching) if necessary

ü Context switch
§ Context: information of a process needed when it is re-scheduled later

è hardware registers
§ Context save and restore

• E.g. 1) Process A è Process B: save the context of the process A and
restore the context of process B. 2) later Process B è Process A: save the
context of the process B and restore the saved context of process A

• Where to save: proc structure in general

27

J. Choi, DKU

6.3 Problem #2: Switching between Processes

Context switch: global view

28

Initialize
(Boot)

Interrupt
(timer)

Scheduling
and Context Switch

Return from
Interrupt

Process create
Direct execution

J. Choi, DKU

6.3 Problem #2: Switching between Processes

Context switch
ü Memorize the last state of a process when it is preempted

§ Context save (state save): storing CPU registers into PCB (in memory)
§ Context restore (state restore): loading PCB into CPU registers

ü Context-switch time is overhead (the system does no useful work
while switching) è utilizing hardware support (hyper-threading)

29

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

6.3 Problem #2: Switching between Processes

Context switch: pseudo code

30

J. Choi, DKU

6.4 Worried about concurrency?

Some issues
ü What happens when you are handling one interrupt and another one

occurs?
ü What happen when, during a system call, a timer interrupt occurs?

Some solutions
ü Disable interrupt (note: disable interrupt too long is dangerous)
ü Priority
ü Locking mechanism
ü è actually Concurrency issue

31

J. Choi, DKU

Summary

Process (Chapter 4)
ü Process definition, Process state
ü Process management (PCB, struct proc, struct task)

Process manipulation (Chapter 5)
ü fork(), wait(), exec(), kill() , …

Mechanism (Chapter 6)
ü Limited Direct Execution: 1) Mode switch, 2) Context switch
ü Key terms

32

J. Choi, DKU

Quiz for this Lecture

Quiz
ü 1. Process is defined as a running program. Discuss what

information are managed in PCB (Process Control Block).
ü 2. Discuss the state of the parent and child process in the below left

program just after line 8, 13 and 16, respectively. (assume that the
parent is scheduled before the child)

ü 3. Discuss the differences between trap and interrupt.
ü 4. Discuss how many mode switch and context switch happen in

the below right figure.

33

(Source: pediaa.com/difference-between-trap-and-interrupt/)

(Source: xerxes.cs.manchester.ac.uk/comp251/kb/Context_Switching)

J. Choi, DKU

Suggestion

Read the questions in OSTEP Chapter 5 (homework) and
Chapter 6 (Measurement homework)
ü Exercise them in a Linux machine (Ubuntu on Virtual box or server)

34

J. Choi, DKU

Appendix

Answers for questions commonly asked by students

ü Q1: same address in the two processes?
ü Q2: why not 1è 2 è 3 è 4 è ….
ü Key concept: Program è CPU using Compiler and OS

(Source: Chapter 2 in OSTEP)

int a, b;
…
main()
{

int c, d
…

}
Compiler

c
d

Program Binary (virtual address)

b
a

main

int a, b;
…
main()
{

int c, d
…

}

text
data

stack

0

100

772

c
d

b
a

maintext
data

stack

0

100

772

OS
(loading)

DRAM (physical address)

a
b

a
b

240

568

OS
OS

(schedule)

CPU 35

