
J. Choi, DKU

Lecture Note 8: Memory
Management

May 20, 2025
Jongmoo Choi

Dept. of Software
Dankook University

http://embedded.dankook.ac.kr/~choijm

(본 교재는 2025년도 과학기술정보통신부 및 정보통신기획평가원의 ‘SW중심대학사업’ 지원을 받아 제작 되었습니다.)

J. Choi, DKU

Contents

From Chap 12~17 of the OSTEP
Chap 12. A Dialogue on Memory Virtualization
Chap 13. The Abstraction: Address Space
Chap 14. Interlude: Memory API
ü malloc(), free(), brk(), mmap(), …

Chap 15. Mechanism: Address Translation
ü Base & Bound(Limit), Dynamic Relocation

Chap 16. Segmentation
ü Generalization, Sharing, Protection

Chap 17. Free-Space Management
ü Fragmentation, Splitting and Coalescing
ü Strategies: Best fit, First fit, Worst fit, …
ü Segregated list, Buddy algorithm, …

2

J. Choi, DKU

Chap 12. Dialogue

Memory virtualization

…

3E Virtual/Physical Memory, Address Translation, Segmentation/Paging, TLB, Swap/Replacement, …

J. Choi, DKU

Chap 13. The abstraction: address space

Early system
Multiprogramming and Time sharing
Address space
Goals

4

(Source: https://msdn.microsoft.com/en-us/windows/
hardware/drivers/gettingstarted/virtual-address-spaces)

J. Choi, DKU

13.1 Early Systems

Use physical memory directly
ü Only OS and current program in memory è single programming

system
ü No (limited) protection
ü Larger program than physical memory è Overlay

5

J. Choi, DKU

13.2 Multiprogramming and Time sharing

Memory becomes bigger
ü Multiprogramming: multiple processes are ready to run
ü Time sharing: switch CPUs among ready processes
ü Issues

§ Protection becomes an essential issue
§ How to find suitable free space

6

J. Choi, DKU

13.3 Address space

Abstraction
ü A process has an illusion that it uses exclusively all memory even

though it is shared by multiple processes è virtual memory
ü Well defined layout è address space

§ Code (instruction), Data (statically-initialized variables), Stack (function
call chain and local variables), Heap (dynamically allocated)

§ Code is located at virtual address 0x0, but not physically

7

Virtual memory Virtual memoryPhysical memory

J. Choi, DKU

13.4 Goals

Transparency (easy to use)
ü Programmer: no need to aware the memory size or available space

Efficiency
ü Both in terms of time and space (not slow and not requires much

additional overhead) è Various HW support (e.g. TLB)
Protection (isolation)
ü Protect processes from one another

Note: every address you see is virtual

8

J. Choi, DKU

Chap 14. Interlude: Memory API

Types of Memory
The malloc() call
The free() call
Common errors
Underlying OS Support
Other Calls

9

(Splitting and Coalescing example)

J. Choi, DKU

14.1 Types of Memory

Two types of memory
ü Static: Code (also called as text), Data (global variable)
ü Dynamic: Heap, Stack

§ Stack
• Implicitly by the compiler (hence sometimes called automatic memory)
• Short-lived memory

§ Heap
• Explicitly by the programmer
• (relatively) Long-lived memory

10

J. Choi, DKU

14.2/3 The malloc()/free() call

The malloc() call
ü Input: memory size (how many bytes you need)
ü Output: pointer to the newly-allocated space (or NULL if it fails)

ü Use well-defined macros or routines, instead of number as input

The free() call
ü Input: pointer (size is not specified, meaning that it is managed by the

library)

11

ü malloc(sizeof(int));
ü malloc(strlen(s) + 1);

J. Choi, DKU

14.4 Common errors

Common errors
ü Forgetting to allocate memory

12

E Make use of a debugger (e.g. gdb)

§ Correct version (or strdup())

§ We frequently meet the segmentation fault. Hence è

J. Choi, DKU

14.4 Common errors

Common errors
ü Not allocating enough Memory

§ It seems work, but not correctly (‘\0’), which causes buffer overflow,
leading to several security vulnerabilities.

§ Some library allocates a little extra space.
ü Forgetting to initialize allocated memory

§ Heap has data of unknown value.
ü Forgetting to free memory

§ Memory leak
§ Some languages support the garbage collection mechanism that

manages memory automatically without requiring explicit free() by
programmers è but if you still have a reference, the collector will never
free it (still problem)

13

J. Choi, DKU

14.4 Common errors

Common errors
ü Freeing memory before you are done with it

§ Dangling pointer
§ Subsequent use can crash the program and even system

ü Freeing memory repeatedly
§ Double free

ü Calling free() incorrectly
§ Invalid free

Tools for solving memory-related problems
ü Purify
ü Valgrind
ü …

14

J. Choi, DKU

14.5/6 Underlying OS Support/Other Calls (Optional)

Underlying OS Support
ü malloc()/free() è library
ü It internally allocates several pages using the sys_brk() or

sys_mmap() system call and manages them to serve the malloc()
and free() request

ü If its space becomes too small, it requests more pages to OS again
using the sys_brk() or sys_mmap() è system call

Other Calls
ü calloc(): allocate and zero space
ü realloc(): allocate a new larger region, copy the old region into it and

returns the pointer of the new region

15

J. Choi, DKU

Chap. 15 Mechanism: Address Translation

CPU virtualization
ü Limited Direct Execution

§ Direct execution: process run directly for the most time (efficiency)
§ Limited: OS get involved (control)

ü How to?
§ 1) Restricted operations (e.g. system call), 2) Timer interrupt
§ Two key concepts for CPU virtualization: 1) context switch, 2) scheduling

Memory virtualization
ü Decouple Virtual Memory (VM) from Physical Memory (PM)

§ The placement of VM in PM is determined by OS (control)
§ This decouple requires address translation (from virtual to physical

address) per each memory access, which is achieved via hardware
supports such as MMU and TLB (efficiency)

ü How to?
§ 1) OS memory management, 2) HW-based address translation
§ Four key concepts for Memory virtualization: 1) allocation (continuous,

segment, paging), 2) translation table, 3) free space management, 4)
replacement policies

16

J. Choi, DKU

15.1 Assumption/15.2 An Example

A program
ü High-level viewpoint

ü Assembly viewpoint

ü Process viewpoint (address space in Chap 13)
§ Instructions: address 128 ~ 135 at code
§ Variable x: address 15KB (15,360B) at stack

ü Execution viewpoint (fetch + execution)

17

E Need to access memory (128, 15KB, …) during execution

J. Choi, DKU

15.1 Assumption/15.2 An Example

18

Focusing on memory
ü Decouple virtual and physical memory

§ Virtual memory (VM)
• Starts at address 0, Grows to 16KB (previous slide)
• Well-defined address space

§ Physical memory (PM)
• Consists of used/free space
• VM can place any free space, not necessarily at 0

dissimilar to VM (32KB ~ 48KB in this slide)
ü Terms

§ Allocation
• Control where a VM instance is placed in PM

§ Translation
• Convert from virtual address to physical one (from

0KB to 32KB in this example)
§ Relocation

• A VM can be place any free space (or can be moved
from current place to other free space)

§ Free-space management
• For allocation or relocation

§ Replacement (or swap out)
• To make more free space

ü OS also locates in PM

J. Choi, DKU

15.3 Dynamic (Hardware-based) Relocation

Integrated viewpoint of Virtual and Physical memory
ü Virtual memory: 0~16KB vs Physical Memory: 0~64KB

§ Assume that a binary is loaded into 32KB~48KB
ü Address translation: virtual address è physical address

§ First instruction: 128 è 32KB + 128 (32768 + 128 = 32896)
§ Variable x: 15KB è 32KB + 15KB = 47KB
§ In general: base address + offset (instruction or variable’s address)

19

Base register

Bound (Limit) register

E What if a virtual address is larger than the bound register?

J. Choi, DKU

15.3 Dynamic (Hardware-based) Relocation

Summary
ü Virtual vs. Physical memory

§ 1) exclusive (per process) vs. shared by processes
§ 2) start at 0x0 vs. start at any address (different among processes)
§ 3) independent of DRAM size (usually larger than DRAM size) vs. limited to DRAM size

ü Three main components: Compiler, OS and Hardware (MMU)
§ A program is compiled as if it is loaded at address 0 (virtual memory).
§ The program is loaded by OS into any space in physical memory, while setting base

and bound registers appropriately è relocatable
§ An address requested by CPU is translated into a physical address while running (and

protected) using MMU

20

Base register

Bound register

Physical memory

Base register

Bound register

Virtual memory (for process A) Virtual memory (for process B)

J. Choi, DKU

15.4 Hardware Support

Revisit address translation
ü How to translate? Using two hardware registers

§ Base register: start address (30004 in this example)
• physical address = base register + virtual address
• E.g. virtual address = 10 è physical address = 30014

§ Bound register (Limit register): upper bound (or size, 12090 in this
example)

• E.g. virtual address = 13000 è out of bound exception (segmentation fault)
ü During context switch

§ Base/Bound registers are switched at each context switch time
• E.g. from process 2 to process 1 è base register from 30004 to 25600

21

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

15.4 Hardware Support

MMU (Memory management unit)
ü Part of CPU that helps with address translation
ü E.g.) Base/Bound registers, Segmentation related registers, Paging

related registers, TLB (Translation Lookaside Buffer) + Circuitry
Summary of HW support for Dynamic relocation

22

J. Choi, DKU

15.5 Operating Systems Issues

OS responsibilities
ü Memory management

§ Allocation for new processes, free list manipulation, …
§ Reclaim the space of terminated processes

ü Base/Bound registers switch during Context switch
§ Save/restore base/bound registers into/from PCB (MMU)
§ Process relocation if necessary

ü Exception handling
§ Handlers + Table (e.g. segmentation fault handler + IVT)

23

J. Choi, DKU

15.5 Operating Systems Issues
Global view

24

Direct execution

OS involved

Initialization

HW-based translation

J. Choi, DKU

15.6 Summary

Memory virtualization: summary and new issue
ü Role of each component for Virtual memory

§ OS: memory allocation/free, base/bound initialize, exception control
(infrequent event)

§ HW: virtual to physical at every execution (frequent event, MMU)
§ Support transparency: users have no idea where their processes are

ü Mechanisms
§ Contiguous allocation

• 1) Base and bound registers
• Pros: Simple and Offer protection
• Cons: Internal fragmentation

§ Non-contiguous allocation
• 2) Segmentation: Variable size
• 3) Paging: Fixed size

25

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

Chap. 16 Segmentation

Issues of the base/bound register based dynamic relocation
ü A big chunk of “free” space in the middle of address space

§ Even though they are free, they are taking up physical memory
ü Hard to run a program when the entire address space does not fit

into an available space in physical memory

26

E How large the free space between heap and stack in 32-bit CPU?

Base register

Bound register

J. Choi, DKU

16.1 Segmentation: Generalized Base/Bounds

Key idea
ü Contiguous è Non-contiguous
ü Segment: divide a program into multiple segments (each segment is

a contiguous portion of the address space)
§ E.g.) code segment, data segment, stack segment, heap segment, …

ü Support base/bound per segment
§ OS places segments independently in physical memory

27

J. Choi, DKU

16.1 Segmentation: Generalized Base/Bounds

Address translation
ü virtual address 100 (e.g. PC) è physical address: 32KB + 100
ü virtual address 4200 (e.g. pointer x) è physical address 34K + 104
ü virtual address 8000 (or 3000) è segmentation fault
ü virtual address: segment number + offset

§ Segment number: choose appropriate segment register (or table entry)
§ Offset: location within the segment (assume that it begins with 0)

28

E There is a hole between the code and heap segment. why? (for bit manipulation)

J. Choi, DKU

16.2 Which Segmentation Are We Referring To?

Segment encoding in virtual address
ü Segment number part + offset part
ü In the previous example

§ Address space size: 16KB = 2^14 è 14 bit
§ Number of segment: 3 è 2 bit
§ Number of offset: remaining 12 bit è maximum size of a segment: 4KB

§ Segment: 00 è code, 01 è heap, 11 è stack
§ virtual address 4200 = 4096 + 64 + 32 + 8

• Segment number: Used for searching its related base register
• Offset: If this offset is larger than the size, trigger the segmentation fault.

Otherwise, add offset with the value of the base register, generating the
physical address (4200 è “01 (heap) + 104” è 34K + 104)

29E How about the virtual addresses 100 and 8000 discussed in the previous slide?

J. Choi, DKU

16.2 Which Segmentation Are We Referring To?

Address translation pseudo code

ü What are the values of SEG_MASK, SEG_SHIFT, and
OFFSET_MASK under the previous example?

30

J. Choi, DKU

16.3 What About the Stack?

Stack issue
ü It grows backward è translation must proceed differently

§ Need extra HW support

ü Instead of offset, adding “virtual address - total address
space size” (or “offset in stack - maximum segment size”)
with the value in base register
§ Virtual address: 15KB = 11 1100 0000 0000

• Segment number 11 è stack
• Offset 1100 0000 0000 è 3KB

§ Physical address: 28KB + (15KB - 16KB)
§ Another example: 16380 (16KB – 4B) = 11 1111 1111 1100

è seg. Number = 11 + offset = 1111 1111 1100 = 4902 è
physical address = 28KB + (16KB – 4B – 16KB) = 28KB – 4B

31

J. Choi, DKU

16.4/5 Support for Sharing/ Granularity

Benefit of segmentation
ü Sharing among multiple processes
ü Protection support

Segment size
ü Coarse-grained

§ Relatively large size, small # of segments in a process (around 4)
ü Fine-grained

§ Relatively small size, large # of segments in a process
§ Make use of a table (segment table) for manipulating large # of segments.

32

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

16.6 OS Support

For segmentation support
ü Context switch: save/restore segment related registers
ü Free space management

§ Try to reduce external fragmentation è coalescing and compaction

ü Allocation
§ Best-fit, worst-fit, first-fit, buddy algorithm (è see chapter 17)

33

E Compaction in memory: prepare for large free space vs Compaction in disks: reduce seek time

J. Choi, DKU

16.7 Summary

Segmentation
ü Divide address space into logical regions called segment
ü Overcome the memory wasted between segments (e.g. heap and

stack in the base/bound mechanism)
ü Flexible: support sharing and protection

But, still have some problems
ü Variable size è relatively hard to implement in hardware, may cause

external fragmentation which complicate free space management
ü Memory waste within a segment, especially sparse segment è need

to allocate address space that are actually used by a process
ü Alternative: fixed size è Paging (chap 18.)

34

J. Choi, DKU

Chap. 17 Free Space Management

Free-space management
ü Variable size (e.g. malloc() or segmentation)

§ Complicate to manage (list with size, multiple lists, tree), external
fragmentation è in this chapter

ü Fixed size (e.g. paging)
§ Relatively easy (simple list, bitmap), internal fragmentation è chapter 18

35

(Source: A. Silberschatz, “Operating system Concept”)

F Need the swap space (in a disk) when a process is suspended.
F How to handle when a new process is forked at (h) step whose size is 3 or 10MB?

F Process 2 is “relocated” dynamically

J. Choi, DKU

17.1 Assumptions

Interfaces
ü malloc()/free()

Free space
ü Managed by a list (free list)
ü In actual OSes, free space is managed by various data structures

including a hashed list or tree (e.g. buddy system)
Fragmentation
ü External: variable-size allocation
ü Internal: fixed-size allocation
ü Focus on external fragmentation

36

J. Choi, DKU

17.2 Low-level Mechanisms

Splitting, Coalescing, and Compaction
ü Memory: 30-byte heap

ü Free list

ü Request
§ 10B è allocate one of the free entries
§ Larger than 10B è fail or need compaction
§ Smaller than 10B è need splitting

• Allocate 1 byte

ü Free
§ Free the used space 10~19 è need coalescing (compact neighbors only)

• Sort free entries, check neighbors when inserting into the free list

37F See appendix and 17.2 in OSTEP for real free space management.

J. Choi, DKU

17.3 Basic Strategies

Free-space allocation policy
ü Best-fit

§ allocate from the smallest chuck which is bigger than the request size
ü Worst-fit

§ allocate from the largest chuck which is bigger than the request size
ü First-fit

§ allocate from the first chuck which is bigger than the request size,
search start from head

ü Next-fit
§ allocate from the first chuck which is bigger than the request size,

search start from the last allocated chunk

38

8MB 12MB 22MB 17MB 8MB 18MB 14MB 4MB 36MB

Last allocated block (14MB)Head

F Need to allocate 16MB available space. Which one by each policy?

J. Choi, DKU

17.4 Other Approaches

Buddy allocation
ü To make splitting/coalescing simple
ü Allocate a free memory with the size of 2n (e.g. 4KB, 8KB, …)

Segregated Lists
ü Some applications have one (or a few) popular-sized request
ü Manage them in a segregated list è same size è easier to split and

coalescing
ü Popular example: slab allocator in Solaris (and in Linux)

Others
ü More complex data structure for fast searching (e.g. balanced B-tree)

39

(Source: A. Silberschatz, “Operating system Concept”)

J. Choi, DKU

17.5 Summary

Memory virtualization
ü Goal: Transparency, isolation, efficiency
ü Virtual memory (Address space) and Physical memory
ü Address translation: virtual to physical address

Dynamic relocation
ü Base & Bound (Limit) approach
ü Generalized approach è segmentation

Free-Space Management
ü Reduce fragmentation (external/internal)
ü Mechanism: Splitting, Coalescing and Compaction
ü Policy: Best fit, First fit, Worst fit, Buddy algorithms, Slab, …
ü è Variable size makes management complex (1000 solutions)

40

J. Choi, DKU

Quiz for this Lecture

Quiz
ü 1. Discuss the differences between virtual memory and physical memory

(at least 3).
ü 2. Discuss the roles of 1) compiler, 2) operating system, and 3) CPU (or

MMU) for memory virtualization (hint: 21 and 23 page).
ü 3. Using the below left figures, calculate the physical addresses of the

virtual addresses of 100, 5000 and 7500 (using the terms of segment
number and offset)

ü 4. Discuss the following terms using the below middle figure : 1) swap
out (also called as “suspend”), 2) relocation, 3) external fragmentation,
4) compaction, 5) splitting, and 6) coalescing

ü 5. Discuss the values of SEG_MASK, SEG_SHIFT and OFFSET_MASK
in the below right figure (hint: see 5 page in the OSTEP, Chapter 16)

41

J. Choi, DKU

Appendix: 17.2 Low-level Mechanisms

Tracking the size of allocated regions
ü free(): argument è pointer only, not size

§ Need to track the size of a unit that is freed for coalescing
§ Most allocators utilizes a header block, usually just before the handed-

out chunk of memory
• Size and Magic number for integrity checking (additional pointer to speed up

deallocation, and other information)

42

J. Choi, DKU

Appendix: 17.2 Low-level Mechanisms

Embedding the free list into a heap
ü Figure 17.3: initial stage, build a free list inside the free space

§ Free space: 4KB (4096 byte), entry of the free list: 8 byte (size, next) è size
becomes 4088.

ü Figure 17.4: after “malloc(100)”
§ Header for the allocated space: 8 byte (size, magic #) è 3980 (split occurs)
§ Head: pointer for the free list, ptr: pointer returned to malloc()

ü Figure 17.5: after three “malloc(100)”s è 3764

43

J. Choi, DKU

Appendix: 17.2 Low-level Mechanisms

Embedding the free list into a heap
ü Figure 17.5: after three “malloc()”s, trigger one “free(sptr)” request
ü Figure 17.6: after “free(sptr)”

§ Two entries in the free list: head à (100, 16708) à (3764, 0 (NULL))
§ Virtual address 16708 = 16 x 1024 + 3 x 108

ü Figure 17.7: after three “free()”s
§ Compaction-less version (c.f. Compaction version: Figure 17.3)

44

J. Choi, DKU

사사

본 교재는 2025년도 과학기술정보통신부 및 정보통신기획
평가원의 ‘SW중심대학사업’ 지원을 받아 제작 되었습니다.
본 결과물의 내용을 전재할 수 없으며, 인용(재사용)할 때에
는 반드시 과학기술정보통신부와 정보통신기획평가원이 지
원한 ‘SW중심대학’의 결과물이라는 출처를 밝혀야 합니다.

45

