DANKOOK UNIVERSITY

Lecture Note 8: Memory
Management

May 20, 2025
Jongmoo Choi

Dept. of Software
Dankook University
http://embedded.dankook.ac.kr/~choijm

(2 = 20258 WS =FESAR L FESAUIEBIIAS 'SWSAUEAIY XI&S 20t M& S ASLICEH)

J. Choi, DKU

Contents

s From Chap 12~17 of the OSTEP

s C
s C
s C

nap
nap

nap

12. A Dialogue on Memory Virtualization
13. The Abstraction: Address Space
14. Interlude: Memory API

v malloc(), free(), brk(), mmap(), ...

s Chap 15. Mechanism: Address Translation
v Base & Bound(Limit), Dynamic Relocation

s Chap 16. Segmentation

v Generalization, Sharing, Protection

s Chap 17. Free-Space Management

v Fragmentation, Splitting and Coalescing
v Strategies: Best fit, First fit, Worst fit, ...
v Segregated list, Buddy algorithm, ...

J. Choi, DKU

Chap 12. Dialogue

s Memory virtualization

Student: So, are we done with virtualization?

Professor: No!

Student: Hey, 1o reason to get so excited; I wwas just asking a gquestion. Studernts
are supposed to do that, right?

Professor: Well, professors do always say that, but really they mean this: ask
guestions, if they are good guestions, and you have actually put a little thought
irito therni.

Student: Well, that sure takes the wind out of my sails.

Professor: Mission accomplished. In any case, we are not nearly done with
virtualization! Rather, yvou have just seenn how to virtualize the CPUI, but reaﬂy
there is a big monster waiting in the closet: memory. Virtuaglizing mnieinory is
complicated and requires us to understand_many more intricate details aboutt
how the hardware and OS interact.

Student: That sounds cool. Why is it so hard?

Praofessor: Well, there are a lot of details, and you have to keep them straight
inn your head to really develop a mental model of what is going on. We'll start
simiple, with very basic technigues like ba*—.e}’bounds artd slowly add complexitiy
to tackle new challenges, including fun topics like TIL.Bs and multi-level page
tables. Evernitually, wwe’ll be able to describe the workings of a fuilly—furnctionnal

mioderr virtual nmieniory manager.

Student: Neat! Any tips for the poor student, inundated with all of this infor-
mation and generally sleep-deprived?

Professor: For the sleep deprivation, that’s easy: sleep miore Carnd party less).
For understanding virtual memory, start with this: every address generated
by a user program is a virtual address. The OS is just providing an illusion
to each process, specifically that it has its own large and private memory; with
some hardivare help, the OS will turn these pretennd virtual addresses into real
physical addresses, and this be able to locate the desired informatior.

Wﬂ’ ual/Pnysical Memory, ress Translation, Segmentation/Paging, TLB, Swap/RepIa‘é‘e(ﬁr%%'nRKH.

Chap 13. The abstraction: address space

Early system

Multiprogramming and Time sharing

Address space
Goals

Virtual address space

for Notepad.exe

Q00000000

\

TFF93951000

TFTS3852000

TFFFFFFFFFE

4

Physical memary

pages
33CEDDOD

E3AZDOD0

-

Lyl AFDWAO00

i BZBASDDD

—

Virtual address space

for MyApp.exe
DOODDOHO00

TFT93951000

TFFFFFFFFFF

(Source: https://msdn.microsoft.com/en-us/windows/
hardware/drivers/gettingstarted/virtual-address-spaces)

J. Choi, DKU

13.1 Early Systems

s Use physical memory directly

v Only OS and current program in memory = single programming
system

v No (limited) protection
v Larger program than physical memory = Overlay

OKB

Operating System

(code, data, etc.)

64KB

Current Program
(code, data, etc.)

max
Figure 13.1: Operating Systems: The Early Days

I J. Choi, DKU
5

13.2 Multiprogramming and Time sharing

s Memory becomes bigger

v Multiprogramming: multiple processes are ready to run
v Time sharing: switch CPUs among ready processes

v Issues

= Protection becomes an essential issue
= How to find suitable free space

oKB

c64KB

Operating System
(code, data, etc.)

{(free)

128KEB

Process C
(code, data, etc.)

192KB

Process B
(code, data, etc.)

256KB

320KB

(free)

384KB

Process A
(code, data, etc.)

(free)

448K B

(free)

512KB

Figure 13.2: Three Processes: Sharing Memory

6

J. Choi, DKU

13.3 Address space

s Abstraction
v A process has an illusion that it uses exclusively all memory even
though it is shared by multiple processes = virtual memory

v Well defined layout =» address space

= Code (instruction), Data (statically-initialized variables), Stack (function
call chain and local variables), Heap (dynamically allocated)

» Code is located at virtual address 0x0, but not physically

Procm== & P povoemn ¥ OKB
the code segment:
Program Code i e [
— _ vERN KB g where instructions live
the heap segment:
Heap contains malloc’d data
VEPM & Proces 3 Paoces ¥ | wemie KB dynamic data structures
Pogs Totd= Bage Tabe= | (it grows downward)
VPPN 5 . 1 sall VPEN 5
-l -
ey 11 |_. : : Y
B Pud VEPR 4
(free)
VPPN 3 —t PRI Vi 7
[
WPEM 1 FEW 2 ¥PEN T
(it grows upward)
VEPN | L g bk L vemia the stack segment:
15KB contains local variables
arguments to routines,
S | - I Stack return values, etc.
— 16KB
Virtual memory Physical memory Virtual memory

Figure 13.3: An Example Address Space
J. Choi, DKU

7

13.4 Goals

Transparency (easy to use)
v Programmer: no need to aware the memory size or available space

Efficiency

v Both in terms of time and space (not slow and not requires much
additional overhead) = Various HW support (e.g. TLB)

Protection (isolation)

v Protect processes from one another
Note: every address you see is virtual

#include <stdie.h>

#inclade <stdlib.h>

ankt main{int arge, <char
pranEE (M location oF
pranEE (M location oFf
int x = 3;
erinefE{"locaktion of
return x;

}

*xargv[]) {
code

: Epha™, (void =) main);
heap : Epha™, (void) malloc (1));
stack : Sphn", ((woid) &x);

When run on a 64-bit Mac OS5 X machine, we get the following output:

location of code
location cof heap
location of stack =

O0x1095afes0
O0x1096008Bc0
Ox7EftfFFf691l acabd

J. Choi, DKU
8

Chap 14. Interlude: Memory API

Types of Memory

The malloc() call

The free() call
Common errors
Underlying OS Support
Other Calls

I I L0

free ()

| | LI

#malloc (|)

_ 1 | LI

(Splitting and Coalescing example)

J. Choi, DKU
9

14.1 Types of Memory

= [wo types of memory
v Static: Code (also called as text), Data (global variable)

v Dynamic: Heap, Stack

= Stack
Implicitly by the compiler (hence sometimes called automatic memory)
Short-lived memory

volid func() |{
int x; // declares an integer on the stack

* Heap
Explicitly by the programmer
(relatively) Long-lived memory

vold func() {
int: #x — {dint:-) malloc{sizeocf{int)) ;
}
I J. Choi, DKU

14.2/3 The malloc()/free() call

= [he malloc() call
v Input: memory size (how many bytes you need)
v Output: pointer to the newly-allocated space (or NULL if it fails)

v Use well-defined macros or routines, instead of number as input

v' malloc(sizeof(int));

v malloc(strlen(s) + 1);

s [he free() call

v Input: pointer (size is not specified, meaning that it is managed by the
library)

int #x = malloc (10 % sizeof(int));

free(x);

I J. Choi, DKU

14.4 Common errors

Common errors
v Forgetting to allocate memory

char *src = "hello®;
char *dst; // oops! unallocated
strcpy (dst, src); // segfault and die

= Correct version (or strdup())

char *src = "hello";
char xdst = (char x) malloc(strlen(src) + 1);
strcpy (dst, src); // work properly

= We frequently meet the segmentation fault. Hence =

When you run this code, it will likely lead to a segmentation fault’
which is a fancy term for YOU DID SOMETHING WRONG WITH
MEMORY YOU FOOLISH PROGRAMMER AND I AM ANGRY.

*- Make use of a debugger (e.g. gdb)

12

J. Choi, DKU

14.4 Common errors

s Common errors
v Not allocating enough Memory

char *srigc = "hello®:
char #dst = (char %) malloc(strlen(src)); // too small!
strcpy (dst, src); // work properly

» |t seems work, but not correctly (\0’), which causes buffer overflow,
leading to several security vulnerabilities.

= Some library allocates a little extra space.
v Forgetting to initialize allocated memory
» Heap has data of unknown value.
v Forgetting to free memory
= Memory leak

» Some languages support the garbage collection mechanism that
manages memory automatically without requiring explicit free() by
programmers = but if you still have a reference, the collector will never
free it (still problem)

I J. Choi, DKU

14.4 Common errors

x Common errors
v Freeing memory before you are done with it
= Dangling pointer
» Subsequent use can crash the program and even system
v Freeing memory repeatedly m— L —
= Double free
v Calling free() incorrectly

» |nvalid free
= [ools for solving memory-related problems
v Purify

v Valgrind 8 INTERLUDE: MEMORY API

VoL, Summary

As yvou can see, there are lots of ways to abuse memory. Because of fre-
quent errors with memory, a whole ecosphere of tools have developed to
help find such problems in your code. Check out both purify [H]92] and
valgrind [SN05]; both are excellent at helping you locate the source of
yvour memory-related problems. _Once yvou become accustomed to using
these powerful tools, vou will wonder how vou survived without them.

I J. Choi, DKU
14

14.5/6 Underlying OS Support/Other Calls (Optional)

s Underlying OS Support
v malloc()/free() =» library

v It internally allocates several pages using the sys_brk() or
sys_mmap() system call and manages them to serve the malloc()

and free() request

v If its space becomes too small, it requests more pages to OS again
using the sys brk() or sys mmap() = system call

s Other Calls

v calloc(): allocate and zero space

v realloc(): allocate a new larger region, copy the old region into it and
returns the pointer of the new region

glibc so

e .
- - heap 2= A
Heap Manager
- -——‘t_—— E
AP THRESHEI R VBS
T oo—azsold@ey -

: i

HE M2 =

S J. Choi, DKU

| IR

Chap. 15 Mechanism: Address Translation

s CPU virtualization

v Limited Direct Execution
= Direct execution: process run directly for the most time (efficiency)
= Limited: OS get involved (control)
v How to?
» 1) Restricted operations (e.g. system call), 2) Timer interrupt
» Two key concepts for CPU virtualization: 1) context switch, 2) scheduling

s Memory virtualization

v Decouple Virtual Memory (VM) from Physical Memory (PM)
» The placement of VM in PM is determined by OS (control)

» This decouple requires address translation (from virtual to physical
address) per each memory access, which is achieved via hardware
supports such as MMU and TLB (efficiency)

v How to?

= 1) OS memory management, 2) HW-based address translation

= Four key concepts for Memory virtualization: 1) allocation (continuous,
segment, paging), 2) translation table, 3) free space management, 4)
replacement policies

I J. Choi, DKU

15.1 Assumption/15.2 An Example

T
s A program s
1KB
. . . Program Code
v High-level viewpoint iR
vold func() f{ b Ny
int x = 3000; // thanks, Perry. =P
X=%+ 3; // this is the line of code we are interested in 4KB
v Assembly viewpoint l
128: movl Ox0 (%ebx), %eax ; load O+ebx into eax
132: addl 50x03, %eax ;add 3 to eax register
135: movl %eax, 0x0(%ebx) ;store eax back to mem
v Process viewpoint (address space in Chap 13) (fro)

» |nstructions: address 128 ~ 135 at code
» Variable x: address 15KB (15,360B) at stack

v Execution viewpoint (fetch + execution)
e Fetch instruction at address 128 I

e Execute this instruction (load from address 15 KB) 14KB
e Fetch instruction at address 132
e Execute this instruction (no memory reference) 15KB |aooo
e Fetch the instruction at address 135 Stack
e Execute this instruction (store to address 15 KB) 16KB
*- Need to access memory (128, 15KB, ...) during execution Figure 15.1: A Process And Its Address Spa

J. Choi, DKU
17

15.1 Assumption/15.2 An Example

s Focusing on memory

v Decouple virtual and physical memory
* Virtual memory (VM) |
Starts at address 0, Grows to 16KB (previous slide) Cpereing Syt

. Well-defined address space
= Physical memory (PM) oA

Consists of used/free space
VM can place any free space, not necessarily at 0

(KB

dissimilar to VM (32KB ~ 48KB in this slide) (not i se)
v Terms

= Allocation i = §
Control where a VM instance is placed in PM Hgap g

» Translation ‘ L
Convert from virtual address to physical one (from e et I
OKB to 32KB in this example) 1 ‘g

= Relocation e Tk [%

A VM can be place any free space (or can be moved
from current place to other free space)

Free-space management (ot se)
For allocation or relocation

Replacement (or swap out)
To make more free space B

v OS also locates in PM Fieute 15.2: Physical Memory with a Single Relocated Process
I———— J. Choi, DKU

15.3 Dynamic (Hardware-based) Relocation

s Integrated viewpoint of Virtual and Physical memory
v Virtual memory: 0~16KB vs Physical Memory: 0~64KB
= Assume that a binary is loaded into 32KB~48KB
v Address translation: virtual address =» physical address
= First instruction: 128 = 32KB + 128 (32768 + 128 = 32896)

= Variable x: 15KB =» 32KB + 15KB = 47KB
* |n general: base address + offset (instruction or variable’s address)

S 128 Eu:idll oxorcabx) Tooax OKB
jicE 125 | mowl Foeax, Dxdizcabx)
Program Code
R Operating System
KB Heap
AKB l 16KB
Base register... |
(notin use)
(free) HeJaD ﬁ_q
(aflocated but not in use) E
1 m
48KB.- R :
I Bound (Limit).register ¢
tawe ——— AT {ﬂGt in USQ)
15KB saam |l e
Stack | e
16KEB 64KB

Figure 15.1: A Process And Tis Aiddress Space

! : _ Figure 15.2: Physical Memory with a Single Relocated Process
< \What if a virtual address is larger than the bound register? | choi. DKL
. Choi,

19

15.3 Dynamic (Hardware-based) Relocation

= Summary

v Virtual vs. Physical memory
= 1) exclusive (per process) vs. shared by processes
= 2) start at 0x0 vs. start at any address (different among processes)
= 3) independent of DRAM size (usually larger than DRAM size) vs. limited to DRAM size

v Three main components: Compiler, OS and Hardware (MMU)
= A program is compiled as if it is loaded at address O (virtual memory).

= The program is loaded by OS into any space in physical memory, while setting base
and bound registers appropriately =» relocatable

» An address requested by CPU is translated into a physical address while running (and
protected) using MMU

oKB 128 mllgx@éﬂﬁgﬁﬁa DKBA_,.uza' moy! oxoisebxl sweax
o T | e
2KB B e T 2KB
ara Heso Base register e e
e l Operating System | " B l
Base register 1o | @&
) (not in use)
72 32KB Code ' § (free)
Heap [S RN
1 o e
(allocated but not in use) E
1 3 .
aokpp——— | 18 Bouiid.register
T : e !
o Bound register (not in use) R
15KB oo e 15;(5 2000
16KB Stack e 64KB 1 GKB Stack
B 15.14A Process And Its pgddress Space Fig 15.2: Physical Memory with a Single Relocated Process = e UGS A Praraas 5 :
Viitual'mémory (foi pFoceSs'A) ™~ " "physical memory Virtiar inehiory (for process B)

15.4 Hardware Support

s Revisit address translation

v How to translate? Using two hardware registers

= Base register: start address (30004 in this example)

physical address = base register + virtual address
E.g. virtual address = 10 =» physical address = 30014

» Bound register (Limit register): upper bound (or size, 12090 in this

» Base/Bound registers are switched at each context switch time

example)

E.g. virtual address = 13000 = out of bound exception (segmentation fault)
v During context switch

E.g. from process 2 to process 1 = base register from 30004 to 25600

25600

30004

42094

88000

102400

operating
system

process

pProcess

base

process

limit

| 30004

base base + limit

Y) 4

CPU

I —
12090

address yes
— > > <

no

k Y

trap to operating system
monitor—addressing error

no

memory

(Source: A. Silberschatz, “Operating system Concept”)

21

J. Choi, DKU

15.4 Hardware Support

= MMU (Memory management unit)
v Part of CPU that helps with address translation

v E.g.) Base/Bound registers, Segmentation related registers, Paging
related registers, TLB (Translation Lookaside Buffer) + Circuitry

s Summary of HW support for Dynamic relocation

Hardware Requirements Notes
Privileged mode Needed to prevent user-mode processes

- from executing privileged operations
Base/bounds registers Need pair of registers per CPU to support

address translation and bounds checks
Ability to translate virtual addresses Circuitry to do translations and check

and check if within bounds limits; in this case, quite simple
Privileged instruction(s) to OS must be able to set these values
update base /bounds before letting a user program run
Privileged instruction(s) to register OS must be able to tell hardware what
exception handlers code to run if exception occurs
Ability to raise exceptions When processes try to access privileged

instructions or out-of-bounds niemory

Figure 15.3: Dynamic Relocation: Hardware Requirements

I J. Choi, DKU
22

15.5 Operating Systems Issues

s OS responsibilities

v Memory management
= Allocation for new processes, free list manipulation, ...
» Reclaim the space of terminated processes

v Base/Bound registers switch during Context switch
» Save/restore base/bound registers into/from PCB (MMU)
» Process relocation if necessary

v Exception handling
» Handlers + Table (e.g. segmentation fault handler + IVT)

OS Requirements Notes
Memory management Need to allocate memory for new processes;
| Reclaim memory from terminated processes;
Generally manage memory via free list
Base/bounds management Must set base/bounds properly wupon context switch
Exception handling Code to run when exceptions arise;
likely action is to terminate offending process

Figure 15.4: Dynamic Relocation: Operating System Responsibilities

I J. Choi, DKU
23

15.5 Operating Systems Issues

s Global view

S & boot Hardswvare
L N
imitialize trap table
remember addmesses of L.
gy - - spr=erm call hamd ler
Initialization smer handier
illesal merm—acoess hamd ler
iifegmal instrscton handler
start imberrmpt Some r
sizrt timmer; imbermape after X
imitialize process takble
imitialize free list
S & ran Hardsware Frogram
o bswcaclet {uase r muoede §

T start prooess M \
alioca entry in process t@bile
alloca memuory for prooess

mhpei el S diain® Laieeis ebiars Direct execution

refturm-frome-traps (Grcko M) / . a \
mestore e gisbers of

o o b mEser mmoesde

jurmmp o As imitial) PO

Frocess & rmams
Fetch imnstruction
Translat: virtual address
arcd rforTm &t

h -
. !;LP —'bﬂﬁgge Etrnargslat'on Executs instrizction

Ensure address is i bowuwnds;

OS inVOIVed Tramslate wirtu=al address

and perform load stome

Timeer interrupt
mowe to ke rmel mmod e
~N Jump to interruapt hamnd lber

Handle the trap

Call switch () romtieses
savre reEsld) o proc-stract A)
[Enclhodinges bass Sbound=s)
restone egsi B froon proc-struact (B}
Limncluodinge bass Sbounds)

returm-from-trap (into: B) J

(restore e Emsters of B
mrorwe o mser mmoacle
jurmmnp o B's PO
FProcess B runs
FEececuts Bad load
Load is oast—ob boerrmed s
o o kermrel mmaod e
\\ jurnmp b brap handlers

Hamndle tive trap
Decide o berminate poooess B
die—allocate B s o ooy
oo B's endry in poocess table

ecubtion {(Dynamic Relocation} & Runtiome

I Choi, DKU
24

15.6 Summary

= Memory virtualization: summary and new issue

v Role of each component for Virtual memory

= OS: memory allocation/free, base/bound initialize, exception control
(infrequent event)

= HW: virtual to physical at every execution (frequent event, MMU)
» Support transparency: users have no idea where their processes are

v Mechanisms

= Contiguous allocation
1) Base and bound registers elocation
Pros: Simple and Offer protection Jegister

. 14000
Cons: Internal fragmentation logical physical

address address

= Non-contiguous allocation CPU @ > memory
346 14346

2) Segmentation: Variable size
3) Paging: Fixed size

MMU

(Source: A. Silberschatz, “Operating system Concept”)

I J. Choi, DKU

25

Chap. 16 Segmentation

= Issues of the base/bound register based dynamic relocation
v A big chunk of “free” space in the middle of address space
= Even though they are free, they are taking up physical memory

v Hard to run a program when the entire address space does not fit
Into an available space in physical memory

oKB 128 | movl oxo(cabx), Yeaax OKB
i 5 | mowl =aax oxoiaeabx)
Program Code
A Operating System
IKB Heap
aKB l 16KB
Base register... |
(notin use)
SEKB A Code 8
(free) Helaﬂ E
(aflocated but not in usa) E
y ©
48KB.» R :
I Bound register.— g
ek —— e {I'IGT in USQ)
e e
stack | e
ek L0000 L. 64KB

Figure 15.1: A Process And Iis Alddress Space

Figure 15.2: Physical Memory with a Single Relocated Process

<« How large the free space between heap and stack in 32-bit CPU?

I J. Choi, DKU
26

16.1 Segmentation: Generalized Base/Bounds

s Key idea
v Contiguous = Non-contiguous

v Segment: divide a program into multiple segments (each segment is
a contiguous portion of the address space)
= E.g.) code segment, data segment, stack segment, heap segment, ...
v Support base/bound per segment
» OS places segments independently in physical memory

oxB

0KB
1KB Program Code
oKE Operating System
KB
AKE 16KB
SKEB — (not fl;r use}
eKB ta;a;u Segment Base Size
THEB
I kg |-0tuse) Code 32K 2K
Heflp Heap 341{ 3K
Stack 28K 2K
(free)
Figure 16.3: Segment Register Values
i (notin use) & & &
14K B T
e 64KB
Stack
16KB

Figure 16.2: Placing Segments In Physical Memory

Figure 16.1: An Address Space (Again)
I J. Choi, DKU

16.1 Segmentation: Generalized Base/Bounds

s Address translation

v virtual address 100 (e.g. PC) = physical address: 32KB + 100

v virtual address 4200 (e.g. pointer x) =» physical address 34K + 104
v virtual address 8000 (or 3000) =» segmentation fault

v virtual address: segment number + offset

= Segment number: choose appropriate segment register (or table entry)
» Offset: location within the segment (assume that it begins with 0)

[l oa=

OKB

1KB Program Code

2KB

Operating System

3IKB

AKE 16KB

s5KB

Heap {“Ut En Uﬁﬁ}
Segment Base Size S

BB

TEB

1 Code 32K 2K o {nnE: igrd ause}
HEE.P' 341{ 3K Heap
Stack 28K 2K ‘
(free)
Figure 16.3: Segment Register Values BE | e
::Z 64KB

16KB

Figure 16.2: Placing Segments In Physical Memory

Figure 16.1: An Address Space (Again)

* There is a hole between the code and heap segment. why? (for bit manipulation)
I J. Choi, DKU

28

16.2 Which Segmentation Are We Referring To?

s Segment encoding in virtual address
v Segment number part + offset part

v In the previous example |

= Address space size: 16KB = 2214 = 14 bit r

14AKEB

Number of segment: 3 = 2 bit ol B

Figure 16.1: An Address Sp (Again)

Number of offset: remaining 12 bit = maximum size of a segment 4KB

I-31.-_'-"‘|1i-~:'IE."6€4521-3I

S:t—:-gﬁ’:e:;'tt Offset |
= Segment: 00 =» code, 01 =» heap, 11 =» stack D B Wi
= virtual address 4200 = 4096 + 64 + 32 + 8 Sed MK XK

134211 10 9 8 7 B 5 4 3 2 9 Figure 16.3: Segment Register Values

|D1DGDDU‘E1U‘IGDD|

Segment Offset

Segment number: Used for searching its related base register

Offset: If this offset is larger than the size, trigger the segmentation fault.
Otherwise, add offset with the value of the base register, generating the
physical address (4200 = “01 (heap) + 104" = 34K + 104)

o e VTt ar auaresees o0 and,§000 discussed in the previous slide??- “hoh OKU

16.2 Which Segmentation Are We Referring To?

s Address translation pseudo code

// get top 2 bits of 14-bit VA
Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT
// now get cffset
Qffset = VirtuallAddress & OFFSET MASE
if (Offset >= Bounds[Segment])
RalseException (PROTECTION_FAULT)
glse

FhysAddr = Base[Segment] + Offset
Reglster = AccessMemory (PhysAddr)

£ @ =1 ox20 un &= W ke

v What are the values of SEG_MASK, SEG_SHIFT, and
OFFSET_MASK under the previous example?

I J. Choi, DKU

30

16.3 What About the Stack?

s Stack issue

v It grows backward = translation must proceed differently = |
= Need extra HW support

Segment Base Size (max 4K) Grows Positive? -
CD dElj[} SZK 2K 1 Figure 16.1: An Address Space (Again)

Heap[}l 34K 3K 1
Stack;: 28K 2K 0 .
Figure 16.4: Segment Registers (With Negative-Growth Support) (g

v Instead of offset, adding “virtual address - total address
space size” (or “offset in stack - maximum segment size”) R

with the value in base register T

» Virtual address: 15KB = 11 1100 0000 0000 i
. Segment number 11 =» stack *
. Offset 1100 0000 0000 = 3KB
= Physical address: 28KB + (15KB - 16KB) o

= Another example: 16380 (16KB —4B) = 11 1111 1111 1100
= seg. Number =11 + offset = 1111 1111 1100 = 4902 =>»
physical address = 28KB + (16KB — 4B — 16KB) = 28KB — 4B

_ Figﬁﬂf 162 P]ﬂfiﬂg Sﬂgmﬂltﬂ [ﬂ PhYSifﬂ] Memmy
31 '

BifE

16.4/5 Support for Sharing/ Granularity

s Benefit of segmentation

v Sharing among multiple processes -

v Protection support i 1588
Segment Base Size (max4K) Grows Positive? Protection 1 o
Codegy 32K 2K 1 Read-Execute
Heapsn 34K 3K 1 Read-Write editor i
Stacky; 28K 2K 0 Read-Write — 98553

Figure 16.5: Segment Register Values (with Protection) data 2 [ohysical memory

segment table
process P,

logical memory
process P,

ul Segment size (Source: A. Silberschatz, “Operating system Concept”)
v Coarse-grained
» Relatively large size, small # of segments in a process (around 4)
v Fine-grained
» Relatively small size, large # of segments in a process
= Make use of a table (segment table) for manipulating large # of segments.

I J. Choi, DKU

32

16.6 OS Support

s For segmentation support
v Context switch: save/restore segment related registers
v Free space management

» Try to reduce external fragmentation =» coalescing and compaction

oKB

sKB

16KB

24KB

32KB

40KB

48KB

56KB

s4KB

Figure 16.6: Non-compacted and Compacted Memory

v Allocation

» Best-fit, worst-fit, first-fit, buddy algorithm (= see chapter 17)

Mot Compacted

Operating System

{not in usa)

Allocated

(notin use)

Allocated

(not inruse)

Allocated

16KEB

24KB

32KEBE

40KB

48KB

56KB

s4KB

Compacted

Opearating System

Allocated

{not in use)

o Compaction in memory: prepare for large free space vs Compaction in disks: reduce seek time

33

J. Choi, DKU

16.7 Summary

s Segmentation
v Divide address space into logical regions called segment

v Overcome the memory wasted between segments (e.g. heap and
stack in the base/bound mechanism)

v Flexible: support sharing and protection

s But, still have some problems

v Variable size = relatively hard to implement in hardware, may cause
external fragmentation which complicate free space management

v Memory waste within a segment, especially sparse segment = need
to allocate address space that are actually used by a process

v Alternative: fixed size =» Paging (chap 18.)

uuuuuuuu
= segment o

segment o

segment 3|

segment table

segment 2

segment 4

segment 1

SN J. Choi. DKU
34

Chap. 17 Free Space Management

s Free-space management

v Variable size (e.g. malloc() or segmentation)

= Complicate to manage (list with size, multiple lists, tree), external
fragmentation =» in this chapter

v Fixed size (e.g. paging)
= Relatively easy (simple list, bitmap), internal fragmentation =» chapter 18

e osk e | W P ek el B |
B e L b3 R o e L 22] i e L b 2] i e T £ 5]
Frescesss 1 % 2T Frerescesss 1 % L Frreoscaesss 1 e L o
. Preeceses 2 % (=B | FPraeceses 2 e tat
A
> >mn Froceses 8 FE-3 N
=t
L] L =0 LE =4] dall ¥
B i T [ek Srags | B T Bt i T
Syt | Syeatews =y Syt

Frosceasess 2 LM
FProceses 1 2001 Frocases 1 A 2T

FProsc e ses =8 e eses <8 e e ses -8
12T W T HWT

[| L0 [|

P rosceses & P4 Frocesss & L Frroece s & 1 =P Frocesss 8 1=l

= ana SE N 4 P e

Ca= iy (€~] []

(Source: A. Silberschatz, “Operating system Concept”)
% Process 2 is “relocated” dynamically
% Need the swap space (in a disk) when a process is suspended.

= How to handle when a hew process is forked at (h) step whose size is 3 or]OCID\{I]E?DKU
2 : :

17.1 Assumptions

s Interfaces
v malloc()/free()

s Free space
v Managed by a list (free list)

v In actual OSes, free space is managed by various data structures
including a hashed list or tree (e.g. buddy system)

= Fragmentation s ok
v External: variable-size allocation used ;g;;?:;mrmn? 5
v Internal: fixed-size allocation | e
v Focus on external fragmentation —
wed | /T
used

internal fragmentation
used

I J. Choi, DKU

36

17.2 Low-level Mechanisms

s Splitting, Coalescing, and Compaction

v Memory: 30-byte heap free used free
0 10 20 30
v Free list i) I adc!r:{] I add[':ED > NULL
len:10 len:10
v Request

= 10B =>» allocate one of the free entries
= Larger than 10B =» fail or need compaction

= Smaller than 10B = need splitting

Allocate 1 byte
addr:0 addr:21

len:10 len:9 NULL

head =—p

v Free

* Free the used space 10~19 =» need coalescing (compact neighbors only)
Sort free entries, check neighbors when inserting into the free list

addr:0 addr:20 addro
len:10 | len:10 > NULL head —» len-30 — NULL

eSee appendiand 17.2m. appendix an .2 In OSSP for real free space management‘." Chot, DU

addr:10

len:10 .

head =—p

17.3 Basic Strategies

s Free-space allocation policy
v Bestfit
» allocate from the smallest chuck which is bigger than the request size
v Worst-fit
» allocate from the largest chuck which is bigger than the request size
v First-fit

= allocate from the first chuck which is bigger than the request size,
search start from head

v Next-fit

= allocate from the first chuck which is bigger than the request size,
search start from the last allocated chunk

Head Last allocated block (14MB)

. l:- | | |

8MB 12?4B 22MB 17MB 18MB i4MB 4MB 36MB

< Need to allocate 16MB available space. Which one by each policy?

J. Choi, DKU
38

17.4 Other Approaches

= Buddy allocation
v To make splitting/coalescing simple
v Allocate a free memory with the size of 2" (e.g. 4KB, 8KB, ...)

s Segregated Lists
v Some applications have one (or a few) popular-sized request

v Manage them in a segregated list = same size = easier to split and
coalescing

v Popular example: slab allocator in Solaris (and in Linux)

s Others

v More complex data structure for fast searching (e.g. balanced B-tree)

1 Mbyte block |

1M

Request 100K [A=128K[128K |

256 K

Request 240K [A=128 K] 128K |

B =256 K

Request 64 K [A= 128 Kfc=esx[64 K|

[
[
B=256 K | 512K

Request 256 K [A =128 Kf-sx]64 K| B =256 K | D=256K | 256 K
Release B [A =128 Kf=esx[64 K] 256 K | D=256 K [256 K
Release A [128K [-esx[64 K] 256 K | D=256K [256 K
Request 75K [E= 128K k=stx[64 K| 256 K | D=256K | 256 K
Release C [E=128K[128K | 256 K | D=25K | 256 K
| D=25 K | 256 K

Release E | 512K

Release D |

1M

™M

512K

256K

128K

64K

v
[A=128Kk-a1x]64 K] 256 K D =256 K | 256 K]

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU
39

17.5 Summary

= Memory virtualization
v Goal: Transparency, isolation, efficiency
v Virtual memory (Address space) and Physical memory
v Address translation: virtual to physical address

= Dynamic relocation
v Base & Bound (Limit) approach
v Generalized approach = segmentation

s Free-Space Management
v Reduce fragmentation (external/internal)
v Mechanism: Splitting, Coalescing and Compaction
v Policy: Best fit, First fit, Worst fit, Buddy algorithms, Slab,
v =» Variable size makes management complex (1000 solutions)

TIiP: IF 1000 SOLUTIONS EXI1sT, NO GREAT ONE DOES
The fact that so many different algorithms exist to try to minimize exter-
nal fr’lgmentatlon is indicative of a stronger underlying truth: there is no
one “best” way to solve the problem. Thus, we settle for something rea-
sonable and hope it is good enough. The onlv real solution (as we will
see in forthcoming Chapter‘-.) is to avoid the problem altogether, by never
allocating memory in variable-sized chunks.

e J. Choi, DKU
40

|@©@| Quiz for this Lecture
TIME)
7 QUiZ

v 1. Discuss the differences between virtual memory and physical memory
(at least 3).

v 2. Discuss the roles of 1) compiler, 2) operating system, and 3) CPU (or
MMU) for memory virtualization (hint: 21 and 23 page).

v 3. Using the below left figures, calculate the physical addresses of the
virtual addresses of 100, 5000 and 7500 (using the terms of segment
number and offset)

v 4. Discuss the following terms using the below middle figure : 1) swap
out (also called as “suspend”), 2) relocation, 3) external fragmentation,
4) compaction, 5) splitting, and 6) coalescing

v 5. Discuss the values of SEG_MASK, SEG_SHIFT and OFFSET_MASK

in the below right figure (hint: see 5 page in the OSTEP, Chapter 16)

by T e b
(KB ' [1LTT
et | 2 ,m.,} s [} | /[get top 2 bits of 14-bit VA
Cpereting Sysiem 3
- S e) Seqent = (VirtualAddress & SEC_MASK) >» SEG_SHIFT
bR o | s &m 1 /[nov get offset
l Segment Base Size T :
~ode oKB 3 NE L I W - ATTOTM U D
fom 4K % W= { Offset = VirtualAddress & OFFSET_MASK
Stack 28K 2K N s if (Dffset = Bounds(Sequent])
o .‘ 5 if (0ffset »= Bounds|Seqment
Figure 16.3: Segment Register Values & N o e - e I : I.J : I um-_m s
E— — ; 6 Ra1seRxception (PROTECTION_FAULT)
I Process } ™M Process | %JIM lmm FmomZ](UM - -
08 7 else
é Process 4 (‘UM Proces Process
Figure ress Space (Agai Figure 1.2 Placing Segments In Physical Memary & o § Fh}FSAGdI_ i Eas'-: [Seqmer‘: L O:’ f SE:
. - ” 4 = Process % Process 3 %mm Proces 3 | & 18M Processd |4 15M T i - \
1T 1 . | + - - f 9 Register = Accesslemory (Physhddr)
Sle.lgfn el;"lt Offset ' © o ®)
[J. Choi, DKU

Appendix: 17.2 Low-level Mechanisms

= [racking the size of allocated regions

v free(): argument =» pointer only, not size
= Need to track the size of a unit that is freed for coalescing
» Most allocators utilizes a header block, usually just before the handed-

out chunk of memory

Size and Magic number for integrity checking (additional pointer to speed up

deallocation, and other information)

typedef struct _ header t {
int size;
int magic;

} header t;

]' The header used by malloc library

ptr >

= The 20 bytes returned to caller

Figure 17.1: An Allocated Region Plus Header

void free (void »xptr) {

header_t «hptr = (void «)ptr - sizeof (header_t);
hptr >
size: 20
magic: 1234567
ptr >

42

The 20 bytes returned to caller

Figure 17.2: Specific Contents Of The Header

J. Choi, DKU

s Embedding the free list into a heap

Appendix: 17.2 Low-level Mechanisms

v Figure 17.3: initial stage, build a free list inside the free space

* Free space: 4KB (4096 byte), entry of the free list: 8 byte (size, next) = size
becomes 4088.

v Figure 17.4: after “malloc(100)”
» Header for the allocated space: 8 byte (size, magic #) =» 3980 (split occurs)
» Head: pointer for the free list, ptr: pointer returned to malloc()

v Figure 17.5: after three “malloc(100)’s =» 3764

head —»

ptr ————

head ———-»

size: 4088

next: (8]

[virtual address: 16KE]
header: size field

header: next field (NULL is O)

} the rest of the 4KB chunk

Figure 17.3: A Heap With One Free Chunk

size: 100

magic: 1234567

size: 3980

next: o

[virtual address: 16K.E]

} The 100 bytes now allocated

} The free 3980 byte chunk

Figure 17.4: A Heap: After One Allocation 43

size: 100

magic: 1234567

size: 100

magic: 1234567
sptr o

size: 100

head —»

magic: 1234567

size:

3764

next: 0

[virtual address: 16KB]

= 100 bytes still allocated

= 100 bytes still allocated

(but about to be freed)

= 100-bytes still allocated

The free 3764-byte chunk

KU

Figure 17.5: Free Space With Three Chunks Allocated

Appendix: 17.2 Low-level Mechanisms

s Embedding the free list into a heap
v Figure 17.5: after three “malloc()’s, trigger one “free(sptr)” request

v Figure 17.6: after “free(sptr)”
= Two entries in the free list: head - (100, 16708) - (3764, 0 (NULL))

= Virtual address 16708 =16 x 1024 + 3 x 108

v Figure 17.7: after three “free()’s
» Compaction-less version (c.f. Compaction version: Figure 17.3)

[virtual address: 16KE]
size: 100

magic: 1234567

= 100 bytes still allocated

size: 100

magic: 1234567

sptr ——»

= 100 bytes still allocated
(but about to be freed)

size: 100

magic: 1234567

= 100-bytes still allocated

head —»

size: 3764

next: o]

The free 3764-byte chunk

Figure 17.5: Free Space With Three Chunks Allocatedl

head —»

sptr —»

size: 100

magic: 1234567

size: 100
next: 16708
size: 100

magic: 1234567

size: 3764

next: 0]

[virtual address: 16KE]

] 100 bytes still allocated

(now a free chunk of memory)

= 100-bytes still allocated

= The free 3764-byte chunk

Figure 17.6: Free Space With Two Chunks Allocated

44

head —»

[virtual address: 16KB]

size: 100
next: 16492
size: 100
next: 16708
size: 100
next: 16384
size: 3764
next: 0

(now free)

(now free)

(now free)

The free 3764-byte chunk

Figure 17.7: A Non-Coalesced Free List

s 2 NE2025EE DS SNBEAE U HBEAD| 2
oI 0| ‘SWEAIHS AL KRS 80t HIE S ASLICH
s 222 UHES MUE 4 SO, AZ(MAIR)E T o
S UICA DS ENBEANR HEBEAI|EEIIAQ| X
25t ‘SWEAIJE o 2VS0|2ts X E 245 0F SLICH

SwWS-kicHERE=
CHElE-sS-=5 SWSRlOo & S If5o ik,

SWZ-ReI21S 25t
Shal - 7 |2 - AbSI2] SWZzRS Zists)
ZIZTHSWT 2| SHARS AISISH= CHSME 2reh|ch

J. Choi, DKU

