
J. Choi, DKU

Lecture Note 5. Concurrency: 
Semaphore and Deadlock

April 15, 2025
Jongmoo Choi

Dept. of Software
Dankook University

http://embedded.dankook.ac.kr/~choijm

(본 교재는 2025년도 과학기술정보통신부 및 정보통신기획평가원의 ‘SW중심대학사업’ 지원을 받아 제작 되었습니다.)



J. Choi, DKU

Contents

From Chap 30~34 of the OSTEP
Chap 30. Condition Variables
Chap 31. Semaphores
Chap 32. Common Concurrency Problems
Chap 33. Event-based Concurrency 
Chap 34. Summary

2

(Source: https://www.crocus.co.kr/1261)



J. Choi, DKU

Chap. 30 Condition Variables

Locks
ü Mainly focusing on mutual exclusion

Condition variables
ü Focusing on synchronization (not only mutual exclusion but also 

ordering)
ü Specifically, used for checking whether a condition is true

§ E.g.: 1) whether a child has completed. 2) whether a buffer is filled

3



J. Choi, DKU

Chap. 30 Condition Variables

Feasible solution 1: busy waiting with a variable 

ü Generally work, but inefficient (waste CPU time), sometimes can be 
incorrect (e.g. multiple children case)

ü What we would like here instead is some way to put the parent to 
sleep until the condition we are waiting for (e.g., the child is done 
executing) comes true.

4



J. Choi, DKU

30.1 Definition and Routines

Feasible solution 2: condition variable
ü An explicit queue that threads can put themselves on when some 

state of execution (i.e., some condition) is not as desired
ü Some other thread, when it changes state, can then wake one (or 

more) of those waiting threads and thus allow them to continue.
ü pthread APIs 

5



J. Choi, DKU

30.1 Definition and Routines

Feasible solution 2: condition variable
ü Condition variable example

ü Note: 1) Need done(state variable)?, 2) Need lock? 3) how about if 
instead of while in join(), 4) wait(): unlock/lock implicitly

6



J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

The famous Producer/Consumer problem (also known as  
bounded buffer problem)
ü Scenario 

§ Producers generate data items and place them in a buffer
§ Consumers grab the items from the buffer and consume them
§ e.g. DB server, streaming server, pipe, cache, …

ü Issues
§ Mutual exclusion 
§ Empty case: no data (need condition check)
§ Full case: no available buffer (need condition check)

7



J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

Basic structure: without considering sharing
ü Shared buffer: put(), get() interfaces

§ Assumption: space for only one item (single buffer) è relax later
ü Producer/Consumer: producer(), consumer()

8

buffer

count



J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

Solution 1: Now consider sharing
ü Mutual exclusion: mutex
ü Ordering: condition variable   

9

E Is it correct? 



J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

Solution 1 (cont’)
ü Wake up C1, but run C2

10



J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

Solution 2 
ü while instead of if

11

E Now, is it correct? 



J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

Solution 2 (cont’)
ü Signal to P, but wake up C2  

12



J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

Solution 3 (final)
ü Two condition variables

§ Indicate explicitly which thread I want to send my signal.

13



J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

14

Multiple buffers cases: final solution 

use_ptr

fill_ptr

count = 3



J. Choi, DKU

30.3 pthread_cond_broadcast: Covering Conditions 

Memory allocation library for multi-thread env.
ü Issue: which one to wake up?

§ E.g.) no free space, T1 asks 100B, T2 asks 10B, Both sleep è T3 free 
50B è T2 wakeup: okay, T1 wakeup: sleep again, but T2 also sleeps

ü pthread_cond_broadcast() instead of pthread_cond_signal()

15



J. Choi, DKU

Chap 31. Semaphores

Semaphore
ü Well-known structure for concurrency control

§ Can be used as both a lock and a condition variable
§ Binary semaphore, Counting semaphore 
§ Can be employed by various concurrency problems including                 

1) producer/consumer, 2) reader/writer and 3) dining philosophers 
ü Invented by the famous Edsger Dijkstra

16

(Source: http://preshing.com/20150316/semaphores-are-surprisingly-versatile/)



J. Choi, DKU

31.1 Semaphores: A Definition

Semaphore definition
ü An object with an integer value manipulated by three routines

§ sem_init(semaphore, p_shared, initial_value) 
§ sem_wait(): also called as P(), down() …

• Decrease the value of the semaphore (S). Then, either return right away 
(when S >= 0) or cause the caller to suspend execution waiting for a 
subsequent post (when S < 0)

§ sem_post(): also called as V(), up(), sem_signal() …
• Increment the value of the semaphore and then, if there is a thread waiting 

to be woken, wakes one of them up 
§ Others: sem_trywait(), sem_timewait(), sem_destroy()

17



J. Choi, DKU

31.2 Binary Semaphores (Locks)

Using a semaphore as a lock

ü Running example 
§ Can support the mutual exclusion
§ Note that the value of the semaphore, when negative, is equal to the 

number of waiting threads

18



J. Choi, DKU

31.3 Semaphores for Ordering 

Using a semaphore as a conditional variable
ü Initial semaphore value: 0 (note: it is initialized as 1 for mutex) 

19

E Compare semaphore (this page) with condition variable (page 6) è No “Done” variable



J. Choi, DKU

31.4 Producer/Consumer (Bounded Buffer) Problem

Using a semaphore for the producer/consumer problem
ü mutex: binary semaphore, full/empty: counting semaphore

20

E Summary of two versions (semaphore in 
page 20 vs condition variable in page 14)

• 1) No count variable (owing to counting semaphore)
• 2) ordering è mutex vs mutex è ordering (See 

Figure 31.11 in OSTEP)  



J. Choi, DKU

31.5 Reader-Writer Locks

Producer/Consumer vs. Reader/Writer
ü Producer/Consumer: need mutual exclusion (e.g. list insert/delete)
ü Reader/Writer: need mutual exclusion, but allow multiple readers 

(e.g. tree lookup and insert)
§ Specific comparison 

• A Producer or Consumer in Critical Section è next Producer or Consumer 
must wait 

• A writer in Critical Section è 1) next writer or 2) next reader must wait
• A reader in Critical Section è 1) next writer must wait, 2) but next reader 

can enter (better performance) 
§ Issue (related to starvation) 

• Readers in Critical Section + a writer is waiting è a reader arrives : wait or 
allowed (depending on either writer preference or reader preference) 

21



J. Choi, DKU

31.5 Reader-Writer Locks

Implementation for reader/writer
ü lock: for mutual exclusion on readers
ü writelock: to allow a write or multiple readers 

§ This implementation prefers to readers (writers can starve in this version) 

22

w1 w2

r2r1

w1

r2r1 r3



J. Choi, DKU

31.6 The Dining Philosophers 

Problem definition
ü There are five “philosophers” sitting around a table.
ü Between each pair of philosophers is a single fork (thus, five total)
ü The philosophers each have times for thinking or for eating
ü In order to eat, a philosopher needs two forks, both the one on their 

left and the one on their right è shared resource è concurrency 

23



J. Choi, DKU

31.6 The Dining Philosophers 

Solution
ü Basic loop for each philosopher
ü Now question is how to implement getforks() and putforks()

§ Using five semaphores: sem_t forks[5]
§ Obtain semaphore before acquire a fork

ü Cause Deadlock
§ All philosophers obtain their left fork, while waiting their right one
§ How to avoid this issue?

24

(Basic loop)

(First solution)



J. Choi, DKU

31.6 The Dining Philosophers 

New Solutions
ü 1) break dependency (break ordering)
ü 2) set limit
ü 3) employ transaction (e.g. the Monitor)
ü 4) more resource
ü 5) teach philosophers (idea from a student)

25

(Basic loop)

(New solution)



J. Choi, DKU

Chap 32. Common Concurrency Problems

Concurrency
ü Pros: can enhance throughput via processing in parallel 
ü Cons: may cause several troublesome concurrency bugs (a.k.a. 

timing bugs) 

32.1 What Types of Concurrency Bugs Exist?

ü Total bugs: 105
§ Deadlock bugs: 31
§ Non-deadlock bugs : 74

ü Differ among applications 

26



J. Choi, DKU

32.2 Non-Deadlock Bugs

Two major types of non-deadlock bugs 
ü Atomicity-Violation Bugs (From MySQL sources)

ü Order-Violation Bugs

27



J. Choi, DKU

32.2 Non-Deadlock Bugs

Solution to Atomicity-Violation Bugs

28



J. Choi, DKU

32.2 Non-Deadlock Bugs

Solution to Order-Violation Bugs

29



J. Choi, DKU

32.3 Deadlock Bugs

Deadlock
ü A situation where two or more threads wait for events that never 

occur

§ E.g.) When a thread (say T1) is holding a lock (L1) and waiting for 
another one (L2); unfortunately, the thread (T2) that holds lock L2 is 
waiting for L1 to be released.

30

(Deadlock Dependency Graph)



J. Choi, DKU

32.3 Deadlock Bugs

Deadlock: 4 Conditions
ü Mutual exclusion 
ü Hold-and-Wait
ü No preemption for resource
ü Circular wait 

31

(Deadlock Dependency Graph)

(Source: Google image)



J. Choi, DKU

32.3 Deadlock Bugs

How to handle Deadlock: three strategies
ü 1. Deadlock Prevention
ü 2. Deadlock Avoidance via Scheduling
ü 3. Deadlock Detection and Recovery 

32

Approach Resource Allocation 
Policy 

Different Schemes Major Advantages Major 
Disadvantages 

Requesting all resources at 
once 

•Works well for 
processes that perform a 
single burst of activity 

•No preemption 
necessary 

 

•Inefficient 
•Delays process 
initiation 

•Future resource 
requirements must 
be known by 
processes 

Preemption 

•Convenient when 
applied to resources 
whose state can be 
saved and restored 
easily 

•Preempts more 
often than necessary 

Prevention 
Conservative; 
undercommits 
resources 

Resource ordering 

•Feasible to enforce via 
compile-time checks 

•Needs no run-time 
computation since 
problem is solved in 
system design 

•Disallows 
incremental 
resource requests 

Avoidance 
Midway between that 
of detection and 
prevention 

Manipulate to find at least 
one safe path 

•No preemption 
necessary 

•Future resource 
requirements must 
be known by OS 

•Processes can be 
blocked for long 
periods 

Detection 

Very liberal; 
requested resources 
are granted where 
possible 

Invoke periodically to test 
for deadlock 

•Never delays process 
initiation 

•Facilitates online 
handling 

•Inherent preemption 
losses 

(Source: “Operating systems: Internals and Design Principle” by W. Stalling)



J. Choi, DKU

32.3 Deadlock Bugs

Deadlock prevention
ü This strategy seeks to prevent one of the 4 Deadlock conditions
ü 1. Hold-and-wait

§ Acquire all locks at once, atomically
ü 2. No Preemption

§ Release lock if it can not hold another lock
§ Concern: 1) may cause Livelock, 2) sometimes require undo 

• Two threads could both be repeatedly attempting this sequence and 
repeatedly failing to acquire both locks è add random delay

ü 3. Circular Wait
§ A total ordering on lock acquisition
§ E.g.) The comment at the top of the source code in Linux: “i_mutex” 

before i_mmap_mutex”

33

(Acquire all locks atomically) (Release lock if it can not hold another lock) 



J. Choi, DKU

32.3 Deadlock Bugs

Deadlock prevention (cont’)
ü 4. Mutual Exclusion: 

§ “lock free” approach: no lock but support mutual exclusion   
• Using powerful hardware instructions, we can build data structures in a 

manner that does not require explicit locking
§ Atomic integer operation with compare-and-swap (chapter 28.9 in LN 4) 

§ List management (39 page in LN4) 

34

Lock freeUsing Lock

Lock free
Using Lock

E Lock free: applicable only some specific cases vs Lock: general 



J. Choi, DKU

32.3 Deadlock Bugs

Deadlock Avoidance via Scheduling
ü Instead of prevention, try to avoid by scheduling threads in a way as 

to guarantee no deadlock can occur.
§ E.g.) two CPUs, four threads, T1 wants to use L1 and L2, T2 also wants 

both, T3 wants L1 only, T4 wants nothing 

§ E.g. 2) more contention (negative for load balancing)

§ No deadlock, but under-utilization è A conservative approach

35



J. Choi, DKU

32.3 Deadlock Bugs

Deadlock Avoidance via Scheduling (cont’)
ü Famous algorithm: Banker’s algorithm

§ E.g.) Multiple processes with single resource case (also applicable to 
multiple resources case)

§ Safe and unsafe state
• Try to stay in safe state while allocating resources 

36



J. Choi, DKU

32.3 Deadlock Bugs

Deadlock Detection and Recovery 
ü Allow deadlocks to occasionally occur, and then take a detection and 

recovery action
§ E.g.) If an OS froze once a year, you would just reboot it (but failure is a 

norm in a Cloud/Bigdata platform)
§ Many DB systems employ active deadlock detection approach

ü How to detect? 
§ Periodically, build resource allocation graph, checking in for cycles

ü How to recovery? 
§ Select a victim (youngest or least locks)  

37

(Source: https://www.slideshare.net/AbhinawRai/deadlock-51330115 )

Meaning of Node and Edge in 
Resource allocation graph 

Resource allocation graph
Example without Deadlock  

Resource allocation graph
Example with Deadlock  



J. Choi, DKU

33 Summary Dialogue on Currency 

38



J. Choi, DKU

Summary

Concurrency method
ü Lock, Condition variable, Semaphore, …

Well-known concurrency problems
ü The Producer/Consumer problem
ü The Reader/Writer problem
ü The Dining philosopher problem

Concurrency bugs
ü Non-Deadlock bugs
ü Deadlock bugs

Deadlock approach
ü Prevention strategy
ü Avoidance strategy
ü Detection and Recovery strategy  

39



J. Choi, DKU

Lab 2: Concurrent Data Structure 

What to do?
ü Goal

§ Make a concurrent data structure (for example Queue or Hash or Skip list, 
…)

§ See Lab. 2 in https://github.com/DKU-EmbeddedSystem-
Lab/2025_DKU_OS

ü How to submit? 
§ 1) Report (Sections: Goal, Design, Result, Discussion), 2) Source code (with 

Makefile) è upload at Google Form or email to TA(yeojinoh@dankook.ac.kr)
ü Requirement 

§ Three comparisons: 1) with/without locks, 2) fined-grained/coarse grained 
lock, 3) Performance under different number of threads 

ü Due: two weeks later.

40

Hash 

key mod 5 == 0 

Queue

key mod 5 == 1 

key mod 5 == 2 

key mod 5 == 3 

key mod 5 == 4 24

7

15

31

22

Hash 

key mod 5 == 0 

Queue

key mod 5 == 1 

key mod 5 == 2 

key mod 5 == 3 

key mod 5 == 4 24

7

15

31

22

16

(after insert 16)

head tail tail head 

E What happen when two threads insert 8, 13 at the same time? 



J. Choi, DKU

Quiz for this Lecture 

Quiz
ü 1. Explain the three issues that we need to consider for the 

producer/consumer problem.
ü 2. Describe whether the program in Figure 30.8 is correct or not? If 

incorrect, discuss why? 
ü 3. Explain the meaning of semaphore value in Figure 31.5. Is it 

possible that this value becomes -2? 
ü 4. Discuss the differences between the producer/consumer and 

reader/writer problem (at lease 2 differences).
ü 5. Is there a deadlock in the below right resource allocation graph?  

41

(Source: www.chegg.com/homework-help/questions-and-answers/)



J. Choi, DKU

Appendix 1

31.4 Producer/Consumer (Bounded Buffer) Problem
ü Second attempt: Adding mutual exclusion 

42

E Is it correct?



J. Choi, DKU

Appendix 1

31.7 How to Implement Semaphores 
ü Using mutex and condition variable

43



J. Choi, DKU

사사

본 교재는 2025년도 과학기술정보통신부 및 정보통신기획
평가원의 ‘SW중심대학사업’ 지원을 받아 제작 되었습니다. 
본 결과물의 내용을 전재할 수 없으며, 인용(재사용)할 때에
는 반드시 과학기술정보통신부와 정보통신기획평가원이 지
원한 ‘SW중심대학’의 결과물이라는 출처를 밝혀야 합니다.

44


