DANKOOK UNIVERSITY

Lecture Note 9. Paging and
Beyond Physical Memory

May 29, 2024
Jongmoo Choi

Dept. of Software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(Copyright © 2024 by Jongmoo Choi, All Rights Reserved. Distribution requires permission.)
[J. Choi, DKU

Contents

s From Chap 18~22 of the OSTEP

s Chap 18. Paging: Introduction
v Page Table
v Address Translation and Memory Trace

s Chap 19. TLB (Translation Lookaside Buffer)

v Faster Translation
v TLB hit: Fast translation vs TLB miss: TLB management

s Chap 20. Advanced Page Tables
v Multi-level Page Table
v Inverted Page Table
s Chap 21. Beyond Physical Memory: Mechanisms
v Memory Hierarchy and on-demand loading
v Swap and Page Fault
s Chap 22. Beyond Physical Memory: Policies

v Cache management model: Locality, Trashing
v Page replacement policies: FIFO, LRU, OPT, Approximate LRU, ...

I J. Choi, DKU

Executive Summary

s Comparison among contiguous, segmentation and paging
v Contiguous allocation: based on base, limit register

v Non-contiguous allocation
= Segmentation: variable size

» Paging: fixed-size

Ba%e/ﬁnﬂtreg.

process

Physical memory

(Contiguous allocation)

process

Physical memory

(Segmentation)

3

process

Physical memory

(Paging)
J. Choi, DKU

Executive Summary

s Comparison among contiguous, segmentation and paging
v Contiguous allocation: based on base, limit register

v Non-contiguous allocation

= Segmentation: variable size
» Paging: fixed-size

T >

Ba.ise/limit reg.

process

Physical memory

(Contiguous allocation)

process

Seg"'i,nent

Registers
(Segment

Ta ble""').,‘__
.

Physical memory
(Segmentation)

4

process

Physical memory

(Paging)
J. Choi, DKU

Executive Summary

s Comparison among contiguous, segmentation and paging
v Contiguous allocation: based on base, limit register

v Non-contiguous allocation
= Segmentation: variable size
» Paging: fixed-size

........... >
DN E e, [—
e S > e, .' o
Ba;se/ limit reg: e A >
| Segzig‘lent
process process Registers process Page:%table
(Segment '
Table),
N |
Physical memory Physical memory Physical memory
(Contiguous allocation) (Segmentation) (Paging)
I J. Choi, DKU

5

Chap 18. Paging: Introduction

= Why paging?
v Two common approaches for non-contiguous management
= Variable size: segmentation
Sharing, Protection support
Address translation: using segment table

But, memory becomes fragmented (external fragmentation), thus allocation
becomes more challenging over time

» Fixed size: paging
No external fragmentation, Easy for HW supports (e.g. TLB)
v Terms for paging
» Virtual memory: divided into a fixed size unit called page
» Physical memory: also divided into a fixed size unit called page frame

= Address translation: using page table

Page O

PFO
PF1

Poge 1 Page table

Pageo 2 [PF2

Page3 \ =1

Paged PFa
= PFS

Pagen-1 =y

Page n PFn

I Virtual Memory Physical memory J. Choi, DKU

18.1 A simple example and overview

s Example of Paging

v Virtual memory
» Tiny address space of a process: 64B total size, page size: 16B = 4

pages in an address space

v Physical memory
. T|ny physical memory: 128B, page frame size: 16B =» total 8 frames

16

32

48

64

Frame O for OS itself

Frame 2, 3, 5 and 7 for the process (Note that they are not contiguous and

not in order)

Other frames are managed by a free list (a bitmap or list is enough)

(page 0 of the address space)

(page 1)

(page 2)

(page 3)

Figure 18.1: A Simple 64-byte Address Space
[

0

16

32

48

64

80

96

112

128

reserved for OS

(unused)

page 3 of AS

page 0 of AS

(unused)

page 2 of AS

(unused)

page 1 of AS

page frame 0 of physical memory
page frame 1
page frame 2
page frame 3
page frame 4
page frame 5
page frame 6

page frame 7

Figure 18.2: A 64-Byte Address Space In A 128-Byte Physical Memory

7

J. unolt, AU

18.1 A simple example and overview

s Page table

v A data structure that records where each page is placed in physical
memory (which frame): same role as segment table

v Per-process data structure
v Used for address translation
» Virtual address: 4 = physical address: 3 x 16B + 4 = 52

= Virtual address: 44 =» physical address: 5 x 16B + 12 = 92
» Virtual address: 21 =» physical address: 7 x 16B + 5 =117

(page 0 of the address space} " reserved for 0S page frame 0 of physical memary
16 {unused) page frame 1
i 32
(page } page 3 of AS page frame 2
32 48
(page 2} . page 0 of AS page frame 3
48 {unused) page frame 4
80
(page 3} Page ta ble fOI' prOCGSS page 2 of AS page frame 5
64 9%
{unused) page frame 6
12
Figure 18.1: A Simple 64-byte Address Space g L RIS | pegetamed

= Note: all pages are not required to locate in physical memory = demand paging (chap. 21)
Figure 18.2: A 64-Byte Address Space In A 128-Byte Physical Memory J

18.1 A simple example and overview

s Address translation in formal

v Address size

= Address space size: 64B =» virtual address size: 6-bit (26 = 64B)
c.f.) Address space size of 32-bit CPU: 4GB =» address size: 32-bit (232 = 4GB)

= Physical memory size: 128B =» physical address size: 7-bit (27 = 128B)
v Virtual address: consists of VPN (virtual page number) and offset
» Page (and frame) size: 16B =» offset size: 4-bit. As the result, the remaining 2-

bit becomes VPN (note that there are 4 pages (22))

= VPN is used for searching page table: VPN =» PFN (Physical Frame Number)

v Physical address

» PFN x page size + offset (VPN is translated while offset is not)

v Example

= Virtual address: 21 =» bit: 01 0101 =» VPN: 01, offset: 0101 = PFN: 111 =>»

111*16B + 0101 =>» physical address: 117

VPN offset

[: 1 :

Va5 | Va4 | Va3 | Va2 | Val | Va0
VPN offset

0 1 0 1 0 1

WP offset
Wirtual
Address 2 4 E a 1
3
7 Address
5 Translation
2
Physical
Address 4 -k 1 + - L
PFEMN offset

Figure 18.3: The Address Translation Process

J

18.1 A simple example and overview

s Address translation summary

v 1. Virtual address is divided in two parts: page number(p) and offset(d)
» Page number: used as an index into a page table (also known as VPN)
» Offset: used to locate the physical address within a frame

v 2. Each entry of the PT contains the starting address of the
frame.(PFN)

v 3. Combining the starting address with the offset =» physical address

}f
logical physical

address address fOO0O0 ... 0000

cPU

fA441 ... 1111

physical
memory

page table

(Source: A. Silberschatz, “Operating System Concept”)

I J. Choi, DKU
10

18.2 Where Are Page Table Stored?

= How to manage page table?
v Per process data structure

v Stored in PCB (or separated data structure linked with PCB) in kernel
space = in memory

32

48

b4

80

%

112

128

Figure 18.4: Example: Page Table in Kernel Physical Memory

task_struct
=)€

page table: .

1769 page frame 0 of physical memory

inused page frame 1
page 3 of AS page frame 2
page 0 of AS page frame 3

{unused) page frame 4
page 2 of AS page frame 5

{unused) page frame 6

thread

page 10f AS page frame 7

(Source: S. Baek, “2lsSA HE HUEF2X")

J. Choi, DKU

18.2 Where Are Page Table Stored?

= Why in memory? (instead of CPU)
v Note that the base/limit register is in CPU.

v Since the page table is too large. _
» 32-bit CPU, page: 4KB = offset: 12-bit, VPN: 20-bit
= 220 entries in a page table = PTE (Page Table Entry)
= Usually 4B per PTE = 220 x 4B = 4MB size T

v Assume that there are 100 processes
= 100 x 4MB = 400MB for page tables
* Too big to fitin a CPU =» place them in memory

s |wo Issues

v Each memory access requires address translation = translation
needs to access a page table =» page table is in memory =» Does
this mean that each memory access actually requires two memory
accesses? = LB (Translation Lookaside Buffer) = Chapter 19

v Even though they are in memory, they are still big = fixed size
chopping requires a large amount of mapping information = multi-
level page table or inverted page table = Chapter 20

L 220

nm (N W|N(W

I J. Choi, DKU
12

18.3 What's actually in the Page Table?

s Page table

v Consists of PTEs(Page Table Entries), where each maps a page into a
page frame (map a virtual address into a physical address)

= |ike an array where each entry is indexed by VPN, having PFN as the value
of each entry

v In addition, each PTE has several information bits

= P (Present bit): whether this page is in physical memory or on disk (swap
out)

R/W (Read/Write bit): Whether writes are allowed to this page

U/S (User/Supervisor bit): if user-mode processes can access the page
A (Access bit, a.k.a. reference bit): for replacement

D (Dirty bit): whether the page has been modified

Others
G, PAT, PCD, PWT: determine how HW caching works for the page
Valid bit: used or unused (e.g. space between stack and heap which is not used)
Various Protection bits

.. e 31 30 20 28 27 26 26 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 ¥ 6 & 4 3 2 1 0
g PrN | [o|=][=]<|28[=|5[Z]~]

nE [NN|NW

Figure 18.5: An x86 Page Table Entry (PTE)

< What is the difference between page fault (P bit) and segmentation fault (Valid bit)?
I J. Choi, DKU
13

18.4 Paging: Also Too Slow

s To access memory (e.g. mov 21, %eax) }
v Fln d PTE a d dreSS » address Adcress [10000 -+ 0000

= PTBR: Page table base register {
v Fetch PTE /* access memory */ —

v Check bits —
v Fetch physical address /* access memory again */

R0 T A== 1 N1

/7 Extract the VPN from the wvwirtual address

1

2 VPN = (VirtuallAddress & VPN _MASK) =>>» SHIFT

3

4 // Form the address of the page—table entry (PTE)
5 PTEAddr = PTBR + (VPN * sizeof (PTE))

6

7 i telr—tir=FTE-

8 <E§Ef£_§CEESSM6mDIF{PTE%EEEI:>

9

10 // Check 1f preocess can access the page

11 if (PTE.Valid == False)

12 RaiseException (SEGMENTATION FAULT)

13 else 1f (Canficocess (PTE.ProtectBits) == False)

14 RaiseException (PROTECTION_ FAULT)

15 else

16 /S Access is 0OK: form physical address and fetch it
17 offs=t = Wirtualliddress & OCOFFSET MASK

18 PhyshAddr =—PFFE-PFHN REN_SHTIFT) | offset

- |
k=

R{§E§E§£;= AccessMemory (PhysAd)

Figure 18.6: Accessing Memory With Paging
14

. Choi, DKU

18.5 A Memory Trace

= High-level viewpoint il ey T 00K ;

for: (1 = 0F i = 1800; i++t)
arrayl[i] = 0;

s Assembly viewpoint

1024 movl $0x0, (%edi, Seax, 4)
1028 incl %eax
1032 cmpl $0x03e8, %eax

= Memory trace oEE fps Smae

v Assumption o
= Page/frame size: 1KB (1024B) B
= Code: VPN:1, PFN:4 (PA = 4*1024) é
= Array: VPN:39, PFN:7 (PA =7*1024) \ it
= PT: located in PA 1024 I e _

v Figure 18.7: first five loop E e . . [
= PT[1] for instruction address g "™z gge e
= Instruction fetch 8] ey ammy ammy emmy ams| . B
» PT[39] for data address O T Memeyacess
= Data fetch Figure 18.7: A Virtual (And Physical) Memory Trace

10 memory accesses per each loop (4 for instruction, 1 for data, 5 for PT)

I J. Choi, DKU
15

Chap. 19 Paging: Faster Translations (TLBs)

= [LB (Translation Lookaside Buffer)

v A part of MMU (Memory Management Unit) for faster translation

v Cache of recent used PTEs (popular virtual-to-physical pairs) = a
better name would be an address-translation cache

v Translation step: 1) HW first check TLB, 2) if (hit), translation
performs quickly without having to consult PT, 3) otherwise, access
PT, 4) update TLB to cache the recently used PTE

logical
GPU maodule Execution unit

C address
tr / - HeesEE ral ion i _’!T’_Jj_‘
/’ ' > -

page frame

number number

lzg TLB hit physical

E | address
f d
F 3

TLB

p {
TLB miss

f

MIFS R4X00:
RS000, RSO0 or R10000

S physical
memory

page table

(Source: Google Image) (Source: A. Silberschatz, “Operating system Concept”)
J. Choi, DKU

16

19.1 TLB Basic Algorithm

v Hit =» only one memory access (line 7)

= How HW might handle an address translation?

v Miss = two accesses, one for PTE (line 12) and the other for read

data access (line 7 via line 19) + TLB u
v Locality: most accesses hitin TLB

pdate (line 18)

W L R A

T e e e e e)
=l th o Wk = SO W s oW

—_—
Lo T]

VPN = (VirtualAddress & VPN MASK) >> SHIFT
(Success, TlbEntry) = TLE Lookup (VPN)
if (Success == True) /7 TLB Hit

if (CanhAccess (TlbEntry.ProtectBits) ==

True)

Offset = Virtualhddress & OCOFFSET MASK

PhysaAddr
Registe&r
else

(T1bErtrePFN—< SHIFT)

TTTL

AccessMemory (PhysAddr)

RaiseException (PROTECTION FAULT)
else Y TLB Miss
PTEAC — T TER + (VPN =*= =41 {ETEY} }
PTE{CCESSM@?HDI}! {PTEA&E
if (PTE.Valittog —TFogi==)
RaiseException (SEGMENTATION FAULT)
else if (CanhAccess (PTE.ProtectBits) ==
RaiseException (FROTECTION FAULT)
else

| Off=sa=t

False)

Figure 19.1: TLB Control Flow Algorithm

17

J. Choi, DKU

19.2 Example: Accessing an Array

s Example code
v inta[10] = 4B x 10
v Page size: 16B =» 4 array entries at most =» Assume Figure 19.2 layout

v Memory access behavior
= Access a[0] =» TLB miss =» two memory accesses
» Access a[1],a[2] = TLB hit =» one memory access
= Access a[3],a[7] = TLB miss, Access a[4/5/6], a[8/9] = TLB hit
= TLB hit ratio: 70% (usually > 99% in general) s

(o] 8] 04 08 12 16

VPN = 00
VPN = 01

int sum = 0; VPN — 02

S Z Lo VPN = 03

Eor i 0; 1< 10; i++) e oy

sum += al[i]; VPN = 05
VPN = 06 i a[0]_; al1l | al=]

} VPN — 07 | 231 : al4l | al5] | alsl

VPN = 08 a[r7] | a[2] ;| are] .
VPN = 09
VPN = 10
VPN = 11
VPN =12
VPN =13
VPN =14
VPN =15

igure 19.2: Example: An Arxray In A Tiny Address Space

<= |f the page size is 32B, how is TLB miss ratio?
= What about if there exists an outer loop? (e.g. “for (j=0; j<2; j++)”)

18

J. Choi, DKU

19.2 Example: Accessing An Array

s Use caching when possible

TiP: UsSsE CACHING WHEN POSSIBLE
Caching is one of the most fundamental performance techniques in com-
puter systems, one that is used again and again to make the “common-
case fast” [HPO06]. The idea behind hardware caches is to take advantage
of locality in instruction and data references. There are usually two types
of locality: temporal locality and spatial locality. With temporal locality,
the idea is that an instruction or data item that has been recently accessed
will likely be re-accessed soon in the future. Think of loop variables or in-
structions in a loop; they are accessed repeatedly over time. With spatial
locality, the idea is that if a program accesses memory at address =, it will
likely soon access memory near . Imagine here streaming through an
array of some kind, accessing one element and then the next. Of course,
these properties depend on the exact nature of the program, and thus are
not hard-and-fast laws but more like rules of thumb.

Hardware caches, whether for instructions, data, or address translations
(as in our TLB) take advantage of locality by keeping copies of memory in
small, fast on-chip memory. Instead of having to go to a (slow) memory
to satisfy a request, the processor can first check if a nearby copy exists
in a cache; if it does, the processor can access it quickly (i.e., in a few
CPU cycles) and avoid spending the costly time it takes to access memory

(many nanoseconds).

You might be wondering: if caches (like the TLB) are so great, why don't
we just make bigger caches and keep all of our data in them? Unfor-
tunately, this is where we run into more fundamental laws like those of
physics. If you want a fast cache, it has to be small, as issues like the
speed-of-light and other physical constraints become relevant. Any large
cache by definition is slow, and thus defeats the purpose. Thus, we are
stuck with small, fast caches; the question that remains is how to best use

Em them to improve performance. Choi, DKU

Y

19.3 Who Handles the TLB Miss?

s [wo approaches
v HW-managed TLB
= HW has a logic to manipulate TLB including TLB update
» HW must exactly know the PT format, address format, ...
= E.g.) Intel CPU = CISC
v SW-managed TLB

= HW simply raises an exception
= OS (TLB trap handler) explicitly manages TLB =» more flexible
= E.g.) MIPS, Sun SPARC v9 = RISC

VEN = (VirtualAddress & VEN_MASK) >> SHIFT

(Success, TlbEntry) = TLE Lookup (VPN)
if (Success =— True) // TLB Hit
if (CanAccess (TlbEntry.ProtectBits) == True)
Offset = VirtualhAddress & OFFS5ET MASK

=] S o e TS Bd e

PhysAddr = (TlbEntry.FPFN << SHIFT) | Offset
Fegister = AccessMemory (PhysAddr)

8 else

g RaiseException (PROTECTION FAULT)

0 else // TLB Miss

11 RaiseException (TLE_MISS)

Figure 19.3: TLB Control Flow Algorithm (OS Handled)

I J. Choi, DKU
20

19.4 TLB Contents: What's in There? (Optional)

= ATLB entry
v VPN + PFN + bits (32 or 64 or 128 bits)
VPN | PEN | other bits
v Bits
= Valid bit: whether the entry has a valid translation or not

» Protection bits: R/W/E
» Others: ASID (Address-Space IDentifier), dirty bit, ...

v Fully-associative

= Can place any entry] e
v Search in parallel B s

TLB hit physical

F 3

TLB

p {
TLB miss

f

physical
memory

page table

(Source: A. Silberschatz, “Operating system Concept”)

I J. Choi, DKU
21

19.5 TLB Issue: Context Switches (Optional)

= LB
v Contains virtual-to-physical mapping

v Only valid for current-running process
» Context Switch = need to invalid or distinguish TLB entries btw processes

v Example
= P1: VPN 10 - PFN 100, P2: VPN 10 - PFEN 170

= P1run =» P1 accesses VPN 10 = CS from P1 to P2 = P2 accesses VPN
10 =» Case 1: cause problem
= Solution: 1) flush before CS (set all valid bit as 0) = case 2, 2) ASID
(Address Space IDentifier) =» case 3
. TLB flush is a heavy operation = causing high TLB misses

22

VPN | PEN | valid | prot VPN | PEN | valid | prot VPN | PEN | valid | prot | ASID
10 100 1 TWX 10 100 0 WX 10 100 1 TWX 1
10 170 1 T'WX 10 170 1 WX 10 170 1 WX 2
_ S 0 _ _ _ 0 _ —_ _ 0 _ —_
Case 1) Case 2) Case 3)
[J. Choi, DKU

Chap. 20 Paging: Smaller Tables

s Page table

v Locate in main memory
» 1) Increase the number of memory accesses = TLB (chapter 19)
= 2) Space overhead =» this chapter
v How large it is?
= 32-bit address space (232), 4KB page size (2'?) = PTEs in PT = 220
» PTE size = 4B = 4MB for a PT (read page 1 of chapter 20 in OSTEP)

* Note that PT is managed per a process (400MB if there are 100
processes) = May cause a memory shortage

v How to make smaller PT?
= Bigger pages (page size: 4KB = 2MB, called huge page)
= Hybrid approach: segmentation + paging
= Multi-level page table
* |nverted page table

I J. Choi, DKU

23

20.1 Simple Solution: Bigger Pages (Optional)

s Bigger pages
v 32-bit address space (232), 4B for PTE
= 4KB Page size (2'%) = PTEs in PT = 220 = PT size = 4MB
= 8KB Page size (2'3) = PTEs in PT = 2'9 =» PT size = 2MB
= 4MB Page size (22?) = PTEs in PT = 210 =» PT size = 4KB

v Pros): Simple, positive effect on TLB hit
v Cons): Internal fragmentation (waste of memory), heavy loading time

v How about multiple sizes for page?

= Support 4KB, 16KB and 4MB at the same time (like huge page + base
page in Intel)

* Pros): Flexible, less internal fragmentation
= Cons): Complexity in OS (still in progress)

&

)

I J. Choi, DKU

4

20.2 Hybrid Approach: Paging & Segments (optional)

= Hybrid approach
v ldea: Limit information in a segment can reduce PT size

v Simple example: 16KB address space, 1KB page size

» Use 4 pages (1 for code, 1 for heap and 2 for stack) = Fig. 20.1 (note: non-
contiguous)

» Place in page frame 10, 23, 28 and 4 respectively
= Paging only: Fig. 20.2
16 PTES, most PTEs are invalid

= Hybrid approach

Code: base =0, limit = 1K =» 1 PTE for code, Heap: base=4K, limit = 5K = 1 PTE
for heap, Stack: base=14K, limit = 16K = 2 PTE for stack

The limit register holds the maximum valid pages =» access above the limit
generates the segmentation fault = PT can hold valid page only

Virtual Address Space Physical Memory PFN wvalid prot present dirty
10 1 r-x 1 (@]
code o _ 0 S - -
X g
7 0 —
heap a1
g E 0 — - ,
5 23 1 rw 1 1
10 = 0 — = -
11 11
12 12 - (] -
13 13 v
stack ig £ 0 =
0 —
0 —
22 - () -
E - 0 _
S
& - 0 — - -
28 1 TW- 1 1]
4 1 TwW- 1 1
[Figure 20.1: A 16 KB Address Space With 1KB Pages Figure 20.2: A Page Table For 16KB Address Space v

25

20.2 Hybrid Approach: Paging & Segments (optional)

= Hybrid approach

v Intel CPU example
» Virtual address =» segmentation =» Linear address
» Linear address = Paging =» Physical address

Logical Addrass
{or Far Pointan)
Sacmerit "1'
Salactor rif=at Linear Addras=s
I 1 | | Spacea
- Linear Addras=s
Gilobal Dascriptor "
Table iGD‘IPj ——— =] Dir | Table | Offsat | Phgsnlﬁ]
Acddraess
Sppac e
Sagmant
Seamert FPags Talbles | Page |
g Doscriptor— | L _ _ _ _ _ | = i 2
=T = irectory Eh =
—a=1 | in. Sookdr e J__:__f_ﬁd_i_
Sagment ___J’.
Bascs Addroass .,
H"\-»..__
T Paga
I Sagmantaton I Paging H

Figure 3-1. Segmentaticon and Paging

(Source: Intel 64 and IA32 Architectures SW Developer’s Manual, Volume 3:

System Programming Guide)
J. Choi, DKU
26

20.3 Multi-level Page Table

s ldea

v Using structural PTs (instead of linear table) = multi-level table
» Page directory: each entry represents related PT
»= Can reduce a large number of unallocated page tables using valid bits in

the page directory

Linear Page Table

Multi-level Page Table

200

PFN

-

201

PFN

204

PTBR | 201 | PDER|
3, oo T =]
" =2 =
= PFN =
1] 12 _ 1
1] 13 = g 3]
o - _ E E 0
1 nw 100 1
of - - ou
0 =
0 i
D O
0 @
0 &
5] i
D o
o -
0 _ =
1] rw 86 i
1| rw 15 e

Figure 20.3: Linear (Left) And Multi-Level (Right) Page Tables

27

The Page Directory

2 |2 | prot

12

13

=|o|=|=]valid

2|

100

PFN 201

[Page 1 of PT: Mot Allocated]

[Page 2 of PT: Mot Allocated]

I

86

e
W

15

PFEN 204

J. Choi, DKU

20.3 Multi-level Page Table

s Example: how much memory space for PT can be reduced?

v Address space: 16KB (14bit), page size: 64B (6bit) = 256 PTEs (8bit)

= Assume 6 pages (0, 1, 4, 5, 254, 255) are used for code, heap and
stack=>» Figure 20.4

» Pages are allocated in frames 10, 23, 80, 59, 55 and 45, respectively
v How many frames are needed for PT in the linear approach?
» Total 256 PTEs = 16 PTE (64B/4B) in a frame =» 16 frames

v How about in the multi-level approach?
= 1 directory + 2 last-level PTs =» 3 frames (around 20%)

0 Page Directory Page of PT (@PFN:100) Page of PT (2PFN:101)
PFN wvalid? | PFN valid prot PFN valid prot
0000 0000 d
code 128 s s mde 100 1 10 1 r-x — 0 =
! casle — 0 23 1 r-x — 0 —
256 (0000 0010 (free) — 0 — 0 — — 0 —
heap 0000 0011 (free) - 0 — 0 — — 0 s
384 0000 0100 heap s 0 80 1 rw- . 1D —
0000 0101 heap — g 59 1] rw- — g -
0000 0110 (iree) - . - - — = -
0000 0111 (free) _ 0 0 _ — 0 _
.. allfree ... T 0 T 0 T T 0 o
— 0 - 0 — . 0 —
1111 1100 (froe) — 0 — 0 — — 0 —
16256 1111 1101 (free) - 0 — 0 - — 0 -
stack 1111 1110 tack B 4 B 0 B = 0 .
16384 = — 0 — 0 — 5 1 rw-
1111 1111 stack 101 1 — 0 — 45 1 rw-

] Figure 20.4: A 16KB Address Space With 64-byte Pages Figure 20.5: A Page Directory, And Pieces Of Page Table
/AR ©]

20.3 Multi-level Page Table

s Address translation

v Virtual address is divided into three parts: Directory index, PT index
and offset (instead of two parts: VPN, offset)

0

» Virtual memory size: 16KB =» address : 14bit L DY
= Page size: 64B = offset bit: 6bit neap |
= PTEs in a frame: 16 = PT index: 4bit
= PTEs in a directory: 16 =» Directory index: 4bit
VF,)N Oﬁfset 16256
13 12 11 10 9 8 Fi 5] 5 4 3 2 1 0 code 16384

L IL
Page Directory Index Page Table Index

Page Directory Page of PT (@PFN:100) Page of PT (@PFN:101)

PN valid? | PN valid ot | PN vaid pot . E.g. 1) VA =100 = 00 0000 0110 0100 & Directory: 0000,

100 1 10 1 T3 — 0

— 0 23 1 rx 0 PT index: 0001, Offset: 100100 =» PA=23*64B +32 + 4
(S 0 — (
: - = 0 E.g. 2) VA= 300 =>» 00 0001 0010 1100 =>» Directory: 0000,
0 1 s 0 PT index: 0100, offset: 101100 =» PA = 80* 64B + 32+8+4

0
0
0
0
0
0
0
0
0
1

0 =
0
0
0
0
0
0
0
0
0

0
0
0
0
0

E.g. 3) 16257 =11 1111 1000 0001 =>» Directory: 1111, PT
index: 1110, offset: 000001 =» PA =55 x 64B + 1
0

E.g. 4) VA= 200 => 00 0000 1100 1000 =» Directory: 0000,
X - PT index: 0011, offset: 001000 = invalid in PT

. ™ . E.g.5)VA=1030=> 000100 0000 0110 =» Directory:
i 20.5: A Page Directaty; And Pleces Of Page Table 0001, PT index: 0000, offset: 000110 =» invalid in directory

s J. Choi, DKU
29

T I O O =
oS

(&) Qe

[==1%
=
—
W 1

20.3 Multi-level Page Table

s Address translation in Pseudo-code
v Concerns of the Multi-level PT

» Address translation requires two accesses to PTs (vs. one access in the

linear approach)

» Increased HW complexity for multi-level translation
v Remember TLB = It can hide them
1 WEM = (Virtuallfddress & VPN _MASE) == SHIFT
=2 (Success, TIiIbhEDnDtIw} — TILEBE T.cokup (VEIMN)
3 ifr (Success —— Truse) A TLEBE Hitdo
4 S s (Canficcess (TlhbEntrvyv . . ProtectBits) == T rue)
= Offsaet = WWirtualidddress & OFFS5SET MAOASK
& Physbhddr = {TI1IbiEntryv.PEFN << SHTITET) | Offset
7 RPFegister = AccessMemory (Physaddr)
s else
=l Rajisebhxception (PROTECTION FAUUI.T)
10 elsae Y TLEB Miss
11 S EFirst, gelt page directocry entbtrwy
12 PDIndsxx — (WVEN = PD_MASK) == PD _SHIEFET
13 PDEAAdddr = PDBR -+ (PDInd=xx e sizeof (PDE))
14 PDE = AccessMemoryw (PDEAddAr)
15 45 (PDE . Valid == Falss)
16 RajisebException (SEGMENTATION. FAUILT)
17 else
18 Y PDE is walid: now fetch PTE fTrrom page tcable
19 PTIndex — (VPN & PT MASKE) >>> PT SHIFEFT
20 PTEADDr =— (PDE . PFNMN << SHIFET) + (P TIndex £ sizecocf (PTE))
21 PTE = hAhccessMemory (PTEAdddr)
22 iF (PTE . Valid =—— Falss)
2 Raijiseffxception (SEGMBENTATION FAUILT)
24 else iT (CanAccess (PTE . ProtcectBits) == False)
25 RaljisebExcepition (PROTECTION FAUUILT)
26 else
27 TLE TITnsert (VEPN, PTE . PEIMN, PTE . ProcectBits)
28 RetryInstruction ()

I Figure 20.6: Multi-level Page Table Control Flow

30

g. unuil, DKU

20.3 Multi-level Page Table

s More than two levels

v Virtual address: 30-bit, page size: 512B
» Address: 30bit, offset: 9bit = VPN: 21bit, PTEs in a page: 128 (512/4)

= 2-level: left figure

PT index = 7 bit (27 = 128), Page directory: need to cover remaining 14-bits = 24
PTEs = 128 pages for Page directory

= 3-level: right figure

PT index = 7 bit, PD index0 = 7 bit (upper-level), PD index1 = 7 bit =» one page
for PD index0, PD index1 and PT needed only for valid PTEs =» save memory

= Intel: 32-bit=>»2-level, 64-bit =>» 4-level

VPN

offset

VPN offset

|29]28]27]2625]24[23]22]21]20[19]18]17]16]15[14]13[12[11][10] 0 [8 [7 [6[5 |4 [3] 2] 1] 0]
L Il |

T
Page Directory Index

T
Page Table Index

|29]28]27]26]25]24]23]22]21]20]19[18]17]16]15]14]13]12]11][10] 9 [8| 7 [6| 5[4 [3] 2] 1] 0]
L 1L Il |

T T T
PD Index O PD Index 1 Page Table Index

31

Linear Address

22 71 12 11

0

| Directory |

Table | Offset

10
Page Directory

PDE with P5=0

12 4-KByte Page

47

Linear Address
39 3a 30 29 21 20 122 11 5]

| PmL4 | Directory Pr | Directory | Table | Offset

a8

Physical Address

‘ﬁm Page Table
PTE

=] j
= 4-KByte Page

40 Page Table

Page-Directorny
40

PDPTE

ﬁ 1
Physical Addr
= PTE
Page-Directory- PDE with PS=0 40
Pointer Table

~Ta

T E

CR3

20

%o

| e

— PMLAE

40
CR3

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

ur

rcni

ur

V ers Mgl:rual, Volume 3% System Programming Guide, ChapteIJ'4

Figure 4-8. Linear-Address Translation to a 4-KByte Page using l1A-32e Paging

SJhoi, DKU

20.4 Inverted Page Tables

s Page table

v VPN = PFN, One per process in a system

= Inverted Page Table

v PFN =>» VPN, Only one in a system (hence reduce memory for PT)
» Page table index: physical frame number (one entry per physical page)
= PTE: virtual page number, process ID that maps the physical page

v Address Translation

» Need search: 1) linear scan, 2) hash

logical

physical

address
CPU —>pid| p | d |

r

search l

Crpa T physia
"l memory

)

pid | p

page table

logical
address

CPU

physical

address

f0000 ... 0000

T

|

@
A

111 ... 111

f

page table

physical
memory

(Source: A. Silberschatz, “Operating system Concept”)
I

32

J. Choi, DKU

Chap. 21 Beyond Physical Memory: Mechanisms

= Memory hierarchy

v Register, Cache, Memory, Disk (or SSD), Sever, ...

v VM (Virtual Memory) focus on Memory and Disk
= Memory: relatively fast but small
= Disk: relatively slow but large

v OS wants to execute multiple processes at the same time
* Frequently accessed data =» place in memory

= Seldom accessed data = place in disk, bring into memory if necessary (
demand loading or demand paging)

Virtual memory Physical
(per process) memory

E

Smaller,

laster, } CPU rogiaters hald words retrioved
and from L1 cache

cosilier L1 on-chip L1
|(per byte) cache (SRAM) } L1 cache holds cache lines retrieved

r:::v[lange-: u/ ul‘f—chlp L2 froem tha L2 cachs memory

LE cache holds cache lines

cache (SRAM)]

retrievad Irom main mamory
L3: main memory
DRAM
Larger, () Mair memory holds disk
slower,

Bocks relrieved lroim local
and] disks
cheaper L4: local secondary storage
(per byte) {local disks)
slorage l Local disks hokd tiles

ratrievesd from disks an

L)
‘\
\“
\“
.
dewces remole nebwork servers L " . “ 2)
LS: remotle secondary storage | —
| (distributed file systems, Web servers)

J. Choi, DKU
33 Disk

21.1 Swap space

s Swap definition

v Space in disk for moving pages back and forth

» To migrate data from memory to disk when available memory space is
insufficient

= Moving granularity: page vs. process
When: light vs heavy memory hungry condition
How: replacement policy (LRU pages, low-priority processes)
= E.g.) 4 frames and 8-page swap space
Proc 0/1/2 = ready or running, Proc 3 = suspended (swap out)

operating ~— PFNO PFN1 PFN2 PFN3
svstem Physical | Proc0 | Proc 1 | Proc 1 | Proc 2
Memo VPN O PN 2 VPN 3 PN O
Domap o | [Process 7 y | I] | VPN 2] | [VPN3] | [VPNO]
@ sweapii process P, Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block & Block 7
[Swap Proc 0 | Proc 0 Proc 1 | Proc 1 Js{elel Proc 2 R (elei]
W !,/ Space | [vPNi] | [vPNn2] | [Freel | venop | [ven 1] VRSN [vPN 1] VRN
Race backing store
main memory
(Source: A. Silberschatz, “Operating system Concept”) Figure 21.1: Physical Memory and Swap Space

s Benefit

v Allow to support the illusion of a large virtual memory for a process
(usually larger than physical memory)

v Transparent to programmers (vs. memory overlay)

I J. Choi, DKU
34

21.2 Present Bit / 21.3 Page Fault

s Presentbitin PTE

v To identify whether a page is in memory or swap out
» Present bit == 1, access the page
» Present bit == 0, =» page fault
s Page fault
v Trigger page fault handler that bring the page from disk to memory
v From swap space or from a file (e.g. demand loading)

(:;D Page is on
Emel backing storae I .
e o=t
[~ R
operating
Systerm
=2
reference ap
e
Ioac N = |
de>
restart Page able
Iimnstructicon
free frarme — ———— R
s> Cas
reset pagese D rirmc
= bl missing pags
P hnysics
TR rrio rw

(Source: A. Silberschatz, “Operating system Concept”)

= Features of paging: easy to support demand loading (fast execution), HW friendly, fixed, ..

= Load a page in virtual memory = Read a disk block in file system (using inode) 2 VM

and FS works together in an integrated manner.

I J. Choi, DKU
35

21.4 Page Fault Control Flow

s HW control flow

1 WP = (VirtualAddress & VPN _MASEK) >> SHIFEFT

2 (Success, TlbEntrzy) = TILEB T.ocockup (VER)

3 if (Success == Truce) Y TLEB Hi ke

4 IF (Canlicecess (TlbEntry .ProcectBits) == Tru=s)
= OFffsaet = WVirtuallAddress & OFFSET MASK
(S Physhddr = ({(TIbEntryv . PFN == SHIFI) | Offset
7 Fegister = AccessMemory (PhyshAddrz)

8 elsas

o RaiseException (PROTECTION FEFAUILT)

10 else Y TLE Miss

11 PTEAdddr =— PTBR + (VPN » sizect (PTE))

12 PTE = AccessMemory (PTEAJddr)

13 o (PTE . Valid == False)

14 RaiseException (SEGMENTATION FAUI.T)

15 elsa

16 2 ({(Canbccess (PTE . ProtectBits) == Falss)
17 RaiseException (PROTECTION FAULT)

18 else ifT (PTE .Present =— Truce)

19 Y o assuming hardware-—managed TLE

20 TI.B Tnsert (VEN, PTE.PEFN, PTE.ProtectBits)
21 RetryvyInstruct iocr ()

2 els = (PTE .Present — ko
23 RajisekException (PAGE FAUILT)

Figure 21.2: Page-Fault Control Flow Algorithm (Hardware)

s SW control flow

1 PEFN = FindFreePhysicalPage ()

2 if (PFN — —1) /S nmo free page found

3 PFM = EvictPage S run replacement algorithm
DiskRead{PTE.DiskAc@‘n} S/ sleep (walilting for I/0)

] PTE . pPresornt — 1 rde A/ update page table with present

6 PTE.PFN = PFNMN Y it and translation (PFN)

7 RetryInstructicn () Jf retry instructicon

Figure 21.3: Page-Fault Control Flow Algorithm (Software)
= What are the differences between the page fault and segmentation fault?

< What if there is no free frame? = Evict ‘see Chapter 22) | Choi. DKU
. ol,

36

Chap. 22 Beyond Physical Memory: Policies

s Demand paging (a.k.a. demand loading)
v Make mapping information without actual loading (fast execution)

v Start running = occur page faults = loading in a lazy manner (we
can load pages that are actually used)

v Life is easy where there are a lot of free frames
s When little memory is free

v Memory pressure forces OS for paging out to make room
v Replacement policy: decide which page (or pages) to evict

Data Blocks on Disk

J. Choi, DKU
37

22.1 Cache Management

s Goal
v Maximize cache hit (minimize cache miss)

s Model

v Average memory access time (AMAT)
AMAT = (Puait-Tm)+ (Pumiss - 1ID)

= Where
Ty: memory access latency
Tp: disk access latency
P.: probability of finding data in the cache (P, =1 — Ph;)
» Example (Details can be found in the page 2 of chapter 22 in OSTEP)
Assume that T,,= 100ns, Ty;= 10ms (10,000,000ns)
P, 50% = AMAT = 0.5 x 100 + 0.5 x 10,000,000 = 5,000,050 = 5ms
P 90% = AMAT = 0.9 x 100 + 0.1 x 10,000,000 = 1,000,090 = 1ms
P 99% =2 AMAT = 0.99 x 100 + 0.01 x 10,000,000 = 100,099 = 0.1ms
= Hit ratio is quite important
Expected hit ratio = S,, /S, if an access pattern is the uniform distribution
Remember locality which makes it feasible to obtain high hit ratio

= Note: right model is also applicable (more accurate) = ANAT = Ty + Py Tp) N

38

22.2 Optimal Replacement Policy

s Optimal replacement policy (known as MIN)

v Evict a page that will be accessed furthest in the future
= Best replacement policy
» Not implementable (comparison purpose, quite useful)
v Example
» Reference string: 01201303121
= Cache size: 3 frames
= Hit ratio = 6/11 = 54.5%

» Compulsory miss (Cold-start miss), Capacity miss, Conflict miss (Direct
mapping or set-associative case)

Resulting
Access Hit/Miss? Evict Cache State
Miss
Miss
Miss
Hit
Hit
Miss 2
Hit
Hit

[o i

Hit
Miss 3
Hit

55 Y Ny S TS QO N gt G B
L " m m W 5 om0

HNEHWOWRON=O
bW W W WA

B B g A g A

o
=
b

Figure 22.1: Tracing The Optimal Policy

I J. Choi, DKU

39

22.3 A Simple Policy: FIFO

s FIFO (First In First Out)

v Evict a page that was brought into memory for the first time
» Like the FCFS scheduling policy (first-in page in a queue)

v Example with same reference string (0120130312 1)
= hit ratio = 4/11 = 36.4%

Resulting,
Access Hit/Miss? Ewvict Cache State
] Miss First-in—]
5 Miss First-in— 0,1
2 Miss First-aim— 0.1, 2
0 Hit First-im— 3 ey
1 Hit First-imn— 0,1, 2
3 Miss (] First-aim— 1, 2.3
0 Mliss 1 First-im— 2. 3.0
3 Hit First-imn— 2.3, 0
1 Miss 2 First-in— 3,.0,1
2 Mliss 3 First-im—)
1 Hit First-in— 0, 1,2

Figure 22.2: Tracing The FIFO Policy

v Pros) Simple
v Cons) Not considering locality, Belady’s anomaly (less hit ratio with
larger cache)
= Anomaly example: 1,2,3,4,1,2,5,1,2,3,4,5 with 3 and 4 frames

I J. Choi, DKU
40

22.4 Another Simple Policy: Random

s Random
v Evict a page chosen randomly

v Example: same reference string (01201303121)
» hit ratio = 5/11 = 45.4% =» Figure 22.3
= Different at each trial = Figure 22.4

v Pros) Simple
v Cons) Not considering locality, unpredictable

Resulting
Access Hit/Miss? Evict Cache State 5Q -
0 Miss 0
1 Miss 0.1 40 -
2 Miss 0,.1,2 &
0 Hit 0,1,2 % 301
1 Hit 0.1,2 5 =
3 Miss 0 1,2,3 E i
0 Miss 1 235 10 -
3 Hit 2,3,0
1 Miss 3 2.. D, 1 s e e I 1 1 A |
2 Hit 2:10,.1 0 1 2 3 4 5 6 7
1 Hit 20,1 Number of Hits

Figure 22.3: Tracing The Random Policy Figure 22.4: Random Performance Over 10,000 Trials

I J. Choi, DKU
41

22.5 Using History: LRU

s LRU (Least Recently Used)

v Evict a page that was accessed oldest in the past

v Example: same reference string (012013031 21)
= hit ratio =6/11 = 54.5%

v Pros) Considering locality (temporal locality)

v Cons) Not good for the looping reference

Resulting
Access Hit/Miss? Evict Cache State
] Miss LEU— 0
1 Miss LEU— 0,1
2 Miss LEU— 0. 1.2
0 Hit LEU— 1,20
1 Hit LEU— 201
3 Miss 2 LEU— 0 1.3
0 Hit LEU— 1,30
3 Hit LEU— 103
1 Hit LEU— 0,3, 1
2 Miss 0 LEU— 31,2
1 Hit LEU— 2T

Figure 22.5: Tracing The LRU Policy

v History based policies

» Use history as our guide (like Multi-level feedback queue)

» LRU, LFU (Least Frequently Used), LRFU, MRU, ARC, 2Q, ...

I J. Choi, DKU
42

22.6 Workload Examples

s Workload analysis
v Workload: amount of work, characteristics of references in this case

v 3 types in this slide
* No-locality: LRU == FIFO == RAND
= 80-20 workload (hot/cold): LRU > FIFO == RAND
» Loop workload: LRU == FIFO < RAND
v Most applications show strong locality = LRU employed popularly

v Large cache size: close to optimal

Hit Rate

; The 80-20 Workload The Looping-Sequential Workload
100%- The No-Locality Workload 100%- T ping-oeq
80% 80% 1 80%
600}3 = @ 60% A [4h] 50‘70
T T
o o
40%- T 40%- T 40%
OPT OPT OPT
20% LRU 20% 1 LRU 20% LRU
< FIFO X FIFO X FIFO
— RAND — RAND — RAND
0% T T T T 1 0% T T T T . 0% g . T T 1
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Cache Size (Blocks) Cache Size (Blocks) Cache Size (Blocks)
Figure 22.6: The No-Locality Workload Figure 22.7: The 80-20 Workload Figure 22.8: The Looping Workload
J. VIV, IN

43

22.7 Implementing Historical Algorithms

x How to implement LRU?
v Usually linked list
v Pages access

» Insert it to the head of the list (MRU position)
= Move down all pages to the next position

= Remove the page in the LRU position if necessary (miss case)

v Need to monitor all memory accesses
= Feasible in the file cache or server cache

» May degrade performance in the memory cache = utilize HW supports
such as reference bit and dirty bit

MRU

5
X
3
i
4
vi
7

LRU
I

ref 4

Resulting

A
HNMWDWHDN'—‘OQ

44

s Hit/Miss? Ewict Cache State

Miss LRU— 0
Miss LRU— 0,1
Miss LRU— 01,2
Hit LRU— 1,2,0
Hit LRU— 2.0 1
Miss 2 LRU— 01,3
Hit LRU— 1,3,0
Hit LRU— 1,8:3
Hit LRU— 0,3, 1
Miss 0 LRU— 31,2
Hit LRU— 3,21

Figure 22.5: Tracing The LRU Policy

J. Choi, DKU

22.8 Approximating LRU

s Clock algorithm
v FIFO with Reference bit (also called as Access bit, see 12 page)

= HW: set reference bit as 1 when an associated page is accessed

» OS: manage a pointer for next victim
if (ref_bit == 1), clear it to 0 and give second chance (check the next page)

if (ref_bit == 0), evict it and move the victim pointer to the next page

= Approximate LRU well

The 80-20 Workload

100%%6

809%:

B60%%

Hit Rate

40%c -

OoOPT
LRU

2094 -
>< FIFO
— RAND
o @ Clock
= 20 40 80 S0 100

o]
Cache Size (Blocks)

Figure 22.9: The 80-20 Workload With Clock

v Advanced version

= Periodic clearing
» Utilizing two HW bits: reference and dirty bit
J. Choi, DKU

45

22.11 Thrashing

s [hrashing
v A situation where the page fault rate is extremely high as each
process does not have enough frames

» A page fault triggers to replace a page that will be referenced soon,
which eventually making another page fault immediately

v A process is spending more time paging than executing

A

| -
| thrashing

CPU utilization

degree of multiprogramming

I J. Choi, DKU
46

22.11 Thrashing

s \Working set

v WS(t): a set of pages referenced between t-A and t
* To estimate how much memory a process needs
v Application of working set
» Detect thrashing or Find a chance for new process initiation

= Mechanism: D > m = Thrashing
WSS, : Working Set Size of Process P,

D =% WSS; (D: the total demand of frames for all process)

m: total # of available frames in a system

= Working-set Strategy

If (D > m), suspend some of the processes
If (D < m), another process can be initiated
= Prevent thrashing while keeping multiprogramming degree as high as possible.

Illlllllllllllllllﬂ

nage reference table

. 2015777751623412344434344413234443444,

]
|
f1

WSit) =(1.2567)

|

|
r2

WSit) = 34

=1

J. Choi, DKU

Summary

= Virtual memory concept

v Separation of virtual memory from physical memory

» Virtual memory: user's (or programmer’s) viewpoint, ey P
exclusive (per process) ~ memery

»= Physical memory: system’s viewpoint, shared by multiple]
processes g

+ Allow the execution of a process that are not completely |
In memory

= Logical address space can therefore be much larger than -
physical address space.

= Allows more programs running
= Virtual memory can be implementedvia: | ['{_
v 1) Address translation: paging, segmentation, TLB Dik
v 2) Demand paging: page fault, integration FS and VM
v 3) Replacement: LRU, FIFO, Clock, Working set, ...

I J. Choi, DKU

48

|'©@@| Quiz for this Lecture
TIME]
s Quiz
v 1. Discuss differences among: 1) contiguous allocation, 2) segmentation, and 3)
paging using register or table.
v 2. Assume that

= Size of virtual memory = 64B, Size of physical memory = 128B, and Size of page and
page frame = 16B (same as 7 page)
= Frame 2, 6, 3 are used for page 0, 1, 2 (different compared to 7 page)
» Calculate physical addresses for virtual addresses of 8, 21 and 627 Explain the
answers using the VPN, PFN and offset.
v 3. Discuss why OS make use of 1) TLB and 2) multi-level page table.

v 4. 1In page 18, we calculate that the TLB hit ratio for accessing a[] is 70%. 1)
What is the TLB hit ratio when the page size is 32B (instead of 16B)? 2) What is
the TLB hit ratio if there exists an outer loop like “for (j=0; j<2; j++)" above the
“for (i=0; i<10; i++)"

v 5. Discuss the terms of 1) demand paging, 2) page fault, 3) replacement, 4)
thrashing and 5) working set.

v 6. Calculate the hit ratio under the FIFO, LRU and Optimal (MIN) policies when
there are three available frames and the page reference string is 1, 2, 3, 4, 1, 2,
5,1, 2, 3,4, 5". What about when there are four frames? (remember the
Belady’s anomaly).

int sum = 0 9.7 Thrashing
. VPN § offset .) _- 4 . > Pagre fault frequency
A\éllg:sas]s | o | 4 | o | A | o | i | for (J - 0; J < 2; J+ +) { | Fci']\:chn)';k:(.:gws\i:or:lic;zeéet , then we do the prepaging usefully
l . - - = define the upper bound and lower bound of page fault rate
— L] |]
Address | | | for (|_0, |< 10, I++) { 1
Translation . =
— L] §
o sum += a[i];
maees | 1 | 1 [1 e[] o] 1] }

[PFN offset [

Figure 18.3: The Address Translation Process } 49

Lab4 : LRU simulator

E F C G
= What to do? Lol e
v Make a LRU simulator (see 42 and 44 page) ST c 5 E - E
= Queue + Hash Ai E 8 2
v Requirement B
= 1) report: Introduction, Design (data structure/function), Results (at least
two outputs), Discussion, 2) Source code
v Submission: upload at Google form (both source code and report)
v Environment: See Lab. 0 in the lecture site
v Due: Not actual homework in this semester
v Bonus: Analysis with different cache size and workload (No locality,

locality, loop: 43 page)

ation - > “r

< >< @& geeksforgeeks.org/iru-cache-implementation/

Tutorials ~ Student ~ Jobs ~ Courses D GeeksforGeeks

used?

used frame when the cache is fulland a new page is referenced which is

Appendix 1

s Copy-on-Write (COW)
v Allow both processes can share pages even though they are not
actually shared pages (set the copy-on-write bit in page table)

v If either process modifies a shared page, the page is copied
v Good for fork() and exec()

= Allow both parent and child processes to initially share the same pages
INn memory

= More efficient for process creation

physical physical
roCess, memaor foCess
! 2

process; memory process,

| pageA — [
'i " ‘ L—» pageB
T — page B i e g
| . :

. : | page C —]

— pageC —
| » Copy of page C

(Before process 1 modified page C)

(After process 1 modified page C)
51 J. Choi, DKU

Appendix 2

s 19.7 AReal TLB Entry

v Real TLB example: MIPS R4000
= SW-managed TLB, 4KB page/frame size
= 32 or 64 entries in TLB (related to TLB coverage)

= Bit description

VPN: 19-bits =» we expect 20-bits. But, user addresses will only come from
half of the address space (2GB for user, 2GB for kernel) = 19-bits are
enough

PFN: 24-bits = support up to 64GB physical memory (224 x 4KB)
ASID: 8-bits, to identify which process own the VNP-PFN pair

G: global bit = shared among processes (ASID is ignored)

C: coherence bit = for coherence protocol

D: dirty bit

V: valid bit

Page mask: for supporting multiple page sizes

VPN Tel T Asb____

| PEN | ¢ |[D]v]
Figure 19.4: A MIPS TLB Entry
I J. Choi, DKU

52

Appendix 2

s 21.6 When Replacements Really Occur
v OS actually prepares free memory proactively, not wait until memory
is full
= Background thread: swap daemon or page daemon

= When free memory is below the low watermark, it begins to evict pages
until free memory becomes above the high watermark

v Group a number of pages and write them out at once (to make
sequential writes for better performance)

Total Memory

s Summary of Swapping
v Larger than physical memory \\ B
= Present bitin PT
= Page fault handler in OS §-----------.\'l‘xfﬂ".;.?.:‘.EE'-'!‘P;;-;-'!'EE"'-“'-'*-*-?- ---------------- Low Watermark
v Transparent to user | .. S —
= Sometimes not (stuck) " S ——
u e
I J. Choi, DKU

53

Chap. 24 Summary Dialogue on Memory Virtualization

Student: (Gulps) Wow, that was a lot of material.
Professor: Yes, and?

Student: Well, how am I supposed to remember it all? You know, for the exam?

Professor: Goodness, I hope that’s not why you are trying to remember it.
Student: Why should I then?

Professor: Conie on, I thouoht vou knew better. You're tryine to learn sonie-

thing here, so that when you go off into the world, you'll understand how systems
actually work.

Student: Hmm... can you give an example?

Professor: Sure! Omne time back in graduate school, my friends and I were
neasuring how long meniory accesses took, and once in a while the numbers
were way hicher than we expected; we thought all the data was fitting nicely into
the second-level hardware cache, you see, and thus should have been really fast
to access.

Student: (1ods)

Professor: We couldn’t figure out what was going on. So what do you do in such
a case? Easy, ask a professor! So we went and asked one of our professors, who
looked at the graph we had produced, and simply said “TLB”. Aha! Of course,
TLB misses! Why didn’t we think of that? Having a good model of how virtual

memory works helps diagnose all sorts of interesting performance problems.
- o _ e _ s _ i, DKU

