DANKOOK UNIVERSITY

Lecture Note 2: Processes

March 11, 2025
Jongmoo Choi

Dept. of Software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(2 BM=2025EE WED|=ZE2SAFE L FESAIIEE IR 'SWEAUSAY XIZS 2Ot MZ D ASLICEH)

J. Choi, DKU

Contents

From Chap 3~6 of the OSTEP
Chap 3. A Dialogue on Virtualization
Chap 4. The abstraction: The Process

v Process, Process API, Process State and Data Structure

Chap 5. Interlude: Process API

v System calls: fork(), wait(), exec(), kill() , ...

Chap 6. Mechanism: Limited Direct Execution
v Basic Technique: Limited Direct Execution
v Switch between Modes
v Switch between Processes

J. Choi, DKU

Chap 3. A Dialogue on Virtualization

s Virtualization

Student: But what is virtualization, oh noble professor?

Professor: Imagine we have a peach.

Student: A peach? (incredulous)

Professor: Yes, a peach. Let us call that the physical peach. But we have many
eaters who would like to eat this peach. What we would like to present to each
eater is their own peach, so that they can be happy. We call the peach we give
eaters virtual peaches; we somehow create many of these virtual peaches out of
the one physical peach. And the important thing: in this illusion, it looks to each
eater like they have a physical peach, but in reality they don’t.

Student: So you are sharing the peach, but you don’t even know it?
Professor: Right! Exactly.

Student: But there’s only one peach.

Professor: Yes. And...?

Student: Well, if I was_sharing a peach with somebody else, 1 think I would
notice.

Professor: Ah yes! Good point. But that is the thing with many eaters; nost
of the time they are napping or doing something else, and thus, you can snatch
that peach away and give it to someone else for a while. And thus we create the
illusion of many virtual peaches, one peach for each person!

Student: Sounds like a bad campaign slogan. You are talking about computers,
right Professor?

Professor: Ah, young grasshopper, you wish to have a more concrete example.
Good idea! Let us take the most basic of resources, the CPU. Assume there is one

physical CPU in a system (though now there are often two or four or more). What
virtualization does is take that single CPU and make it look like many virtual J. Choi. DKU
CPUs to the applications running on the ystem. Thus, while each application ’

Chap 4. The Abstraction: The Process

s Process definition

v A program in execution

v Scheduling entity (CPU), has its memory (DRAM)
= c.f.) program: a lifeless thing, sit on the disk and waiting to spring into

action
v There exist multiple processes (e.g. ppt, browser, word, player, ...)
» Each process has its own memory (address space), virtual CPU, state, ...

Figure 1.4
Hardware organization
of a typical system.

CPU: Central

Processing Unit, ALU:
Arithmetic/Logic Unit, PC:
Program Counter, USB:
Universal Serial Bus.

Process (hlﬂ:ask

System bus emory bus

Bus interface

Expansion slots for
er devices such

usB Graphics Disk as| network adapters
controller adapter controller
T 1 ! ! rogram
Mouse Keyboard Display hello lexecutable
stored on disk
(Source: computer systems: a programmer perspective)
J. Choi, DKU

I
4

Chap 4. The Abstraction: The Process

= How to virtualize CPU? Time sharing system

CPU1

(initial)

e

v Mechanism (whéh chrome scheduled) -

= context switch: an ability to stop running one program and start running
another on a given CPU =» this LN

v Policy

» Scheduling policy: based on historical information or workload knowledge

or performance metric = next LN < Time sharing vs. Space sharing

I J. Choi, DKU
5

4.1 Process

s Process structure
v Need resources to run:

maxXx
= CPU stack
Registers such as PC, SP, .. l
= Memory (address space)
Text: program codes
Data: global variables 1
Stack: local variables, parameters, ... S
Heap: allocated dynamically data
= |/O information
Opened files (including devices) & e
v Prog ram vs. PrOCeSS (Source: A. Silberschatz, “Operating system Concept”)

» Program: passive entity, a file containing instructions stored on disk
(executable file or binary)

» Process: active entity, having CPU and memory, doing I/Os
= Execute a program twice =» result in creating two processes (from one

Erogram= = text is eﬂuivalent while others (data, stack) vary (1-to-n)

J. Choi, DKU
6

4.2 Process API

s Basic APIs for a process

Create: An operating system must include some method to cre-
ate new processes. When you type a command into the shell, or
double-click on an application icon, the OS is invoked to create a
new process to run the program you have indicated.

Destroy: As there is an interface for process creation, systems also

provide an interface to destroy processes forcefully. Of course, many

processes will run and just exit by themselves when complete; when
they don’t, however, the user may wish to kill them, and thus an in-
terface to halt a runaway process is quite useful.

Wait: Sometimes it is useful to wait for a process to stop running;
thus some kind of waiting interface is often provided.
Miscellaneous Control: Other than killing or waiting for a process,
there are sometimes other controls that are possible. For example,
most operating systems provide some kind of method to suspend a
process (stop it from running for a while) and then resume it (con-
tinue it running).

Status: There are usually interfaces to get some status information
about a process as well, such as how long it has run for, or what
state it is in.

< Related system calls are discussed in the chapter 5 of OSTEP
I

7

J. Choi, DKU

4.3 Process Execution: A Little More Detall

s How to start a program

v Load

»= Bring code and static data into the address space
» Based on executable format (e.g. ELF, PE, BSD, ...)
» Eagerly vs. Lazily (paging, swapping)

v Dynamic allocation CPU Memory

u StaCk : sta(t:i(t): t?ata ;

heap

» |nitialize parameters (argc, argv)
» Heap if necessary
v Initialization
= file descriptors (0, 1, 2)
= |/O or signal related structure
v Jump to the entry point: main()

Program Loading:
g Takes on-disk program

/_ ‘"\ and reads it into the
Mo

address space of process

Figure 4.1: Loading: From Program To Process

I J. Choi, DKU

4.4 Process States

s State and transition

admitted timeout exit terminated

I/0O or event completion I/0O or event wait

(Source: A. Silberschatz, “Operating system Concept”)
v State
» Three cores: ready, running, waiting(blocked)
= Two additions: new(created, embryo), terminated (zombie)

v Transition

= dispatch (schedule), timeout (preemptive, descheduled), wait (sleep, I/O
initiate), wakeup (I/0 done) + admitted, exit

» suspend and resume: to Disk (swap) or to RAM

I J. Choi, DKU
9

4.4 Process States

s Example

v Used resources: CPU only = Figure 4.3

v Used resources: CPU and I/O = Figure 4.4
* Note: I/O usually takes quite longer than CPU

Time Processy Process; Notes Time Processy Process; Notes

1 Running Ready 1 Running Ready
2 Running Ready - Running Ready
3 Running Ready 3 Running Ready Processy initiates I/O

: 4 Blocked Running Processg is blocked,
4 Running Ready Processp now done : .

; 5 Blocked Running so Processy runs
5 - Rmm%ng 6 Blocked Running
b = Rmmmg 7 Ready Running [/0O done
7 = Running 8 Ready = Running Process; now done
8 - Running Process; now done 9 Running -
10 Running - Processp now done

Figure 4.3: Tracing Process State: CPU Only

Figure 4.4: Tracing Process State: CPU and I/O

<+ At the end of time 6 in Figure 4.4, OS can decide to 1) continue running the
processl or 2) switch back to process 0. Which one is better? Discuss tradeoff.

10

J. Choi, DKU

4.5 Data Structure

PCB (Process Control Block)

v Information associated with each process
* Process state

= Process ID (pid) process state
» Program counter, CPU registers Drocess number
Used during context switch
. Architecture dependent program counter
» CPU scheduling information
» Memory-management information registers

= Opened files
= |/O status information
= Accounting information

memory limits

list of open files

v Managed in the kernel's data segment

(Source: A. Silberschatz, “Operating system Concept”)

I J. Choi, DKU

4.5 Data Structure

s PCB Implementation example in OSTEP

v OS is a program, implementing a process using data structure (e.g.

struct proc and struct context)

v All “proc” structures are manipulated using a list

A the
F i i =

and restore
restart a process

xwrE will
subsecguent 1y

registers
stop and

S awe

st rruct context {
ot edip;
it ese;
int ekbx;
int =occ;
int edsx;
int =si;
int =di;
it ebp;
|
S the different states a process can be in

enum proc sSstate { UMNUSED, EMBEY O, SI.EREP I NG,

RUNNABLE, RUNNING, A0OMB IR } ;7

A the inFformation =xvb tracks about each process

Y dncluding its register context and =state
struact proc i
char xmem; AV BStart of process memory
uint =sS=; SN Size of process memory
char «kstack; A Bottom of kernel stack
S For this process
enum proc _state state; S Process state
Fark gpmidi LS Process ID
struct proc =parent; SV Parent process
woilid »chang; A ITE nmnon—=ero, sleeping on chamn
Tt kKilled; Lr IE non—emexro, have been kKilled
st ruct File wofile[NOFILE] ; Y Open files
st ruact inods =x=ocwd; A Current directory
st ruact context context; A4 Switcech here to rrun process
struct trapframe «tf; AV Trap f£frame for the
S current interruapt

The xv6 Proc Structure

|

Figure 4.5:

. Choi, DKU

4.5 Data Structure (Optional)

s PCB inreal OS (task structure in Linux)

v MEg2E X ME2E X | W jongm X | @ flest X [sched % A Theur X | 4 = X k_
« > C 9 elixirbootlin.com/linux/v6.13.5/source/include/linux/sched.k Q = 5 0
= [include / linux / schedh Wl sgube | search lder X Q4

struct task_struct {

#ltde! CONFIG_THREAD_INFO_IN_TASK
L
» Four raasons of howosr Soup (e85 currsnt_threzginfoll), this
= gust Ba tha Pirel alamant of lask_struct
struct thread_info thread_info:

#andl
ungigned Int —_state;
Se gavad stata for ‘epinlock slaaperst v
unsigned Int saved_state: I
» Bagine Iha randomizabis portion ot fagk et Iy ‘
i guid ing-crit feal flams should ba addsd ahova

v6.13-ch randonized_struct_fields_start
v6.1313
2 void +stack:
1 refcount _t usage:

o Par teek flags (PF_+), dsfingd furthar balow. =/
unsianed int flags:
unsigned int ptrace.

#|1det CONFIG_MEM_ALLOC_PROFILING

struct alloc_tag +alloc_tag:
Hend] f
#1def CONFIG_SHP
Int on_cpu:
struct __call_single_node wake_entry:
unsigned Int wakee_flips:
unslgned |ong wakee_{f | ip_decay_ts:
struct task_struct +last_wakee:

sai we iha last OPU usad by & task
L Wakariwakos raiat tonshipe can
fo the naxt ons

opy ig REIRL Y
Fing anothar ta
wround & OPU whara Sach wakaug m
w Tracking & racantiy uesd OFU aflows a ¢ ssarch for a racantly
v ugsd GRU that may ba fdia |]

int recent_used_cpu: d
int wake_cpu: Dage |reCt0ry
Hendi f

int on_rq.

Int prio:

Int static_prio:

Int normal_prio:

unsigned Int rt_priority:

struct sched_entity se:

struct sched_rt_entity rt.

struct sched_dl_entity dl. — 5 SR
linux % 6725 Download file ‘wowersd by Elixir c4fi532 —— |

<https://elixir.bootlin.com/linux/latest/source/include/linux/sched.h > (SOUI'CEZ elsA HY LH—‘?—?ZE)
J. Choi, DKU
13

Chap 5. Interlude: Process API

s Comments for Interlude by Remzi

ASIDE: INTERLUDES
Interludes will cover more practical aspects of systems, including a par-
ticular focus on operating system APIs and how to use them. If you don’t

like practical things, vou could skip these interludes. But you should like
practual things, because, well, they are generally useful in real life; com-

panies, for example, don’t usually hire you for your non-practical skills.

I J. Choi, DKU

5.1 fork() system call

n fork()

v Create a new process: parent, child

v Return two values: one for parent (>0) and the other for child (0)

v Non-determinism: not decide which one run first.

2 INTERLUDE: PROCESS API

dinclude =<stdio.h>
¥include ==tdlikh.h>

1

=

3 #include =<unistd.h>

4

5 int main{int argec, char wargwv[]}]

& pPrintf{"hello (pid:%d)\n™, (imt)}) getpid());
o int r¢ = forkl)

= if [(rc < 0% |

2 Ff fork failed

10 fprintf{stderr, "fork failedi\n");

11 exit{1l);

1z P else if {roc == 0% {

13 FA child (new process)

14 printf{"chiild ({pid:%d4d)%n", (int)} getpid(}};
15 Poelse |

15 FF parent goes down this path (main)
17 printf{"parent of %$d {(pid:3d)\n",

1= rc, (int) getpidil);

12 ki

20 return O0;

21 3

Ir

Figure 5.1: Calling fork () (pl.c)

J. Choi, DKU

5.2 wait() system call

H wait()

v Block a calling process until one of its children finishes
v Now, deterministic =» synchronization

- - - (I T N T I Y

m
11
1z
1=
1%
15
16
17
1H
14
2]
21

INTERLUDE: PROCESS API
#include <=s=tdio.h>
¥include <stdlib.,h>
finclude <unistd.h>
#include <sys/wait.h>
int main{int argec, char »argvi]} I
printf{"hello (pid:%d)\n", (int) getpidi()):;
int r¢ = forki({}:;
if (re = 0} | 4 fork failed; exit
fprintf(stderr, "fork failed\n");
exit (1)
} else if (re == 0) { // child (new process)
printf{"child (pid:%d)n", (int) getpidi()}}:;
} else | /4 parent goes down this path
int roc_wait = walit (HULL) ;

printf{"parent of %d (rc_wait:%d) (pid:%d)\n",

}

return

re, re.wait; {(int) getpidd{));

0z

Figure 5.2: Calling fork () And wait () (p2.c)

16

J. Choi, DKU

5.3 exec() system call

s exec()

v Load and overwrite code and static data, re-initialize stack and heap,
and execute it (never return) =» refer to 8 page

v 6 variations: execl, execlp, execle, execv, execvp, execve

INTERLUDE: PROCESS A1 5

Fincludse ==rTdio._.Ihi>
#Finclude =<stdililk.h>
#incliuice =1 rni=m=td.h>=
Finclduunde <<strxrimog.h>
Finclude === wait .oh>

E W We W N+

Armt madn it =T o S8 —h = wa oy [] ¥ i

EerimntEf {m"hael 1o (eid: S4A) "™, [imt) getpidi}r) s
= inmnt b st = FoxrIkx) -
10 i fre =) £ ey Ffork f=iled;s [y
11 Fporrintf{({(stderi, T Eaorrk failed»rmn"™h :
1= =exit (1) 5
13 1 =]l Se i iF [X = [i e chaa 1add {new pPproaocess)
1 printf®& {("chidd (pdic s Sdd) W™, fimth getpid ()}) =
15 —cha myyargs [3] 5
15 myarg=[0] = strdup{™wco™) : A7 program: o T
17 myarg=[1] = =strdup{™p2X2.o") 7 A amrg: dnmpuat £ile
18 myarags L2] = BILTLI.T.; A mark end ofF arrass
1= emaeCcwp imyarrogs [0] - My arags) » P ruans wWorod ot
=11 pr-intf (™ thi= sho1ui 1l drre” © Eexriant =1t "y
=1 1 =l se f A4 paresnt goes down this o path
2= int ro wait = wrait {HUOLLTI.)} ;
23 erintf{"par=nt of S [T wWwrait =z Sddd (pid:3cdA) ™,
24 bl S T wWead T, { imt) et pepdid)) s
=1]

26 et 1arI [

Figure 5.3: Calling fork (). wait (), And exec () (23 .c)

* Comments from Remzi: Do it on a Linux system. “Type in the code and run it is better for understanding”

I J. Choi, DKU
17

5.4 Why”? Motivating the API (optional)

s Why separate fork() from exec()?
v Modular approach of UNIX, support extensibility

[esumes

rd

wal

1 #ginclude <stdio.h> parent
z #ginclude <=tdlikb.h>

3 #include <uni=td.h>

4 ¥include =<string.h>

5 #inclilnde =fcntl.h>

& #include <svys/ wait.h>

= int main{int argc, char wargvi[]) { child @
= int rc = TfTorki)

10 if (ra = k) i

11 SO O fork failed

1z fprintfi{stderr, "fork failedwn™});

15 exit (1)

14 P else 1f (rc == 0} {

1= A ochild: redirect standard ocutput to a £file

18 close (STDOUT FILEMNO)

T open{"./pd.output™, O_CREAT|O WROHLY |O_TRUNC,

1= S TRWXLU) :

1= FF now exec "wo". ..

20 char »myargs[3]:;

=1 myargs[0] = strdup{"wc™) : Fd program: weo

zz myargs[l] = strdup{T™pd.c"}; S/ arg: file to count
23 myargs[2] = NUJOLL; S mark end of arrawy
24 execvp {myyargs [0] , myargs]) ; S o runs word count
=5 P o else

z6 S parent goes down this path {(main)

ord int r« wait = wait (MIILL) :

== }

== return O

30 }

Figure 5.4: All Of The Above With Redirection (p4 . <)

18

J. Choi, DKU

5.5 Other parts of the API

s Other APIs
v getpid(): get process id
v Kill(): send a signal to a process
v signal(): register a signal catch function
v scheduling related
v

= Command and tool
v ps, top, perf,
v read the man pages for commands and tools

ASIDE: RTFM — READ THE MAN PAGES
Many times in this book, when referring to a particular system call or
library call, we’ll tell you to read the manual pages, or man pages for
short. Man pages are the original form of documentation that exist on
UNIX systems; realize that they were created before the thing called the
web existed.
Spending some time reading man pages is a key step in the growth of
a systems programmer; there are tons of useful tidbits hidden in those
pages. Some particularly useful pages to read are the man pages for
whichever shell you are using (e.g., tcsh, or bash), and certainly for any
system calls your program makes (in order to see what return values and
error conditions exist).
Finally, reading the man pages can save you some embarrassment. When
yvou ask colleagues about some intricacy of fork (), they may simply
reply: “"RTFM.” This is your colleagues” way of gently urging you to Read
The Man pages. The F in RTFM just adds a little color to the phrase...

I J. Choi, DKU
19

Chap 6. Mechanism: Limited Direct Execution

= [ime sharing
v Key technique for virtualizing CPU

v Issues

» Performance: how to minimize the virtualization overhead?

= Control: how to run processes while retaining control over the CPU?
v Solutions

= Direct execution for performance

= Limited for control: 1) mode switch using trap, 2) timer interrupt

Usar 2

- m—

i Usar 3

(Source: Google image. Users can be replaced with programs or processes)
I J. Choi, DKU
20

6.1 Basic Technique: Limited Direct Execution

s Background

v Asynchronous events

» Events that are not coordinated in time, without global clock, outside of main
thread

= Example: 1) Trap, 2) Interrupt, 3) Signal
v Trap
= Asynchronous events to kernel (SW related)

» Example: system call, divide by zero, segmentation fault, page fault,
protection fault, ...

= Trap handlers in Trap table (e.g. syscall handler)
v Interrupt

» Asynchronous events to kernel (HW related)

= Example: keyboard, disk, network card, timer, ...

» Interrupt handlers in Interrupt table (IVT, usually shared with trap handlers)
v Signal

= Asynchronous events to a process

= Example: SIGKILL, SIGALARM, SIGSTP, SIGCONT, SIGUSR1, ...

= Signal handlers (Signal catch functions) in Signal table, signal()

I J. Choi, DKU

6.1 Basic Technique: Limited Direct Execution

s Performance-oriented = Direct execution
v Run the program directly on the CPU
v Efficient but not controllable

OSs Program
Create entry for process list

Allocate memory for program

Load program into memory

Set up stack with argc/argv

Clear registers

Execute call main()

Run main()

Execute return from main
Free memory of process
Remove from process list

Figure 6.1: Direct Execution Protocol (Without Limits)

* What is the problem of the above example?

o~ Control is particularly important to OS. Without control, a process
could run forever, monopolizing resources.

I J. Choi, DKU
22

6.1 Basic Technique: Limited Direct Execution

s Limited: mode switch using trap
v Some operations that should run in OS (for control)

Initialize

OS5 &0 boot
(kermel mmode)

Hardw are

initialire trap table

(BOOt) remember address of. .
svacall handler
T OS @ run Hardw are Program
(kermel mode) {user mode)
i Create entry for process list
i Allocate memory for program
ProceSS§ Load program into memory

create

Setup user stack with argwv
Fill kernel stack with reg /TPC

return-from-trap

restore regs from kernel stack
move to user mode

..::..'.'.'.’.'.’.'.’.'.’.'.’.'.Zliiliiiigmgiiﬁglﬁﬁmﬂﬁ'.’.'.’.'.’.'.’.ﬁ'.’.'.’.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.
= : = 11T Tain :
Direct execution .
":::.'.'.'.'.'.'.'.'.'.'.'.‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.'.'.'.'.'.'.'.'.'.'.'.’.'.‘.'.‘.'.‘.‘.’.'.'.'.'.‘-'.'-'.'-'.‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.’.‘.’.‘.’.‘.’.‘.’.’.‘.'.'.'.'.‘.'.‘.'.‘.'.‘.‘.‘.‘-‘.‘-'.'-'.'-'.'-'.'-'.'-'.'-'.'-‘-'.‘.'.‘.'.‘.'.'.'.'-'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.‘.‘-‘.‘-'.‘-'.‘-'.'-'.'-'-'.'.'.'.‘.'.‘.'.‘.'.‘.'.‘.'-'.'-'-'.'.'.'.’.' v ﬁ-ﬂ.‘.‘%ﬁg{gﬁi‘.'.’.(:_:‘g.‘i'I'.‘-'.'-'.'-'.‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.’.‘.’.‘.’.‘.’ '''''''''''
trap into OS5
: save regs to kermel stack
move to kermel mode
Limited: jump to trap handler
. Handle trap
(sysca

Direct

") Do work of syscall

return-from-trap

restore regs from kernel stack
move to user mode
jump to PC after trap

execution

Free memory of process
Remowe from process list

Figure 6.2: Limited Direct Execution Protocol

23

>hoi, DKU

6.1 Basic Technique: Limited Direct Execution

s Limited: timer interrupt (with context switch in this case)

" OS @ boot Hardware
(kermnel mode)
initialize trap table

e ge remember addresses of...
Inltlallzge syscall handler
(Boot) : timer handler
! start interrupt timer
start timer
interrupt CPU in X ms

OS5 @ run Hardware Program
L LA (SE e B Ey
e rteetereteseseseetesesetatesesesttatesestttatesesentatatesestatetesesesaateseseststatesestatetesesesentsesesestateteseststetesesesttesesestetatesesestetetesesenteteseseasrtesesanes Process A ;
D oL =T o 1 o) 1
e Ermver inderrarpl o
Interrupt save regs(A) to k-stack(A)
(timer) move to kernel mode
jump to trap handler :
Haf[d']_@m@.frap .. 3
= all switech () routine :
SChedu‘;lnEs.ave regs{A) to proc-struct{A)
and Contexteswﬁehgs{ﬁ} from proc-struct(B)
: switch to k-stack(B)
....... B N e e,
5 restore regs({B) from k-stack(B}) h
: move to user mode
Return from jump to B's PC
Interrupt Process B

Figure 6.3: Limited Direct Execution Protocol (Timer Interrupt)

I J. Choi, DKU
24

6.2 Problem #1: Restricted Operation

s Control mechanism 1: Restrict operations
v Most operations can run directly (e.g. arithmetic, loop, branch, ...)
v Some operations that should run indirectly (privileged operations)

» Gain more system resources such as CPU and memory

» [ssue an I/O request directly to a disk

v Through a well defined APIs (system call)
= E.g.) fork(), nice(), malloc(), open(), read(), write(), ...

= How to: User mode vs. Kernel mode
v User mode: do privileged operation =» cause exception and killed
v Kernel mode: do privileged operation =» allowed
v Mode switch: using trap instruction, two stacks (user and kernel stack)

user process

user process executing

» calls system call

\

return from system call

/

¥

7

user mode
(mode hit = 1)

Fd

kernel

LY
trap
mode bit=0

return

mode bit = 1

execute system call

kernel mode
(mode bit = 0)

‘Source: A. Silberschatz, “Operating system Concept”)

25

J. Choi, DKU

6.2 Problem #1: Restricted Operation

0 | divide_by_zero()

How to handle trap in OS? 1 | page_fault()
.) 2 | segment_fault()
v Using trap table (a.k.a IVT, interrupt vector table)
v Trap table consists of a set of trap handlers 80| system_call()
trap table

» Trap (interrupt) handler: a routine that deals with a trap in OS

» system call handler, div_by zero handler, segment fault handler, page fault
handler, and hardware interrupt handler (disk, KBD, timer, ...)

= |nitialized at boot time
v E.g.: System call processing

= System call (e.g. fork()) =» trap =» save context and switch stack = jump to
the trap handler = eventually in kernel mode

= Return from system call =» switch stack and restore context = jump to the
next instruction of the system call = user mode

0OS @ run Hardware Program
(kermel mode) (user mode)

Call system call
trap into OS
save regs to kernel stack
move to kernel mode
jump to trap handler
Handle trap
Do work of syscall
return-from-trap
restore regs from kermel stack
move to user mode
jump to PC after trap

[L : J. Choi, DKU

26

6.2 Problem #1: Restricted Operation (optional)

s System call Implementation: Linux case study

user task
main()

{
fork();

J

libc.a

}

fork()

HI.(.)V| $2, %eax

0x0

0x80’

/| debug()

'~ [nmi()

(IVT, 1DT)

__g'iVide_e rror()

int $0x80
}

e oo T Do oo

""s,ystem_call())

... Kerne]
ENTRY(system_call) /* archli386/k‘err,1_9llentry.$ *|
SAVE_ALL

call *SYMBOL_NAME(sys_call_table)(,%eax,4)

ret_from_sys fall (schedule, signal, bh_active,

nested interrupt handling)

Sys_call_table

sys_exit() —

T~

sys_fork()/

sys_fork()

sys_read ()

I archli386Ikernellproge'"sﬁs.c */

sys write ()

I* kernel/fork.c */

(Source: 2ISA HE LR, 68)

27

e different in 64bit CPU, but the concept is the same |

J. Choi, DKU

6.3 Problem #2: Switching between Processes

s Control mechanism 2: using timer interrupt

v Interrupt: a mechanism that a device notify an event to OS
» Interrupt happens =» current running process is suspended = a related
interrupt handler is invoked via interrupt table =» transfer control to OS
v Timer interrupt (like a heart in human)

= A timer device raises an interrupt every milliseconds (programmable) =
a timer interrupt handler = do scheduling (and switching) if necessary

s Context switch
v Context: information of a process needed when it is re-scheduled
later =» hardware registers

v Context save and restore
= E.g. 1) Process A = Process B: save the context of the process A and
restore the context of process B.
» 2) later Process B =» Process A: save the context of the process B and
restore the saved context of process A

= Where to save: proc structure in general

I J. Choi, DKU
28

6.3 Problem #2: Switching between Processes

s Context switch

v Memorize the last state of a process when it is preempted
= Context save (state save): storing CPU registers into PCB (in memory)
= Context restore (state restore): loading PCB into CPU registers

v Context-switch time is overhead (the system does no useful work
while switching) =» utilizing hardware support (hyper-threading)

process Py operating system process P,

interrupt or system call

executing Q / l
T | save state into PCB, |
: idle
|re|oad state from PCB1| 1
- idle interrupt or system call executing
| save state into PCB, |
- idle
J |re|oad state from PCBol
executing g‘\
(Source: A. Silberschatz, “Operating system Concept”)
I J. Choi, DKU

29

6.3 Problem #2: Switching between Processes

s Context switch: pseudo code

wold switchi{struct context »»o0ld, struct context »new);

1

2 #

3 # Save current register context in old

4 # and then load register context from new.

5 .globl swtch

& swtchi:

7 # Save old registers

B movl 4({%esp), %Feax # put ocld ptr intc eax

g popl O (%eax) # save the old IP

10 movl %esp, £ (%=ax) # and stack

11 movl %Febx, B (%eax) # and other registers

12 movl Secx, 12 {(%eax)

13 movl Zedx, 1l6(Zeax)

14 mowl Fesi, Z20(%esax)

15 movl Sedi, 24 (%eax)

16 movl %Sebp, 2B (%eax)

17

18 # Load new registers

19 movl 4 (%esp), %eax # put new ptr into eax

20 movl 2B (%=ax), %ebp # restore other registers
21 mowvl 24 (%eax), %Sedi

22 movl 20 (%eax), %Sesi

23 movl 1§&(%eax), %Sedx

24 mowvl 12 (%eax), %Secx

25 movl B({Zfeax), %Sebx

26 movl 4 {%eax), Fesp # stack is switched here
27 pushl 0O (%eax) # return addr put in place
28 ret # finally return into new ctxt

Figure 6.4: The xv6 Context Switch Code

I
30

J. Choi, DKU

6.4 Worried about concurrency?

s Some issues

v What happens when you are handling one interrupt and another one
occurs?

v What happen when, during a system call, a timer interrupt occurs?

s Some solutions

Disable interrupt (note: disable interrupt too long is dangerous)
Priority

Locking mechanism

=» actually Concurrency issue

D N N NN

I J. Choi, DKU

Summary

s Process (Chapter 4)
v Process definition, Process state
v Process management (PCB, struct proc, struct task)

s Process manipulation (Chapter 5)
v fork(), wait(), exec(), kill() , ...

s Mechanism (Chapter 6)

v Limited Direct Execution: Trap or Interrupt

= Trigger mode switch (same process) always, and trigger context switch
(different processes) if necessary

‘/ Key termS ASIDE: KEY CPU WIRTUOALIZ ATHON TERMS (MECHADNNISRMS)

& The CTPUJ should support at least two modes of execution: a Tre—
stricted uaser mode and a privileged (mnomn-restricted) kermel mode.

- Moprical aser applicaions run in user mode, and ase a systerm call
o Etrap imto the kermvel o recuest opera ti_r‘lg sy stera SET W LCEe s

- The trap instruction saves register state carefully, changes the hard -
wrare status to kermel muode, and jumps into the OS o a pre-specified
destinmnation: thhe trap table.

- WWhen the OS fintdshes servicing a systernn call, if returns to the user
Programm via another special returm-from-trap instruction, which re—
duces privilege and returns control o the instruaction after the trap
that jumped into thhe OS5,

- The trap tables muast be set ap by the (S at boot fArme, and mamake
sure that they cannot be readily modified by user programs. Adl
of this is part of the limited direct execution protocol swhich rans
Programs efficiently but swithout loss of OS conmtrold.

- Onee a program is running;,. the OS muast use hardyware mechanisns
to ensure the user program does mot ruan forever, mamely the thimer
interruapt. This approach is a mon-cooperative approach to U
schedualing .

- Sometimes the (OS5, durimgy a timer interrupt or systerm call, mamidight
wrish to swwitch from rarnmmbings the current process o a ddifferent omne,
a low-level technbigue kmnown as a context switch.

L v. unur, OKU
32

QUIZ) Quiz for this Lecture

TIME)

s Quiz

v 1. Process is defined as a running program. Discuss what
information are managed in PCB (Process Control Block).

v 2. Discuss the state of the parent and child process in the below left
program just after line 8, 13 and 16, respectively. (assume that the
parent is scheduled before the child)

v 3. Discuss the differences between trap and interrupt.
v 4. Discuss how many mode switch and context switch happen in

the below right figure.

INTERLUDE: PROCESS AFI

#include <stdio.h>
tinclude <=stdlik.h>

#include <unistd.h>

#include <sys/wait.h>

int main{int argc, char +=argv[]} {
printf("hello (pid:%d)\n", [(int) getpid(});
int rc = fork(};
if (re < 0) | /S fork failed; exit
fprintf {stderr, "fork failedin");
exit {1);

} else if (re == 0} { // child {(new process)
printf{"child (pid:%d)‘n", (int) getpid());
} else { // parent goes down this path

int ro_wait = wait (NULL) ;
printf({"parent of %d (rc_wait:%d) (pid:%d)}i\n",
re, ro wait; (int) getpid());
}

return 0;

Figure 5.2: Calling fork () And wait () (p2.c)

TRAP X A Bocked ety | S
VERSUS _ y 1
INTERRUPT o el \ Roaty |
INTERRUPT 7 T ‘ g eay
|
|
| |
\ | |
Shzp Swap | Siiap
; o |
hn ot
| | |
;i ¥ ¢ |
S0) |
exceute the comesponding Running Runming v| Hunn\ng\ |Hunrﬂng\ ¥ Running
interrupt handler routine Syscall T 8yscall
Inferrupt Inferrupt Inferrupt
E = — e === |
Time-slice

X runs butries to Inpula message (fram Z) which fsnt there K runga full ime-slie Ihis ime

Also called a software Also called a hardware
interrupt interupt

Visit www PEDIAA com
Zruns and outputs a message (unblocking X)

(Source: pediaa.com/difference-between-trap-and-interrupt/)

J. Choi, DKU
(SouBe®: xerxes.cs.manchester.ac.uk/comp251/kb/Context_Switching)

Suggestion

s Read the questions in OSTEP Chapter 5 (homework) and
Chapter 6 (Measurement homework)
v Exercise them in a Linux machine (Ubuntu on Virtual box or server)

14 INTERLUDE: PROCESS AL

ASIDE: COoDING HOMEWOREKS

Coding homeworks are small exercises where yvou write code to run on
a real machine to get some experience with some basic operating system
APIs. After all, vou are (probably) a computer scientist, and therefore
should like to code, right? If vou don't, there is always CS theory, but
that's pretty hard. Of course, to truly become an expert, you have to
spend more than a little time hacking away at the machine; indeed, find
every excuse you can bo write some code and see how it works., Spend
the time, and become the wise master yvou know you can be.

Homework (Code)

In this homework, vou are to gain some familiarity with the process
management APIls about which you just read. Don't worry — it's even
more tun than it sounds! You’'ll in general be much better off if you find
as much time as wou can to write some code, so wh}-’ not start mow'?

Ouestions

1. Write a program thatcalls fork () . Before calling fork (), have the
main process access a variable (e g., x) and set its value to some-
thing {e.g., 1030). What value is the variable in the child process?
What happens to the variable when both the child and parent change

the value of =7

2. Write a program that opens a file {(with the cpen () system call)
and then calls fork () to create a new process. Can both the child
and parent access the file descriptor returned by coen (37 What
happens when they are writing to the file concurrently, i.e., at the
same bime?

3. Write another program using fork (). The child process should
print “hello™; the parent process should print “goodbye”. You should
try to ensure that the child process always prints first; can you do
this without calling wait() in the parent?

4. Write a program that calls fork () and then calls some form of
exec () torun the program fbin/ls. See if you can try all of the
wvariants of exec (), including (on Linux) execl (), execle (),
execlp (), execwv (), execvp(}l, and execvpe (). Why do
wvou think there are so many variants of the same basic call?

34

16 MECHANISM: LIMITED DIRECT EXECUTION

Homework (Measurement)

ASIDE: MEASUREMENT HOMEWORKS
Measurement homeworks are small exercises where you write code to
run on a real machine, in order to measure some aspect of OS or hardware
performance. The idea behind such homeworks is to give you a little bit
of hands-on experience with a real operating system.

In this homework, you'll measure the costs of a system call and context
switch. Measuring the cost of a system call is relatively easy. For example,
you could repeatedly call a simple system call (e.g., performing a (-byte
read), and time how long it takes; dividing the time by the number of
iterations gives you an estimate of the cost of a system call.

One thing you'll have to take into account is the precision and accu-
racy of your timer. A typical timer that you can use is gettimecfday ();
read the man page for details. What you'll see there is that get t imeofday ()
returns the time in microseconds since 1970; however, this does not mean
that the timer is precise to the microsecond. Measure back-to-back calls
to gettimeofday () tolearn something about how precise the timer re-
ally is; this will tell you how many iterations of your null system-call
test you'll have to run in order to get a good measurement result. If
gettimecfday () is not precise enough for you, you might look into
using the rdt sc instruction available on x86 machines.

Measuring the cost of a context switch is a little trickier. The Imbench

J. Choi, DKU

Appendix

5 Answers for questions commonly asked by students

lud < td.ms
e e prompt> /mem &; - /mem &
#include <stdlib.h> [1] 24113
#include "common.h" [2] 24114
- (24113) address pointed to by p: 0x200000
main(int argc, char xargvl[]) (24114) address pointed to by p: 0x200000
{ , _ _ (24113) p: 1
int *p = malloc(sizeof (int)) ; // al
assert (p !'= NULL) ; (24114) p: 1
printf (" (%$d) address pointed to by p: Sp\n", (24114) P 2
getpid (), p);: /S az .
«p — 0; Y 2 (24113) p: 2
while (1) X (24113) p: 3
Spin (1) ; (24114) p: 3
;ii:t;%"i%;; p: %d\n", getpid(), *p); /S a4 (24113) p: 4 S N Ch 2 - o TEP
; (24114) p: 4 (Source: Chapter 2 in)
return 0; . ..
1 i z i 5
Figure 2.3: A Program That Accesses Memory (mem. c) Figure 2.4: Running The Memory Program Multiple Times

v Q1: same address in the two processes?
v Q2:whynot1=22=223=24=-> ..
v Key concept: Program =» CPU using Compiler and OS

int a, b; stack q 272

main() —————— e

{ I S—— > Y | S
intc, d data a 100 a

» Compiler text main 0 0S b 568
. , b, Ioadin OS ..

int a stack| g |,9, (9) a 0S
intc, d A data : 100 R

} text main 0

_ . [J. Choi, DKU
Binary (virtual address) 35 DRAM (physical address) CPU

Program

3
>

| = 20253 & 1t st
'SWEAIHE A XIS
V2o UBS MWE & 2O, IZ(THAIR)
CAl DS EHEEAN2Q} HEEA

SWzalist'el 2u=0(ct

P

MO Mr M N M

ol oy [10
_O

-
L 2%

SWaaths=

LSl R s SWSHO 2 SLsto 24,
SWHEeIH S restn

-7 - AlEle] swHERS 2SS

2T SW2I2| =ibE ol Bioh= THekE HECK

J. Choi, DKU

