DANKOOK UNIVERSITY

Lecture Note 5. Concurrency:
Semaphore and Deadlock

April 15, 2025
Jongmoo Choi

Dept. of Software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(2 = 20258 WS =FESAR L FESAIIEBTIIAS 'SWSAUEAIY XIS 20t M& S ASLICE)

I J. Choi, DKU

Contents

From Chap 30~34 of the OSTEP

Chap 30. Condition Variables

Chap 31. Semaphores

Chap 32. Common Concurrency Problems

Chap 34. Summary

Acguing Sermaphons ' .

‘SEMAFHDHE Shared Resource

- .
Acquile Semaphors

(Source: https://www.crocus.co.kr/1261)

-

J. Choi, DKU
2

Chap. 30 Condition Variables

s Locks
v Mainly focusing on mutual exclusion

s Condition variables

v Focusing on synchronization (not only mutual exclusion but also
ordering)

v Specifically, used for checking whether a condition is true

00~ O o W N e

e
[L

o
w

—
= W

= E.g.

. 1) whether a child has completed. 2) whether a buffer is filled

void =»=child({veid =arg) {

int

printf{"childina");
S/ XHEY how to indicate we are done?
return NULL;

main{int argc, char *argv([]) {

printf ("parent: beginin");

pthread_t c;

Pthread create(&c, NULL, child, NULL); // create child
S/ XXX how to wait for child?

printf ("parent: end\n");

return 0;
What we would like to see here is the fﬂllﬂwing output:

Figure 30.1 parent: begin
child

e Parent: end

3

Chap. 30 Condition Variables

s Feasible solution 1: busy waiting with a variable

1 volatbtile int done = 0:

z

3 void *child(void w=arg) {

4 printf ("child\n");

5 done = 1;

é return NULL;

7 h

8

9 int main(int argc, char xargv([])
10 printf ("parent: begin\n"};

11 pthread t c¢;

12 Pthread create(&c, NULL, child, NULL); // create child
13 while {done == 0)

14 ;7 // spin

15 printf ("parent: end\n");

16 return 0;

17 }

Figure 30.2: Parent Waiting For Child: Spin-based Approach

v Generally work, but inefficient (waste CPU time), sometimes can be
incorrect (e.g. multiple children case)

v What we would like here instead is some way to put the parent to
sleep until the condition we are waiting for (e.g., the child is done
executing) comes true.

I J. Choi, DKU
4

30.1 Definition and Routines

s Feasible solution 2: condition variable

v An explicit queue that threads can put themselves on when some
state of execution (i.e., some condition) is not as desired

v Some other thread, when it changes state, can then wake one (or
more) of those waiting threads and thus allow them to continue.

v pthread APlIs

pthread_cond_wait (pthread_cond_t *c, pthread mutex_t +m);
pthread_cond_signal (pthread_cond_t +c);

Task #1

Task #2 Task #n

! !

guarding l
murtex
1

Condition Variable

Predicate

Condition(s)

- I Task]-l Task |-I Task |

N

Waiting
Tasks

FALSE

I, DKU

30.1 Definition and Routines

s Feasible solution 2: condition variable
v Condition variable example

vold thr_exit () {

1
2 Pthread_mutex_lock (&m) ;
1 int done = 0; 3 Pthread_cond_signal (&c);
2 pthread _mutex_t m = PTHREAD MUTEX TNITIALIZER; " Pthread_mutex_unlockl{&mj,-
3 pthread cond Lt = PTHREAD_ COND_TNITIALTZER; : }
4
5 volid thr_exit () { 6
6 Pthread mutex_lock (&m) ; 7 wvoid thr_joj_n () {
7 done = & o 8 Pthread mutex_lock (&m);
5 Pthread cond_signal (&c) ; '
9 Pthread mutex_ unlock (&m) ; g Pthread_cond wait [&CJ‘ &m) i
10 1 10 Pthread mutex_unlock (&m);
AL . . o) TR
12 vold +~child(void +arg) {
13 print T {Nchild\e™) : s z
i Sk sl ey Figure 30.4: Parent Waiting: No State Variable
15 return NULL;
16 }
17
18 void thr_ _join() { 1 wvoid thr_exit () {
19 Pthread_mutex_ _lock (&m) ; _
20 while (done == 0) 2 done = 1;
21 Pthread cond_ wait (&c, &m) ; 3 Pthread_cond_signal [&C} H
22 Pthread mutex_ unlock (&m) ; : }
23 }
24 5
25 int main{(int argc, char =argv[]}) {1 & void thr :]D_'I.I'l“ [
26 printf {"parent: beginin™); ! i
27 pthread_t p; 7 b3 {done == G}
28 Pthread create(&p, NULL, child, NULL) ; 1 Pthread_cond_waj_t (&C:l' 2
29 thr jeoin () :;
30 printf ("parent: end\n"); 2 }
31 return 0; i e
2} Figure 30.5: Parent Waiting: No Lock

Figure 30.3: Parent Waiting For Child: Use A Condition Variable

v Note: 1) Need done(state variable)?, 2) Need lock? 3) how about if
instead of while in join(), 4) wait(): unlock/lock implicitly

I J. Choi, DKU
6

30.2 Producer/Consumer (Bounded Buffer) Problem

s The famous Producer/Consumer problem (also known as
bounded buffer problem)

v Scenario
* Producers generate data items and place them in a buffer
= Consumers grab the items from the buffer and consume them
= e.g. DB server, streaming server, pipe, cache, ...
v Issues
= Mutual exclusion
= Empty case: no data (need condition check)
» Full case: no available buffer (need condition check)

Data Buffer

@ % | 1] | g

Producer Threads Consumer Threads

J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

s Basic structure: without considering sharing

v Shared buffer: put(), get() interfaces
= Assumption: space for only one item (single buffer) =» relax later

v Producer/Consumer: producer(), consumer()
z izz E;iijri L A imitiallw, = Ty
2 count
4 wodd pabt it waliase=k i
= aEiiE:;:T?n: == 1}
. 2:2;121::un: == 17 ; bUﬁer

r=tiarm bufFTfex;

Figure 30.46: The Put And Get Rowutines (w10

Wwiold wproducer (wioino wSITop) |
int iz
inmt loops

E>x

{Zmic k S Trogy
1 <= loopsg

=5 +

Pt {E) ;

:j- - +) L

| I

Wwiodd w=ooRSsuamEeEr [wirEo wSrEop) |
whils (1) 1

11 Imt tmp = gt d) F
ErriobtE {"E2Nm™, tmpel 3

F

Figure 30.7: Producer/Consumer Threads (v1)

8

J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

s Solution 1: Now consider sharing

- r il &= - =

- o -
L = b E [L & L J

P E BB E e

v Mutual exclusion: mutex
v QOrdering: condition variable

int loops; // mast idnitislize somewhsre. . .
o b Cirtd;
mutex +t mubtszx;

wolad wproducer {woid warogl |

int 33
For (i = 0; i = leoops; i++)F |
Fothread mutex_ fock {&mutcex)} 3
1Ef Jfocount == 1]
Pthread cond wait (&Econd, &Emuatex)
pat (31} ;

Fohread, cond signasl { Eocondd) @
Prchread mutex unlock [Emoatex) g

’

wold w=consumer {(woid w«azog) |

int 313
For (i = 07 41 = loops; i++})
Pothread mutex lock {fdmaobtex] ;
1Ef Jocount == 4]
Pthread cond wait (Econd, &Smutex) ;
int tmp = gt {}F

Pohread cond signal {(Econd)
Prchread mutex unlock [Emoatex) g
printf {"%¥dWa™, tmpl;

F

'
sy

A
Far

ra,
sy

ra
oy

r

r
d

r

r
d

[
[l
=4
—4
[|

b

Figure 30.8: Producer/Consumer: Single CV And If Statement

e Is it correct?

9

J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

s Solution 1 (cont’)
v Wake up C1, but run C2

] P State N State T, State Count Comment
o | Running Ready Ready 0
c2 Running Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get
Sleep Ready pl Running 0
Sleep Ready p2 Running 0
Sleep Ready p4 Running 1 Buffer now full
Ready Ready p5 Running 1 T.1 awoken
Ready Ready p6 Running 1
Ready Ready pl Running 1
Ready Ready p2 Running 1
Ready Ready p3 Sleep 1 Buffer full; sleep
Ready cl Running Sleep 1 Teo sneaks in ...
Ready c2 Running Sleep 1
Ready c4 Running Sleep 0 ... and grabs data
Ready c5 Running Ready 0 T, awoken
Ready cb Running Ready 0
c4 Running Ready Ready 0 Oh oh! No data

Figure 30.9: Thread Trace: Broken Solution {(v1)

I J. Choi, DKU
10

30.2 Producer/Consumer (Bounded Buffer) Problem

s Solution 2
v while instead of if

int loops;
cond E COoTicE
mutex t mutex;

woid =producer {woid =waz-g) |
int iz

B od 8 4 B W & b =

EFor (i = 07 4d = loops; i++) |
Pohread muotex_lock {&smaobtex) ; T =
while {count == 1} Fd p2
Pthread cond wait (&cond, &mutex); /S p3

T put (i) ; LS opa
2 Pohread cond_ signal (&Econd) ¢ F45 e5
L3 Foihread mutex _unlock {smutex}) ; fS O pb
L4 F
L5 '
Le
LT woilid =consumer {void sarTgl i
L8 int iz
Ls for (i = D i < loops; i++)
0 Pothread mutex lock {&mubtex] ; f75 el
as while {count == 0O} FA R =
23 PEhread cond wait (&cond, &mutex); 75 =3
3 int tmp = gt) ; F A - X
LT Pechread cond sizognal {Econd] ; A5
25 Fohread mutex_ _unlock {smutex} ; P -t
28 printE{"T®d\n"™, to);
xr 3
z i

Figure 30.10: ProducerfConsumer: Single CV And While

@ Now, is it correct?
—11 J. Choi, DKU

30.2 Producer/Consumer (Bounded Buffer) Problem

s Solution 2 (cont)

v Signal to P, but wake up C2

3 State g N State Ty State Count Comment
cl Running Ready Ready 0
c2 Running Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get
Sleep cl Running Ready 0
Sleep c2 Running Ready 0
Sleep c3 Sleep Ready 0 Nothing to get
Sleep Sleep pl Running 0
Sleep Sleep p2 Running 0
Sleep Sleep p4 Running 1 Buffer now full
Ready Sleep p5 Running 1 T.1 awoken
Ready Sleep po6 Running 1
Ready Sleep pl Running 1
Ready Sleep p2 Running 1
Ready Sleep p3 Sleep 1 Must sleep (full)
2 Running Sleep Sleep 1 Recheck condition
c4 Running Sleep Sleep 0 T.1 grabs data
c5 Running Ready Sleep 0 Oops! Woke T.2
cb Running Ready Sleep 0
cl Running Ready Sleep 0
c2 Running Ready Sleep 0
c3 Sleep Ready Sleep 0 Nothing to get
Sleep [Running Sleep 0
Sleep c3 Sleep Sleep 0 Everyone asleep...

Figure FHI1_11: Thread Trace: Broken Soluatiors (w20

12

30.2 Producer/Consumer (Bounded Buffer) Problem

= Solution 3 (final)

v Two condition variables
» |ndicate explicitly which thread | want to send my signal.

| cond_t empty, £ill;

2 mutex t muatex;

3

4 wvoid v producer (void xarg) {

5 Tt A

6 for (i = 03 i = loopss; it+t+) {

= Prthread mutex_lock {(amutex) ;

s while (count == 1)

9 Pthread cond_wait (&dempty, &mutex) ;
10 put (1) ;

11 Pthread_cond_signal{&fill);
12 Pthread_ mutex_ _unlock (&dmutex) ;
13 b

14 }

15

16 void xconsumer (void w=arg) |

17 Trrks a3

18 for (i = 0; i = loops; i++) {

19 Pthread mutex lock (&mutex) ;
20 while (count == 0)

21 Pthread cond _wait(&fill, &mutex) ;
22 int tmp = get () ;

23 Pthread cond_signal {&emptv) ;
24 Pthread mutex unlock (&mutexx) ;
25 printf ("Sd\n"™, tmp);

26 }

N

1
Figur-;- S IZ: Prodiacer M omsurmeers Tewo CWa S el W lad e

I J. Choi, DKU
13

30.2 Producer/Consumer (Bounded Buffer) Problem

s Multiple buffers cases: final solution

Nk W=

LB R -

L L6]

inmt buffer [MBX]

int £ill ptrxr = O;
int use_ _ptx = O;
int counkt = Oz

woid put (imnt wvalue) {

buffer [£fi1l1 ptr] = walus;

fill ptr = (E111 ptr + 1) T MAMN
cowrnt 44z

1

int get () {
int tmp = bufferlusse ptxr] ;
use. ptr = (auase_pitr¥r + 1) 5 ML
ot ——3

return tmpe;

Figure 20.13: The Correct Put And Get

cond t empiy, FI3AEZ

mutex T+ mutexx;;

void =producer (void warg) {

dnt 4

o (i = 0; i < lToops; A4+ {
Pthread mutex lock {(&Emutex) ;
while {conmnt == ML)

Pthread cond wait (fempiowv,

Eput {i) ;
Pthread cond signal {(&fill1) ;
Prthread mutex unlock (&mutcex) ;

}

woid *consumer (void warg) [
FTmvE T dg
o {i = 0; F- =< 1 oops ;7 d++3 {

Pthread mutex lock{&mutex) ;

while ({count ==)
Pthread cond wait(&ae£fill,

inmt tmp = get () ;

Fthread cond signal (&empitvw) 7

Prthread matex unlock (&Emutex)

printf ({"fd4dNn", tmp) 7

1

Emutesx)

&emutex) ;

-

fill_ptr

LA o pl
LA pZ
Lr a3
S F p4a
LS ps
L pe
PRkt . <
PV R =
FR A = e
S e
PV A =
P A =

I:'_:i.EL:Ir-E IO 3L T he Correct E'm-::}-zfcer.ﬂ:n-nsmer El_l,.rnn:hmnizalinﬂ

oi, DKU

30.3 pthread cond_broadcast: Covering Conditions

= Memory allocation library for multi-thread env.
v Issue: which one to wake up?

= E.g.) no free space, T1 asks 100B, T2 asks 10B, Both sleep = T3 free
50B =» T2 wakeup: okay, T1 wakeup: sleep again, but T2 also sleeps

v pthread_cond_broadcast() instead of pthread _cond_signal()

S how many byvites of the heap are free?
int byvtesl.eft = MAK HFEAP STZE;

A need lock and condition too
oorudd. T 5
miztex_ t m;

wroid
aldllocate (1L sS1=e) 4
Pthread muatesx_ lock (&m)
while (bviteslL.eft < size)
Prthread cond_ wait (&c, Emd) =

a WNE QR RN RN R W N

void «ptr = ...; /Y get mem from heap
bytesl.eftt —— Si=ze;

15 Pohread muatex 1mnlock {&m) ;

16 return phtir;

B }

18

£ wvold Ffree (wvoild =pitir, 0 Ty size) i

35 Pthread muatesx_ lock (&m) ;7

z1 byvtesl.eft += size;

22 Pihread cond signal (&c) ; S wwhom to signal??

23 Pthread matex 1uunlock {(&m) ;

=4 }

Figure 30.15: Covering Conditions: An Example

15

J. Choi, DKU

Chap 31. Semaphores

m Semaphore

v Well-known structure for concurrency control
» Can be used as both a lock and a condition variable
» Binary semaphore, Counting semaphore

= Can be employed by various concurrency problems including
1) producer/consumer, 2) reader/writer and 3) dining philosophers

v Invented by the famous Edsger Dijkstra

The bouncer represents a semaphore.
These people represent waiting threads. He won't allow threads to proceed
They aren't running on any CPU core. untilinstructed to do so. wait

signal

Have a nice day, ma'am.

wait

(Source: http://preshing.com/20150316/semaphores-are-surprisingly-versatile/)
J. Choi, DKU

16

31.1 Semaphores: A Definition

s Semaphore definition

v An object with an integer value manipulated by three routines
» sem_init(semaphore, p_shared, initial _value)

= sem_wait(): also called as P(), down() ...

Decrease the value of the semaphore (S). Then, either return right away
(when S >= 0) or cause the caller to suspend execution waiting for a
subsequent post (when S < 0)

= sem_post(): also called as V(), up(), sem_signal() ...
Increment the value of the semaphore and then, if there is a thread waiting
to be woken, wakes one of them up

= Others: sem_trywait(), sem_timewait(), sem_destroy()

1 #include <semaphore.h>
2 sem T s;
3 sem_init (&s, 0, 1) ;

Figure 31.1: Initializing A Semaphore

int sem _wait (sem_t =xs) {
decrement the value of semaphore s by one
wailit 1Ff wvalue of semaphore s 1s negative

int sem post (sem_t *s) {
increment the value of semaphore s by one
if there are one or more threads waiting, wake one

O 0N Ok WNRE

— Figure 31.2: Semaphore: Definitions Of Wait And Post |[J. Choi, DKU

31.2 Binary Semaphores (Locks)

s Using a semaphore as a lock

U ke W N

* Note that the value of the semaphore, when negative, is equal to the

sem_ Tt m;
sem_init (&m, O,

sem_wait (&m) ;
1f eéritical sactieon here
sem_post (&m) ;

X); // initialize semaphore to X;

Figure 31.3: A Binary Semaphore (That Is, A Lock)

v Running example
= Can support the mutual exclusion

number of waiting threads

Value Thread O State Thread 1 State
il Running Ready
1 call sem_wait () Running Ready
O sem_wait () returns Running Ready
(9] (crit sect : begin) Running Ready
o Imterrupt; Switch—T71 Ready Running
o Ready call sem_wait () Running
-1 Ready decrement sem Running
-1 Ready (sem<<0) —-sleep Sleeping
-1 Running; Switch—TO0 Sleeping
-1 (crit saect: end) Running Sleeping
-1 call sem_post () Running Sleeping
0] increment sem Running Sleeping
O wake (T1) Running; Ready
(0] sem_post () returns Running Ready
o Interrupt; Switch—T71 Ready Running
(0] Ready sem_wait () returns Running
o Ready (s) Running
o Ready call sem_post () Running
i | Ready sem_post () returns Running

| O

Figure 31.5: Thread Trace: Two Threads Using A Semaphore

what should X be?

oi, DKU

31.3 Semaphores for Ordering

s Using a semaphore as a conditional variable
v Initial semaphore value: 0 (note: it is initialized as 1 for mutex)

1 sem_t s;

2

3 void =

4 ehild(veid =arg) 1

5 printE ("child\yn"™) ;

6 sem _post(&s); // signal here: child is done
7 return NULL;

8 }

9

10 int

11 main (int arge, char *axrgv[]) {

'y
[}

sem_init(&s, 0, X); // what should X be?
printf ("parent: begin\n");

pthread_t c;

Pthread create (&c, NULL, child, NULL) ;
sem_wait (&s); // wait here for child
printf ("parent: end\n");

return 0;

I e T e e N e Ml e
O 0 N e W
—

Figure 31.6: A Parent Waiting For Its Child

<+ Compare semaphore (this page) with condition variable (page 6) = No “"Done” variable

I J. Choi, DKU
19

31.4 Producer/Consumer (Bounded Buffer) Problem

CONO QR BNe

Using a semaphore for the producer/consumer problem

v mutex: binary semaphore, full/empty

1 J i bhbuiffer [MAX] 7

=2 d raic i i] (1 =) o

3 d ot use — o2

= 5

5 ~woid puat (it ~v~alue) {

[=Y TouuffFfFfer [453 1T 1] = ~walue i i T.4d me
i o counpr gl (0 = i 13 —+ ad = b o B N o I.idne
s ¥

=]

10 d ot get () i

11 s i Ty tmp = buffer [use<e] ; S I.idne
1z use = (use —+ ¥ = MEL A Tndrnmie
i3 ety arra tmypy s

14 }

sem_
sem__t
sem__t

empty 7
i s > S
mutesx;

- 1

. counting semaphore

§ Sl

=
S22

Figure 31.0: - ¥ Summary of two versions (semaphore in
page 20 vs condition variable in page 14)

) No count variable (owing to counting semaphore)

woid = o cer (voi ~axr H H
cr SEroTneer < SR « 2) ordering = mutex vs mutex = ordering (See
foxr (i = L2 B 5 << loop sz i++) H H
L saapiincc - I = Sawlion. o= - R Figure 31.11 in OSTEP)
sem__wait (&mutex) ; 5 A I.inme P11 .5 (MOVED MUOTEX HERFEF: . . .)
et E5) ; a4 I.ine P2
sem _post (&Smute>x) ; VA T.ine P2 .5 | 1A ATND HERE)
sem post (&fuvull) ; S Line P33
¥
¥
wvwoldd =xconsumer (void w~arg) {
B i o 2 = S 3 3
oo (i = Q; i = lLoopss id++) {
sem _wait (&full) ; S/ Liine C1
sem__wait (&mutex) ; ravd T.ne Cl1 .5 (MOVED MUOTEX HERFEF. . . .)
It tme = get () 7 Vv T.ine <C2
sem post (amutesx) ; S TL.dne CZ205 {- .. AND HERE)
sem _post (sempty) ; S T.Ldine C3
o B ot T e Ty o i e e T o L Tmp) 2
¥
¥
int main (int AT CI T, char w=arg~wI[]) {
#a
sem_ _init (sempty, (G IES MR) S S MAX buffers are empty to beginm with .o .o o
sem_ init (sfull, iy Y =5 A - e s and D are Full
sem_ _dnit (smuteszx, 5 . Al YyiE A/ mutezx=—1 because it is a lock

i

Figure 31.12: Adding Mutual Exclusion (Correctly)

20

KU

31.5 Reader-Writer Locks

s Producer/Consumer vs. Reader/Writer
v Producer/Consumer: need mutual exclusion (e.qg. list insert/delete)

v Reader/Writer: need mutual exclusion, but allow multiple readers
(e.g. tree lookup and insert)
» Specific comparison
A Producer or Consumer in Critical Section =» next Producer or Consumer
must wait
A writer in Critical Section =» 1) next writer or 2) next reader must wait

A reader in Critical Section =» 1) next writer must wait, 2) but next reader
can enter (better performance)

» |ssue (related to starvation)

Readers in Critical Section + a writer is waiting = a reader arrives : wait or
allowed (depending on either writer preference or reader preference)

Readae ﬁ | S Ta PSS o ﬁ
J Raoaders J
CELTE e TRl e w
C R e ade 3 INata bhasae
N AT e ﬁ R e ade ﬁ
J N A te = JJ
EAARLEST W s it
A e s to» cdaata bhaaase

21

31.5 Reader-Writer Locks

= Implementation for reader/writer
v lock: for mutual exclusion on readers
v writelock: to allow a write or multiple readers

» This implementation prefers to readers (writers can starve in this version)

1 tvpedef struct _rwlock__t {
2 sem_t lock; S/ binary semaphore (basic lock)
3 sem_t writelocck; S/ used to allow ONE writer or MANY readers
4 IwvE readers; S/ count of readers reading in critical section
5 ¥ Ewmlieels g
6
4 woid rwlock dnit(rwlock £t *x1rw) {
8 rw—>readers = 0;
9 sem _init (&rw—>lock, o, S T~
10 sem _init (&arw—>writelock, o, 1 i .
11 +
12
13 wvold rwlogk cquire_readlock(rwfécgzt:J%ﬂ {
14 sem__wai (&atw—>=lock) ;
15 rw—>readers-+-+;
16 dF { =w— eaders == 1)
17 sem _wait (&rw—>writelock) ; S/ Eiprst eader acgguires writelock
18 sem_ post (&srw—>lock) ;
19 i3
20
21 volid rwlock release readlock (rwlock_ t @ *1rw) {
22 sem _wait (&arw—>lock) ;
23 rw—>readers——;
24 i F (rw—>readers == 0)
25 sem_ _post (&srw—>writelock) ; /S /S last reader releases writelock
26 sem_ _post (&rw—>l1lock) ;
27
29 void|rwlock acguire writelock (rwlock | S XA) {
30 sep_wait (&rw—>writelock) ;
31 }
32
33 wvoid rwlock release writelock (rwlock t© @ *1rw) {
34 sem_post (&arw—>writelock) ;
35 }
[] Figure 31.13: A Simple Reader-Writer Lock

22

31.6 The Dining Philosophers

s Problem definition
v There are five “philosophers” sitting around a table.
v Between each pair of philosophers is a single fork (thus, five total)
v The philosophers each have times for thinking or for eating

v In order to eat, a philosopher needs two forks, both the one on their
left and the one on their right = shared resource =» concurrency

Figure 31.14: The Dining Philosophers

J. Choi, DKU

31.6 The Dining Philosophers

s Solution

v Basic loop for each philosopher

v Now question is how to implement getforks() and putforks()
» Using five semaphores: sem_t forks[5]
= Obtain semaphore before acquire a fork

while (1) {
thinlk () .5
get-foriks ()Y 3
eat () 7
pultFfForlks () 3
i g

(Basic loop)

=D N
[=]

v Cause Deadlock

1

void get_forks(int p) f{
sem_wait (&forks[left(p)]);
sem_wait (&forks[right (p)]);

|

void put_forks(int p) f{
sem_post (&forks[left(p)]);
sem_post (&forks[right(p)]);

Figure 31.15: The get forks () And put_forks () Routines

(First solution)

= All philosophers obtain their left fork, while waiting their right one
* How to avoid this issue?

24

J. Choi, DKU

31.6 The Dining Philosophers

= New Solutions
v 1) break dependency (break ordering)
v 2) set limit
v 3) employ transaction (e.g. the Monitor)
v 4) more resource
v 5) teach philosophers (idea from a student)

Whii?n}i%; ; { 1 void gEt_fCI.T."kS {lﬂt p} {
RO A=
) 1 sem_wait (¢forks[right (p)]);
(Basic loop) i sem_wait (¢forks[left (p)]);
} else {
6 sem_wait (¢forks[left(p)]);
7 sem_wait (¢forks[right (p)]);
g |
4 }
= Figure 31.16: Breaking The Dependency In get forks ()
Figure 31.14: The Dining Philosophers (New SOIUtion)
[J. Choi, DKU

25

Chap 32. Common Concurrency Problems

s Concurrency
v Pros: can enhance throughput via processing in parallel

v Cons: may cause several troublesome concurrency bugs (a.k.a.
timing bugs)

s 32.1 What Types of Concurrency Bugs Exist?

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16
OpenOffice Office Suite 6 2
Total 74 31

Figure 32.1: Bugs In Modern Applications

v Total bugs: 105
= Deadlock bugs: 31
= Non-deadlock bugs : 74

v Differ among applications

I J. Choi, DKU
26

32.2 Non-Deadlock Bugs

s Two major types of non-deadlock bugs
v Atomicity-Violation Bugs (From MySQL sources)

1 Thread 1::
1.f (thd->proc info)

fputs {(thd—>prac. Aanfe; ...);

Thread 2::

2
3
4
5
6 }
- 4
8
9 thd->proc_info = NULL;

v Order-Violation Bugs

1 Thread 1::

2 vold: init{) {

3 S

4 mThread = PR_CreateThread(mMain, ...);

5

6 }

7

8 Thread 2::

9 void mMain({...) {

10 .- . -

11 mState = mThread->State;

12

13 }
I J. Choi, DKU

27

32.2 Non-Deadlock Bugs

e e o R = S L " I

T T S T S i S o Gy v
N o= W N = O

s Solution to Atomicity-Violation Bugs

pthread mutex t proc_info lock = PTHREAD MUTEX INITIALIZER;

Thread 1::
pthread _mutex_ lock (&proc_info_lock);
if (thd->proc_info) {

fputs (thd—>prog info, ..«);

}

pthread _mutex_unlock (&proc_info_lock);

Thread 2::
pthread_mutex_ lock (&proc_info_lock);
thd->proc_info = NULL;

pthread _mutex_unlock (&proc_info_lock);

I J. Choi, DKU

28

32.2 Non-Deadlock Bugs

s Solution to Order-Violation Bugs

1 pthread_mutex_t mtLock = PTHREAD MUTEX_ TNITIALITIZER;
2 pthread_ cond_t mt-Cond = PTHREAD COND_ TITNITIALIZER;
3 int mtInit = 0;
4
5 Thread 1::
6 wvold 1rnit () {
7 v wlia
8 mThread = PR_CreateThread{(mMain, ...);
=)
10 // signal that the thread has been created...
11 pthread mutex_lock (&mtLock) ;
12 mtInit = 1;
13 pthread cond_signal (&gmtCond) ;
14 pthread mutex unlock {(&mtLock) ;
15 . W
16 T
17
18 Thread 2Z2::
19 wvold mMain (. ..} {
20 e
21 /S wait for the thread to be initialized...
22 pthread mutex_lock (&mtLock) ;
23 while (mtInit == 0)
24 pthread_ cond_wait (&mtCond, &mtLock) ;
25 pthread mutex unlock (&mtLock) ;
26
27 mState = mThread—>State;
28 PRI
29 ¥
[J. Choi, DKU

29

32.3 Deadlock Bugs

s Deadlock

v A situation where two or more threads wait for events that never

occur

Thread 1:

pthread mutex_lock (L1) ;
pthread mutex_lock (L2) ;

Thread 2:

pthread mutex_ lock (L2) ;
pthread _mutex_ lock (L1l) ;

= E.g.) When a thread (say T1) is holding a lock (L1) and waiting for
another one (L2); unfortunately, the thread (T2) that holds lock L2 is

waiting for L1 to be released.

Holds
Thread 1 -t) Lock L1

sl
=
=
=

‘Lock.Lz

> Thread 2
Holds

(Deadlock Dependency Graph)
I
30

J. Choi, DKU

32.3 Deadlock Bugs

s Deadlock: 4 Conditions e [

v Mutual exclusion
v Hold-and-Wait l ‘

v No preemption for resource Lock 2| —
v Circular wait

Wanted by
QDRI

[/

(Deadlock Dependency Graph)

—
L I I —

3 2 SAy @ 58

BB 4 1 2 =
st : ' 4
Eﬂ ; @ | i 5]
b ' 1 ' |
{ - ' -

: -

(a} Deadlock Possible (b) Deadlock
(Source: Google image)
I J. Choi, DKU

31

32.3 Deadlock Bugs

= How to handle Deadlock: three strategies
v 1. Deadlock Prevention
v 2. Deadlock Avoidance via Scheduling
v 3. Deadlock Detection and Recovery

Approach LR DIEe éllocatlon Different Schemes Major Advantages R aaich
Policy Disadvantages
Inefficient
*Works well for *Delays process
. initiation
Requesting all resources at processes et perfo_rm a
oo single burst of activity *Future resource
© *No preemption requirements must
necessary be known by
processes
Conservative; *Convenient when
provention | undezcommivs’ | o oo IRSLOIISS® | ePrecmpts more
EESOtEEEE often than necessary
saved and restored
casily
*Feasible to enftorce via
compile-time checks .
N (]1) n e tim. *Disallows
Resource ordering ceds no run-time incremental
computation since
g g resource requests
problem is solved in
system design
*Future resource
Midway between that . . . requirements must
. . Manipulate to find at least *No preemption
Avoidance | of detection and p p p be known by OS
. one safe path necessary
prevention *Processes can be
blocked for long
periods
Vv ery liperail; sINever aelays process
. requested resources Invoke periodically to test initiation eInherent preemption
Detection O .
are granted where for deadlock Facilitates online losses
possible handling

‘i e “Qﬁiiiilﬂﬂ systems: |Pternals and Design Principle” by W. Sta"ing)(;hoi DKU

32

32.3 Deadlock Bugs

s Deadlock prevention
v This strategy seeks to prevent one of the 4 Deadlock conditions

v 1. Hold-and-wait §5
= Acquire all locks at once, atomically I i — Som
v 2. No Preemption | 8 5@

= Release lock if it can not hold another lock

= Concern: 1) may cause Livelock, 2) sometimes require undo

Two threads could both be repeatedly attempting this sequence and
repeatedly failing to acquire both locks = add random delay

v 3. Circular Wait
= A total ordering on lock acquisition

= E.g.) The comment at the top of the source code in Linux: i_mutex”
before i mmap_mutex”

pthread mutex_lock (prevention); // begin lock acquistion

! 1 top:

2 pthread_mutex_lock (L1); 2 pthread_mutex_lock(L1);

] pthread nutex lOCk(LZ); 3 if (pthread_mutex_trylock (L2) !'= 0) {
- - 4 pthread_mutex_unlock (L1);

4 5 goto top;

5 pthread_mutex_unlock (prevention); // end 6 }

‘Acauire all locks atomicallm (Release lock if it can not hold anotrhelé Log:k U
. ol,

33

32.3 Deadlock Bugs

= Deadlock prevention (cont’)

v 4.

Mutual Exclusion:

“lock free” approach: no lock but support mutual exclusion

Using powerful hardware instructions, we can build data structures in a
manner that does not require explicit locking

= Atomic integer operation with compare-and-swap (chapter 28.9 in LN 4)

old increment (counter t +c) | | void AtomicIncrement(int value, int amount) |
Pthread mutex_lock (&c->lock);) o |
C‘—J"‘JE._LLEWJ-; ;
23 e] 1Nt old = #value;
PLhread mutex unlock(&c->lock); " ‘) 4 old | :
4 | wnile (CompareAndSwap(value, old, old + amount) == 0);
; Using Lock F H) '
5
. . | Lock free
= |List management (39 page in LN4)
1 wvolid insert(int wvalus) 1
2 node £t »nn = malloci(sizeof (node t)) ;
3 sassert (n != WUOLL) ;
4 n—=wvalue = walue;
5 n—=next = head;
I head = 1i;
T 1
UsiniLock Logl free
; ¥oid asertiintvalue) = 1 void¥insert (int value) |
2 nocde £ *n = malloc(sizeof (node £)); . B _ i o .
g assert(n != NULL); 2 node_t +n = 'Tlnl].Dx_ (sizeof (nocde_t));
s n-s>value = value; 3 asser‘-_:{n I= [\:_J=_.'_.];
5 pthread mutex_ lock (listlock); // begin critical sectioen 4 n->value = value;
6 n->*next = head; 5 do |
7 head = n; f n—->next = head;
8 pthread mutex unlock(listleck); // end critical section 7 } while (CompareAndSwap(&head, n->next, n) == 0);
q
] i macific cacac e L aclk: acnaral
. BZSP\—L;III\— CaoCo vo LUCIKG gariciatl

32.3 Deadlock Bugs

Deadlock Avoidance via Scheduling
v Instead of prevention, try to avoid by scheduling threads in a way as
to guarantee no deadlock can occur.

= E.g.) two CPUs, four threads, T1 wants to use L1 and L2, T2 also wants
both, T3 wants L1 only, T4 wants nothing

71 B2 IY T4 CPU1 T4

L1 yes yes no no

LZ yes yes yes no CPUE- T2

= E.g. 2) more contention (negative for load balancing)

] ; 4 s
._ T = 7 A CPU1 | T4
L1 yes yes yes no '

» No deadlock, but under-utilization =» A conservative approach

I J. Choi, DKU

35

32.3 Deadlock Bugs

s Deadlock Avoidance via Scheduling (cont’)

v Famous algorithm: Banker’s algorithm
= E.g.) Multiple processes with single resource case (also applicable to

multiple resources case)

| Has | Max | Has Max J | Has | Max_
A 5 A 3 A 5

0 2 2
B 0 6 B 0 6 B 1 6
C 0 3 C 1 3 ks 1 3
D 0 7 D 5 7 D 5 7
Initial State: Free =10 State 1: Free =2 State 2: Free =1

= Safe and unsafe state

. Try to stay in safe state while allocating resources

deadlock

unsafe

S

36

J. Choi, DKU

32.3 Deadlock Bugs

s Deadlock Detection and Recovery

v Allow deadlocks to occasionally occur, and then take a detection and
recovery action

= E.g.) If an OS froze once a year, you would just reboot it (but failure is a
norm in a Cloud/Bigdata platform)

= Many DB systems employ active deadlock detection approach
v How to detect?

» Periodically, build resource allocation graph, checking in for cycles
v How to recovery?

= Select a victim (youngest or least locks)

Edge R1

I ., [= &8
J | | e *‘
Assign Request = ¥ -
Edge Edge P~ C P35
.

0, n @ = //
| ! o \[% -

R2

R R P3 L ™
Meaning of Node and Edge in Resource allocation grap Resource allocation graph
Resource allocation graph Example without Deadlock Example with Deadlock
Source: https://www.slideshare.net/AbhinawRai/deadlock-51330115)
J. Choi, DKU

37

33 Summary Dialogue on Currency

Professor: Indeed it is. I am always amazed that when concurrent execution is
tnvolved, just a few lines of code can become nearly impossible to understand.

Student: Me too! It's kind of embarrassing, as a Computer Scientist, not to be
able to make sense of five lines of code.

Professor: Oh, don't feel too badly. If you look through the first papers on con-
current algorithms, they are sometimes wrong! And the authors often professors!

Student: (gasps) Professors can be ... umm... wrong?

Professor: Yes, it is true. Though don't tell anybody — it’s one of our trade
secrets.

Student: [am sworn to secrecy. But if concurrent code is so hard to think about,
and so hard to get right, how are we supposed to write correct concurrent code?

Professor: Well that is the real question, isn't it? I think it starts with a few
simple things._First, keep it simple! Avoid complex interactions between threads,
and use well-known and tried-and-true ways to manage thread interactions.

Student: Like simple locking, and maybe a producer-consumer queie?

Professor: Exactly! Those are common paradigms, and you should be able to
produce the working solutions given what you've learned. Second, only use con-
currency when _absolutely needed; avoid it if at all possible. There is nothing

worse than premature optimization of a program.
Student: [see — why add threads if you don't need them?

Professor: Exactly. Third, if you really need parallelism, seek it in other sim-
plified forms. For example, the Map-Reduce method for writing parallel data
analysis code is an excellent example of achieving parallelism without having fo
handle any of the horrific complexities of locks, condition variables, and the other
nasty things we’'ve talked about.

I J. Choi, DKU
38

Summary

= Concurrency method
v Lock, Condition variable, Semaphore, ...
= Well-known concurrency problems
v The Producer/Consumer problem
v The Reader/Writer problem
v The Dining philosopher problem
s Concurrency bugs
Tip: DON'T ALWAYS DO IT PERFECTLY (TOM WEST’S LAW)
v Non-Deadlock bugs Tom West, famous as the subject of the classic computer-industry book
Soul of a New Machine [K81], says famously: “Not everything worth doing
v Dead IOCk bUgS is worth doing well”, which is a terrific engineering maxim. If a bad
thing happens rarely, certainly one should not spend a great deal of effort
t t it, particularly if th t of the bad thin Ing I 1.
u Dead IOCk a pproaCh [EET:;E olthe;a;;lii? ;gul areebclfde;g aesp?ice sl}ligtt(l)ec,cgflrdmt%l:csolsr.ltaof
Prevention strategy s b B Gl s
v Avoidance strategy
v Detection and Recovery strategy
I J. Choi, DKU

39

Lab 2: Concurrent Data Structure

s What to do?

v Goal
» Make a concurrent data structure (for example Queue or Hash or Skip list,

)

= See Lab. 2 in https://github.com/DKU-EmbeddedSystem-
Lab/2025 DKU_OS

v How to submit?

» 1) Report (Sections: Goal, Design, Result, Discussion), 2) Source code (with
Makefile) = upload at Google Form or email to TA(yeojinoh@dankook.ac.kr)

v Requirement

» Three comparisons: 1) with/without locks, 2) fined-grained/coarse grained
lock, 3) Performance under different number of threads

v Due: two weeks later. (after insert 16)
Hash ~¥ Queue v, Hash ¥ Queue .
Head-—.., ! ‘.f@_l” head M, tﬁ,‘"
keymod5==0 [«--—-""""> 1‘5 key mod5 ==0 |- 1‘5 o
. S -
keymod5==1 |¢--_ s o M keymod5==1 |¢-_ W
\\\ V \ ‘\l \‘\\ ' \\l
keymod5==2 |e.. > 3 O o keymod5==2 je.. " 3 O+
key mod5 == 3 eyl 7 & key mod5 == 3 eyl 7 A&
............ ~euadil e
key mod5 ==4 |e--—--_ -’ 274 key mod5 == 4 4____\-“*;, 274 ,,'

"""'thread%nsert 8, 13"at the same tlme716.____.....‘ J Choi, DKU

l@@@' Quiz for this Lecture
TIRAE]
3 QUiZ

v 1. Explain the three issues that we need to consider for the
producer/consumer problem.

v 2. Describe whether the program in Figure 30.8 is correct or not? If
incorrect, discuss why?

v 3. Explain the meaning of semaphore value in Figure 31.5. Is it
possible that this value becomes -27?

v 4. Discuss the differences between the producer/consumer and
reader/writer problem (at lease 2 differences).

v 9. Is there a deadlock in the below right resource allocation graph?

T T

Nt

wait{mutex)

readers++
if [readers==1)
wait{wrmutex)
signal{mutex)
Read Here

wait{mutex)

readers—
if(readers==0) if(readers==0)

signal(wrmutex) signal{wrmutex)

signal{mutex) signal{mutex)

‘Source: www.chegﬂ.com‘homework-help/questions-and-answers/) | Chol. DKU
. ol,

41

Appendix 1

s 31.4 Producer/Consumer (Bounded Buffer) Problem
v Second attempt: Adding mutual exclusion

1 sem_t empty;

2 sem_t full;

3 sem_t mutex;

4

5 void =*producer (void =*xarg) {

6 int 4

7 for (i = 0; i < loops; 4i++) {

8 sem_wait (&mutex) ; // Line PO (NEW LINE)
g sem_wait (&gempty) ; // Line P1

10 put (i) ; // Line P2

11 sem_post (&full) ; // Liine P3

12 sem_post (&mutex) ; // Line P4 (NEW LINE)
13 }

14 }

15

16 void xconsumer (void warg) {

17 Iint T3

18 for (i = 0; i < Lloeps:; d++) {

19 sem_wait (&mutex) ; // Line C0O (NEW LINE)
20 sem_wait (&full) ; S/ Line C1

21 inkt tmp = get () ; // Line C2

22 sem_post (sempty) ; // Line C3

23 sem_post (&mutex) ; // Line C4 (NEW LINE)
24 peint F{"EdNn™y Lomp);

25 1

I
&

! * [s it correct?

N N
® N

int main(int argec, char =xargvi[]) {

29 VL (.,

30 sem_init (&empty, 0, MAX); // MAX buffers are empty to begin with...
31 sem_init (&full, 0, 0); // ... and 0 are full

32 sem_init (emutesx, 0, 1); // mutex=1 because it is a lock (NEW LINE)
33 Pl e .

)
N

}

. F1E£e 31.11: Addll‘lﬁ MutuleExclumon (Incorrectly) o, unoi, DKU

Appendix 1

s 31.7 How to Implement Semaphores
v Using mutex and condition variable

typedef struct __ _Zem_t {
int wvalue;
pthread cond_t cond;
pthread mutex_t lock;
} Zem t;

// only one thread can call this
void Zem init (Zem_ t *s, int wvalue) ({
s—>value = wvalue;
Cond_init (&s—>cond) ;
Mutex init (&s—>lock) ;

LoTie <IN B« (6 B 2 A o I

= =
N - O

}

[T
=W

void Zem_wait (Zem_t =*s) {
Mutex lock (&s—>1lock) ;
while (s—>value <= 0)
Cond_wait (&s—>cond, &s—>lock) ;
s—>value——;
Mutex unlock (&s—>1lock) ;

1 QU G G U
o9 B NG

}

RN
N

void Zem post (Zem_t =*s) |
Mutex lock (&s—>lock) ;
s—>value++;
Cond_signal (&s—>cond) ;

Mutex unlock (&s—>1lock) ;

[e R o T
N U e W
—

Figure 31.16: Implementing Zemaphores With Locks And CVs

I J. Choi, DKU
43

s 2 DHE2025HE DB NBEAR U HEEAD|E
EOI 2O ‘SWEAIIIS ALY XIS 20t M= SASLICH
2 ZV2O HES MIHE 2 SO, AZ(HALZ)E Do
S EHICA BBDSRBEAR} HBEAI| B0l X
2 'SWEAIMIS S Z20l2ts EXHES 251 0F &LICH

SWSHCHsE

CiStas s SWESHO R SiLIsio Ry,
SWHEeIH S restn

-7 - AlEle] swHERS 2SS

2T SW2I2| =ibE ol Bioh= THekE HECK

J. Choi, DKU

