System Programming ©NN————

Lecture Note 1.
What is System Programming

September 3, 2025

Jongmoo Choi
Dept. of Software

Dankook University
http://embedded.dankook.ac.kr/~choijm

(2 W= 20250 % e |=FESHNSE L FESAI|2EIIRS 'SWSAHEAME XIS 20t M & &I AsLITH)

———————— T

NANKOOK UNIWERSITY

Contents

Understand what is system program

|dentify three types of system program
v Compilation system

v QOperating system

v Runtime system

Discuss Hardware consideration
Grasp the abstraction concept

Reference: Chapter 1 in the CSAPP

CHAPTER 1

A Tour of Computer Systems

11 Information s Bits + Context 3
1.2 Programs Are Translated by Other Programs into Different Forms 4
1.3 It Pays to Understand How Compilation Systems Work 6
|4 Processors Read and Interpret Instructions Stored in Memory 7
1.5 Caches Matter 12
|6 Storage Devices Form a Hierarchy 13
1.7 The Operating System Manages the Hardware 14
1§ Systems Communicate with Other Systems Using Nebworks 20
|9 Important Themes 21
110 Summary 23
Bibliographic Notes 26

(Source: CSAPP)

Definition of System Program (1/8)

s Computer organization

Definition of System Program (2/8)

s Hardware components: PC

., Secondary storage

Definition of System Program (3/8)

s Hardware components: DRAM vs. Disk

v 1. Speed vs. Capacity
= Memory Hierarchy

v 2. Volatility: Volatile vs. Non-volatile

» Need to write data into disk explicitly for persistency (file 1/0)

v 3. Interface: Byte-unit interface vs. Sector-unit interface
= Need to load a program from disk to DRAM before execution (loading)

CPU rogisters hold words
retricvad from cache mamaory.

Smallar,
fastor,
and
costiar L1 cache holds cache lines
";?;3;’3:7' retriaved from L2 cacha.
3 L2
gvices L2 cache holds cache lines
retrieved from L3 cache.
13- L3 cacha
Largar, i } L3 cache holds cache lines
retriaved from mamaory.
Slgmr' L4: Main memory
cheaper (DR Main memory holds disk blocks
(per byta) retrieved from local disks.
storage L5: Local sacondary storage
davices (local disks} Local disks hold files
retrioved from disks on
L] Li&: Remoie sacondary storage remota network sanver.
(distributed file systems, Wab sarvars)

Figure 1.9 An example of a memory hierarchy.

(Source: CSAPP)

Disk Memory
Secondary Memory

Operating System Loads
Program Into RAM

3

Primary Memory

Main Memory
RAM
(Source: Google Image)-

Definition of System Program (4/8)

s Hardware components: Smart Phone
CPU: ARM based Multicore

Memory: LPDDR, SRAM

Storage: NAND flash

Input: Touch Screen, Sensors, Voice, Iris, ...
Output: LCD, LED, Sound, Buzzer, ...

Communication

= \WLAN
LTE, CDMA, GSM
IrDA, Bluetooth, NFC
UART, USB

D N NN RN

(Source: Google Imagﬁi
I =

=

Definition of System Program (5/8)

s Hardware components: PC vs. Mobile
v Differ according to the requirements for Mobile devices

v Power Saving

= Make use of RICS CPU instead of CISC CPU

RISC: Reduced Instruction Set Computing = Small Instructions = Compact
CPU internal =» Consume less Power

» Make use of LPDDR (Low-Power DDR) instead of General DRAM
LPDDR: Reduce power by using lower voltage and less refreshing

v Portability
» Make use of Flash memory instead of Disk
Lightweight, Shock resistance

v User friendliness
= Make use of diverse input, output and communication devices

TR =2l 1. SWA1.35W LAV

Configurations e, B, x 16 xS, 32

SR DDR
Commana 2f Aaaddress pinog CommancSadoress
=2 =|cd s, PinesE =5
Crata 1 pinsk i 18566
=icH M= =5 (Mbps) - (spec. 2 21337Ex] =el)

SR E| LHS S Ay 2= 2=

RaefreshE ZF bank = — i
off FHEE = = = == (PASR) R FH=s (optional) e

Deaeap Power Dowvwn 2 e T =3 RIS

(Source: http://egloos.zum.com/donghyun53/v/4125772) _
| —?

7

Definition of System Program (6/8)

s Software components

v Application program vs. System program
= Application program: how to do a specific job
#include <stdio.h>

int main()

1
}

printf(“hello, worldWn”);

= System program: address the following issues
How to run this application program on CPU?
What is the role of printf()?
How the string is displayed on Monitor?
How this program can be executed with other programs concurrently?
What are the differences between local and global variables?

What kinds of techniques can be applied to enhance the performance of this
program?

Definition of System Program (7/8)

s Software components: System program

v How to run a program on CPU?

= object, binary, compiler, assembler, loader, ...
v What is the role of printf()?

= library, linker, ...
v How the string is displayed on Monitor?

» device driver, file system, ...

v How a program can be executed with other programs
concurrently?

= process, scheduler, context switch, IPC (Inter process
communication), ...

v What are the differences between local and global memory?
= data, stack, heap, virtual memory, buddy system, ...

v What kind of techniques can be applied to enhance the
performance of a program?

= compiler optimization (loop unrolling, reordering), CPU optimization

‘Eigelinei sugerscalar, out-of-order execution), ... IS - SFroc)

9

Definition of System Program (8/8)

s Software components: System program
v Definition

Supporting computing environments for application programs
(Supporting interfaces such as commands, library functions and
system calls)

Strongly related to hardware (hardware management)

v Support abstraction

CPU and Task (Process)
DRAM and Virtual memory
Storage and File

Device and Driver f
Machine vs. High level language G <
Untrusted and Trusted Domain Input device

;, Secondary storage

|
SR
=
.

Communication Device

10

Aside (Optional)

s RISC vs. CISC

v assembly language example: look RISC takes longer
" a=b+g;

load b, eax
add C, eax
store eax, a

VS
add b, c, a

v Instruction execution: but, they can be pipelined

LS g] Pvlamiizy Mwle oy
"lr a
Saxstern 52 1
Fans ¥ =
[v<] [naas | e 3
Eat L ina w
Naast il
| LR | [naew | e
»
LACY A ==
=
L 1B o
ot o
»
L/ ZWiodule =] -
o EX
b
: i - Frarooran oo rtenr
Baulfers e —_ Instraction mesistenr
RS FEW =5 == Mlernmvory adodrmess memister
MNIES R - Mlenvory bhaller resmister
MY AR = Inputfoutpot acd ress repistes
SOy R — o prastaoantgrant Bl e ewe st on

Figure 1.1 Computer Components: Top-T.evel Wieww

(Source: W. Stalling, “Operating Systems: Internals and Design Principles”) _
11 e

Types of System Program

= Classification

Operating system

s
e
il
K
.
.
o
.

‘.
Yay
.....
Taa,

12

Compilation System (1/5)

s Concept: Language Hierarchy

High-level Language

Assembly Language

Machine Language
(Binary code)

Compilation System (2/5)

s Overall structure
v 6 key components

@D

C File

|

Error Msg

Debugger '\ '

Other Object File & library

l

Executable Object
File (binary)

ASM File

l

Relocatable
Object File

Input Data |7/ ,

.~ 7’| Results

Compilation System (3/5)

= Relation between Language Hierarchy and Overall Structure

@-’ C File

|

Error Msg

(Language hierarchy)

15

Debugger \70

Other Object File & library

|

Executable Object

ASM File File (bjnary)

Relocatable Loader

Object File

\jr S
Input Data | — J |

" Results

Compilation System (4/5)

m Example in Linux @— OtherObchtFiIe&library

Compiler

- Executable Object
ASM File File (binary)
&P choijm@embeddad: ~/syspro/chap

choijm@embedded: ~/syspro/chapls g gig%iatt;ﬁ’f
choijm@embedded: ~/syspro/chapls unams -a
Linux embedded 4.13.0-36-generic #40~16.04.1-Ubuntu SHMP Fri Feb 16 =7
2018 x86 64 %86 €4 xBG6 64 [nput Data |—
Cﬂ'll:lj.jl'l]@ emkbedded: ~f5y5pr:jfc_ha ‘@ ChDijm@E'm bedded: ”fiﬁperChﬂp-E \
choijm@embedded: ~/syspro/cha
enpds25 Link encap:Ethernel
inet addr:220.145.]
ineto addr: feBO: iy
UF BRECADCAST RUNHIQR
EX packets:iE5T7e625
TX packet=:174054
collizsions:0 txguel
EX bytes:1061175918
Interrupt:1l16 Memor

Debugger
choiijmfenbedded: ~/syspro/chapls

choijm@enbedded: ~/syspro/chapls 1=

choiim@embedded: ~/sysproSchapls

choiim@enmbedded: ~/sysproSchefpls
chuijm@embedded:~fsysprufchj§l$ vi hello.c
choiim@embedded: ~/sysprofchapls
choiimBenbedded: ~ sysprofchapls cat hello.c
#include <stdio.h>

int main ()

1o Link encap:Local L t

inet addr:127.0.0.]
imet& addr: @ L1 12
UP LOOPBACE RUNHNIN{G
EX packets:820 erry
TX packet=:820 cxrr:
coellisions:0 txguel
EX bytes:T70246 (70

printf{"Hello DEU Worldin™);
¥
choiim@embedded: ~/sysprofchapls
choijm@enbedded: ~/sysprofchapld 1s
hello.c
choijmn@enbedded: ~/syspro/chdpls goc hello.c
choijmBembedded: ~/syspro/chapfis
choiim@embedded: ~/sysproSchapls 1=

hello.c
choiim@embedded: ~/sysprofchdpls
choiim@embedded: ~/sysprofchdpls ./ a.out
Hello DEU World
choijm@enbedded: ~/syspro/chapls
choijm@enbedded: ~/syspro/chapls I

choijmiembedded: ~/syspro/chay

16 Fo |

|

) W

Compilation System (5/5)

s Example in Linux: detalils
v Location of collect2, crt1.0, ... depend on gcc version

— @

CREE o B]

‘ Other Object File & library ‘

|

L]
+ E2 choijm@embedded: ~/Syspro/chapi

' Executable Object
choiijm@embedded: ~/ Syspro/chapt?) Compiler Fi)f:c(lﬂ,iia;))
chuijm@embedded:~f5ysprufchapE$ vi hello.c J
choijm@embedded:~/5yspro/chapls IS ’ -E M Assembler Relocatable Loader
hello. o = Object File
choijm@embedded: ~f 5yspro/chappd
choijm@embedded: ~fS5ysprofchaplf goo -5 hello.c \ |
choijm@embedded: ~/Syspro/chapl®T= @ [Resits |
hello.c hello.s Debugger .
choijmiembedded: ~/Sysprofchapl®
chnijm@embedded:~f5ysprnfchap£$ g8 —o hello.o hello.s I
choijmfenbedded: ~/Sysprofchaply 1=

hello.c hello.o hello.s

choiijm@embedded: ~/Sysprofchap
choiijm@embedded: ~/Syspro/chap
lik/i3g6-linux—gnu/crtl.o fus
fertn.o fusrflib/fgec/id86-1in

Lo

fasrflib/geoe/fidBe-linux-gnu/3.4.6/collect2 Sasr/
flib/fi3dg6e-l1inux-gnu/crti.o fusr/lib/i3f6é-1linuxfgnu. &
—-gnu/3.4.6 crtbegin.o fusr/lib/gcocce/id86-1inuxlgnu

choijm@embedded:

~{Syspro/chapls I

& What are the differences btw hello.c and

& Whg; are ;hg differences btw hello.o and a.out?

17

ello.s?

/3.4.6/crtend.o hello.o —-1lc —-fynamic-linker flib/ld-linux.soc.2 4
choljm@embedded: ~fSyspro/chapNe_13 d

hello.c hello.o hello.s 1
choijm@embedded: ~fSyspro/chapls 5|
chnijm@embedded:~fSyspIchhapq; JSa.ont] @
Hello DEU World ¥
choljmembedded: ~/Syspro/chapls]

Aside (Optional)

s Compilation system in CSAPP

printf.o

I hello.i | Compiler hello.s Assembler hello.o
(ccl) (as)
Modified Assembly . Relocatable

hello.c

Source
program source program object
(text) program (text) programs

(text) (binary)

Figure 1.2 The compilation system.

Here. the ccc compiler driver reads the source file hello. c and translates it into
an executable object file hello. The translation is performed in the sequence
of four phases shown in Figure 1.3. The programs that perform the four phases
(preprocessor, compiler, assembler. and linker) are known collectively as the
compilation system.

= Preprocessing phase. The preprocessor (cpp) modifies the original C program
according to directives that begin with the # character. For example. the
#include <stdio.h> command in line 1 of hello.c tells the preprocessor
to read the contents of the system header file stdio.h and insert it directly
into the program text. The result is another C program, typically with the .i
suffix.

= Compilation phase. The compiler (cc1) translates the text file hello.i into
the text file hello.s., which contains an assembly-language program. Each
statement in an assembly-language program exactly describes one low-level
machine-language instruction in a standard text form. Assembly language is
useful because it provides a common output language for different compilers
for different high-level languages. For example, C compilers and Fortran
compilers both generate output files in the same assembly language.

= Assembly phase. Next, the assembler (as) translates hello.s into machine-
language instructions, packages them in a form known as a relocatable object
prograri, and stores the result in the object file hello.o. The hello.o file is
a binary file whose bytes encode machine language instructions rather than
characters. If we were to view hello.o with a text editor, it would appear to
be gibberish.

e lLinking phase.Notice thatourhello program calls the printf function. which
is part of the srandard C library provided by every C compiler. The printf
function resides in a separate precompiled object file called printf . o. whic
must somehow be merged with our hello.o program. The linker (1d4) handles
this merging. The result is the hello file. which is an executable object file (or
simply execurable) that is ready to be loaded into memory and executed by

18

[— the systcen.

Executable
object
program
(binary)

(Source: CSAPP, Chapter 1)

a\éfd;}/
ah

Operating System (1/15)

s Overall structure
v [key components

process 1 process 2 process 3 o060 process n User Space
I System Call Interface I]
File system » Process Manager
Ext4 proc VFAT . Task Management
. » Vlrtual Memorv @rrrenennnannnny] SereallEr 9
LFS nfs NTFS — Memory Management Signaling
y 3 A é é é A
v H E H
Buffer Cache| Kernel Space
v \ 4
. . v v
Device Driver » Network Protocol
block character 4 El SOCket TCP/l P
Console KBD SCSI > IiDA
CD-ROM PCI ethernet
|
Hardware Interface (HAL)]
oo devn

devl

dev2

dev3

dev4

(Source: Linux Ket@el Internals)

Operating System (2/15)

s Relation between hardware component and overall structure
v OS: resource manager =» abstract HW resources into logical ones

}process] I process 2 I ’pmcessJ I 000 User Space

5 Secondary storage

O,
ol
it “ H-‘x
& J ﬁﬁjﬂ\%’i‘
@J 4,

(Physical resources)

20

File system
Edd poc WFAT

LF5 nfs NIFS

Device Driver

haracter

Console KBD 5C3
CD-ROMPC! ethemet

tem Call Interface

b

» Process Manager
Task Management

¥

Kernel Space

Yirtual Memor
Memory Management

Hardware Interface (HAL

(Logical resources)

-

Operating System (3/15)

s Behaviors: 1) initial state

OS
/D__kQ \CPU —_
\i// I ;I
N

21

Operating System (4/15)

s Behaviors: 2) create a file (user’s viewpoint)

vi hello.c
#include <stdio.h>

i{nt main()
: printf(“Hello worldWn”);

T
A \,cpu)

...............................

22

Operating System (5/15)

s Behaviors: 2) create a file (system’s viewpoint)

7 Vi hello.c

#include <stdio.h>

int main()

{
}

printf(“Hello worldWn”);

23

108

F;.:'El_j_'-'-

i i c 1

u d Q <gp> <

106 1100 5% 108 117 100 104 32 60

> RV Y R |

i t <8p> Wm a

62 10 10 406 110 146 32 109 87

(Sp) (3?) (SP}" ':SP)

r r i 1]

L
32 32 32 32 112 114 1058 110 116

o , <Ep> W

o T 1 d k!

111 244 3% 115 111 114 108 100 92
1.2 The ASCIl text representation of hello.c.

(Source: CSAPP)

Memoa

g
116

i

106

102

110

t
116

110

34

d
100

o
111

\Io

10

101

\I
10

45
123
108

125

Operating System (6/15)

s Behaviors: 3) compile the file (user’s viewpoint)

7 Vi hello.c

a.out
#include <stdio.h> .data
_ _ .align 4
|{nt main() .type sum,@obiject
.size sum,4
printf(“Hello worldWn”); text
} .global main
: .type main, @func
compile i~

pushl %ebp

H'l.ovl —-4(%ebp), %eax
addl %eax, sum

CPU MemoF;I

...............................

24

Operating System (7/15)

s Behaviors: 3) compile the file (system’s viewpoint)

7 Vi hello.c
include <stdio.h>

a.out

.data
.align 4
.type sum,@object
.Size sum,4
ext
.global main
.type main, @func
main:
pushl %ebp

int main()

. printf(“Hello worldWn”);

compile

H'l.ovl —-4(%ebp), %eax
addl %eax, sum

CPU MemoF;I

.................................

25

Operating System (8/15)

s Behaviors: 4) execute the a.out (user’s viewpoint)

/ Vi hello.c
#include <stdio.h>

a.out

.data
.align 4
.type sum,@object
.Size sum,4

ext

.global main [> run a.out
.type main, @func execute

main:

pushl %ebp

int/main()

{

: printf(“Hello worldWn”);

compile

&P choijm@embedded: ~/syspro/chap

H'l.ovl —-4(%ebp), %eax
addl %eax, sum

CPU MemoF;I

...............................

26

Operating System (9/13)

s Behaviors: 4) execute the a.out (system’s viewpoint)

v To run a.out, OS first loads it into memory

/Whmbc
#include <stdio.h>

a.out

.data
.align 4
.type sum,@object
.size sum,4

ext

.global main E > run a.out
.type main, @func execute

main:

pushl %ebp

intmain()

printf(“Hello worldWn”);

compile

H'l.ovl —-4(%ebp), %eax
addl %eax, sum

. CPU MemoF;I

-

page

Operating System (10/13)

s Behaviors: 4) execute the a.out (system’s viewpoint)

v Then, OS makes a new process (active object)

/ vi hello.c

a.out
#include <stdio.h>

.data
.) .align 4
int main() .type sum,@object

o . .size sum,4
printf(“Hello world¥Wn”); text

.global main |_

compile | __bpe main, @func execute

pushl %ebp

run a.out

H'l.ovl —-4(%ebp), %eax
addl %eax, sum

. CPU Memory task/process

_____________ -»

A

I segment/page table

-

page

Operating System (11/13)

s Behaviors: 4) execute the a.out (system’s viewpoint)
v Then, OS makes a new process & schedule it

/ vi hello.c

#include <stdio.h>

int main()

printf(“Hello worldWn”);

a.out

.data
.align 4
.type sum,@object
.size sum,4
ext

.global main

compile ma'i;y:pe main, @func

pushl %ebp

addl %eax, sum

H'l.ovl —-4(%ebp), %eax

run a.out

!

execute

prev process

prev process

-

A

scheduling

A

segment/page table

page

Operating System (12/13)

s Behaviors: 4) execute the a.out (system’s viewpoint)

v Then, OS makes a new process & schedule it with time-sharing
7 Vi hello.c

a.out
#include <stdio.h>

.data
.) .align 4
int main() .type sum,@object

o . .size sum,4
printf(“Hello world¥Wn”); text

.global main |_

compile | __bpe main, @func execute

pushl %ebp

run a.out

.................................

om0

prev process)CPU

\‘CPU """" Memorﬂ Round-robin scheduling
——————————————— g <&
_______________ -» <
————————— page -

Operating System (13/13)

s Operating system: summary

v Process manager (Task manager): CPU
= process manipulation, schedule, IPC, signal, context switch
= fork, exec, wait, getpid, (pthread_create), ...
v Virtual Memory: Main memory
» page, segment, address translation, buddy, LRU
* brk, (malloc, free), ...
v File system: Storage
= file, directory, disk scheduling, FAT
= open, read, write, mknod, pipe, (fopen, fwrite, printf), ...
v Device driver: Device
= |O port management, interrupt, DMA
= open, read, write, ioctl, module, ...

Procagzes
A,

v Network protocol: Network e | o |
= connection, routing, fragmentation | -
. . = ——

= socket, bind, listen, send, receive, ... Processer | Wanmemoy | U0cedes |

31

Runtime System (1/5)

s Command
v file related: Is, cat, more, cp, mkdir, cd, ...
v task related: ps, Kill, jobs, ...
v utility: vi, gcc, as, make, tar, patch, debugger, ..
v management: adduser, passwd, ifconfig, mount, fsck, shutdown, ..
v others: man, file, readelf, grep, wc, ...

= shell
v command interpreter

v pipe, redirection, background processing,
v shell script programming

command
user > shell
command
processing

32

Runtime System (2/5)

s library

v A collection of functions, invoked frequently by a lot of users
» Relocatable objects

» Most languages have standard libraries (also programmers can make
their own custom libraries using ar, ranlib and libtool.)

v Type
= Static: 1).a, 2) statically linked (compile time), 3) simple
» Shared: 1) .so, 2) dynamically linked (runtime), 3) memory efficient

User program

Library functions
printf()

write() ageﬁt

write() system call kernel space

user space

33

Runtime System (3/9)

s Framework (also called as Platform)
v A set of functionalities such as windows, database, graphics,

multimedia, web, RPC, protocal, ...

v Mobile framework (e.g. Android), Machine learning (e.g. Tensorflow)
and Bigdata framework (e.g. MapReduce or Hadoop)

Activity Manager

| Package Manager

Surface Manager

OpenGLIES

SGL

Display
Driver

USB Driver

APPLICATIONS

Contacts Phone

APPLICATION FRAMEWORK

Window Content View Netification
Manager Providers System Manager

Manager Manager Manager

Telsphony Resource Location XMPP Service ‘

LIBRARIES ANDROID RUNTIME

Media $Olite Core Libraries
Framework

LiINUX KERNEL

Bluetooth Flash Memory Binder (IPC)

Camera Driver ; i i
Camera Driv Driver Driver Driver

Audio Pawer

Keypad Driver WiFi Driver 3
il L Drivers Management

(Source: google image)

Walcome to Hadoop
Class Hadoop is

good Hadoop is bad

(@guru99.com

Input Splits

Mapping

Welcome to Hadoop

i

Walcome 1
o, 1
Hadoop , 1

Class Hadoop is

e

Class .1
Hadoop , 1
5,1

good Hadoop is

good . 1
Hadoop , 1
Is, 1

bad

bad , 1

Shuffling Reducer
bad , 1] bad , 1
Class,1 = Class,1 :
Final
Qutput
good, 1 | | good1
\V ™
Hadoap , 1 bad 1
Hadoop , 1 | Hadoop , 3 |—{ Class 1
Hadoop , 1 good 1
Hadoop 3
52
. to1
:z'q Lol |5, 2 | o Welcome 1
0, 1 | ol o, 1 /
Welcome 1 = Welcome ,1

MapReduce Architecture

34

(Source: https:l/www.quru99.com/introduction-to-ﬂﬂ)

=

Runtime System (4/5)

s Virtual machine and Docker
v Virtual machine: make virtual devices from Hypervisor (or Host OS)
= Run GuestOS on the virtual devices

v Docker: make a container (an isolated environment) using
namespace and cgroup

» Docker commands are quite similar to Linux (UNIX) command

Bins/Lib WM Bins/Lib W Bins/Lib

Guest

Infrastructure

Machine Virtualization

Bins/Lib Bins/Lib Bins/Lib

Container Engine

Infrastructure

Containers
35

er ~|# docker images
TAG IMAGE ID CRERTED
latest ca%6afcfazdl 2 weeks ago

xibosignage/xibo-imr release 1.8.1 ffe 2 weeks ago

ubuntu 16.04 ehe a0 2 weeks ago
ubuntu 14,04 2 bbbaa 2 weeks ago
centos 7 2 weeks ago
mysql 5.6 ed? 4205 3 weeks ago
mysql 5.7 e79 S 3 weeks ago
debian latest 3ef 3 3 weeks ago
xibosignage/xibo-cm3 latest 967 g 5 weeks ago
o-cms releage 1.8.1 3 weeks ago
[root@docker -]#

[root@docker ~]# docker run -it —p 9000:80 —name=debian containerl debian
rootf9254e01fadad: /#

[rootfdocker ~]# docker ps

Runtime System (5/9)

s Key-Value Store

v Bigdata = un-structured =» need new database =» Key-value store
(or Document store or Graph store)

» E.g. Google’s LevelDB, Facebook’s RocksDB, Amazon’s Dynamo, ...
v Key data structure: LSM-tree, Skipped-list, Bloom filter, ...

Amazon :
Google -~ Dynamo, SimpleDB ORACLE
- Bigtable, Level DB, Hbase For E-commerce oral':ngL,B i
- For Web ind d 0SQL, Berkeley
,:ers el amazon Com For Configurable |
C;MO le Microsoft
- Azure, Cosmos DB
Facebook . - _For E-commerce
- Haystack, RocksDB, :
Casandra HCEbOOI(. MlCrOSOﬁ
- For social network ant
photo store Baidu

Basho

Atlas
LlnkedVAYIa_IIm?O & C'“"dw" a mistributed KV

LinkedIn Open source

- Voldemort - F°f AdVGmSB&l@EE Redis, Memcached

- For Scalability For in-memory DB, cache

36

disk
o N
Q) ,: :7mergesort

/N

(a) LSM-tree

L0 (B) D O ILogl
LI (10w 0007 l_,'
L2 100M) D O D D D

sm 00000C

||||||||||||

wm 00000C

D SSTable files O memtable ' immutable

(b) LevelDB
——

A

-~

Hardware consideration (1/6)

s Computer organization
v CPU: registers (include PC), ALU, cache, ...
v Memory: “address, content” pair
v Device: controller + device itself
v Bus: hierarchical

Figure 1.4 CPU
Hardware organization Register file
of a typical system.
CPU: Central

Processing Unit, ALU: IEI
Arithmetic/Logic Unit, PC:
Program Counter, USB:
Universal Serial Bus.

System bus Memory bus

Main
memory

Bus interface

Expansion slots for
A other devices such
usB Graphics Disk as network adapters

controller adapter controller
r

Mouse Keyboard Display hello executable
@ stored on disk
(Source: CSAPP) P Proc

I -
37 Pa

Hardware consideration (2/6)

I
38

s Computer organization
v When a program load

Figure 1.4 CPU
Hardware organization Reglster file
of a typical system.
CPU: Central
PC
Processing Unit, ALU: = process (task)

Arithmetic/Logic Unit, PC: System bus Memory bus

Program Counter, USB:
Universal Serial Bus.

1/0 bus _
Expansion slots for

v : other devices such
usB Graphics Digk as network adapters

controller adapter contrpller

hello executable
stored on disk

program (binary)

Mouse Keyboard Display

Hardware consideration (3/6)

I
39

s Computer organization
v When printf(*Hello World\n”) is invoked

Figure 1.4 CPU
Hardware organization Register file
of a typical system.
CPU: Central PC

Processing Unit, ALU:
Arithmetic/Logic Unit, PC: System bus Memory bus
Program Counter, USB: / l

Universal Serial Bus.

Expansion slots for
h 48 : other devices such
usSB Graphics Disk as network adapters

controller adapter controller

&

Mouse Keyboard Display hello executable
w stored on disk

Hardware consideration (4/6)

= Memory matters
v array programming example

/* program A */
int a[1000][1000];
inti, j;

for (i=0; i<1000; i++)
for (j:O; j<1000; j++)
a[il[j] ++;

VS

/* program B */
int a[1000][1000];
inti, j;

for (i=0; i<1000; i++)
for (j=0; j<1000; j++)
afjIli] ++;

40

Hardware consideration (5/6)

= Memory matters

v Memory layout of the array programming example
v Note that, in limited memory, some data are swapped out and in

A[o][o]
A[0][1]
A[0][2]
A[0][3]
A[0][4]

A[0][999]
A[1][0]
A[1][1]
Al1][2]

A[1][999]
A[2][0]
A[2][1]
A[2][2]

A[2][999]
A[3][0]
A[3][1]
A[3][2]

A[999][996]
A[999][9971]
A[999][998]

em bus
-

bridge

fj

MO bus

?.A:-j..-_.-ln -h_

Memary bus

I Main
f;‘ﬁ_ B memluryl

m{ J)

Expansion sh
other devices

Disk as network as
| controllar
—_—

hello executabh
w stored on disk

Hardware consideration (6/6)

s CPU also matters

v Loop unrolling example

= Two programs show different resource utilization in CPU (=» See
Chapter 5 in CSAPP)

void combine4(vec_ptr v, data_t *dest) ¥°id combine5(vec_ptr v, data_t *dest)
{
inti;
int length = vec_length(v);
data_t *data = get_vec_start(v);
data_tx =0; VS

inti;

int length = vec_length(v);
data_t *data = get_vec_start(v);
data_tx =0;

int limit = length — 2;

for (i = 0; i < length; i++) {

X = x + data[i]; for (i =0;i<limit; i += 3) {

3 X = x + data[i] + data[i+1] + data[i+2];
*dest = x; ¥
¥ for (; i < length; i++) {

x = x + data[i];
bs

*dest = x;

42

Abstraction (1/9)

s Key of System Program: Abstraction

v Abstraction is the process of generalization by reducing the
information content of a concept or an observable phenomenon,
typically in order to retain only information which is relevant for a
particular purpose.

v In computer science, abstraction tries to reduce and factor out details
so that the programmer can focus on a few concepts at a time. A
system can have several abstraction layers whereby different
meanings and amounts of detail are exposed to the programmer.

Abstraction (2/9)

= CPU

S CMP 10, #5 ;if(r0!=5){
AND Gate ADDNE r1,r1,r0 ; rl:i=rl+r0-r2;

i Carryln SU _____
-] A 3
5 Sum

44

Abstraction (3/9)

= Multitasking

Scheduler

Physical CPUs

45

Abstraction (4/9)

= Memory management

virtual memory

Fixed Limited Memory Space

Abstraction (5/9)

s File system

Abstraction (6/9)

s Device driver

device driver

Abstraction (7/9)

s Data representation

data manipulation

49

Abstraction (8/9)

s Security and reliability

Real World

50

Abstraction (9/9)

s Software layers (Layered architecture)

Importance of System Program

s Compact Flash Storage Card Internals

r t SAMSUNG

128MB

CompactFlash

AENNNNNNNNNE Data

PCMCIA-ATA ARM)| [SRAM| [NOR | |(INOUT |
Interface core | | 16KB | [48KB

HOST
i Flash |s Control J
0/1
Controller NAND Flash
FTENRNNRNRDRNND
Memory

(32Mb-256Mb)

% Knowledge about how HW and SW are cooperated becomes indispensable
in recent computing industry (HW/SW Co-design)

I —_

52 p -

Summary

s Definition of System Program
v Supporting computing environments
v Managing hardware directly

s 3 Types of System Program

v Compilation system, operating system, runtime system
v Hardware consideration

s Concept of Abstraction
v Information hiding
v Layered architecture

= Homework 1: Summarize Chapter 1, “A Tour of Computer Systems” in CSAPP.
v Requirement: 1) From the beginning to the Section 1.7 (not include 1.8, 1.9

and 1.10), 2) What is the purpose of studying System Programming?

Pages: 1) 1~10 pages, 2) 1~2 pages

Deadline: Two weeks later

How to submit? Email to choiyg@dankook.ac.kr

Caution: Do not copy!!

SN XX

I —_

53 e

Quiz for this Lecture

= 1. Explain why loader is required in a computer system. (hint: using the
difference between Disk and DRAM).

s 2. Discuss why the hardware components of Smartphone are different
from those of PC even though they are same with the viewpoint of
computer architecture (3 reasons).

= 3. What are the names of Linux command for editor, compiler,
assembler, linker and loader (5 names).

s 4. Describe an example of abstraction in your life and discuss the
features of abstraction in your chosen example (e.g. information hiding,
focusing on what you are interested in).

W Abstraction (computer scie X = = =

<« C @ enwikipedia.org/wiki/Abstraction_(computer_science) * = B W »@ :

I'M THE
& Not ngged in Talk Contributions Create account 1og in
Article Talk Read | Edit View history | Search Wikipedia Q F Eg[ECT

. : : ABSTRPACTION MAYBE ARE YOU
YVSKEPER,{Q Abstraction (computer science) OF‘ A OUCK ’ SLl GHTLY TO O

From Wikipedia, the free encyclopedia
ering)) Ags TQACT?

(Reditecled from Absliaction (software engi
This article needs additional citations for verification. Please help improve this article by
Current events ® adding citations to reliable sources. Unsourced material may be challenged and removed.

Maln page
Contents

Randermiorick Find sources: "Abstraction” computer science nws - newspapers - books - scholar - ISTOR @lunc 2077)
About Wikipedia
(Learmn how and when to remove this template message)

Contact us
Conatd In software engineering and computer science, abstraction is:

g . The essence of abstractions is
Contribute « the process of removing physical, spatial, or temporal details?®! or attributes in the study of preserving Information that Is
Help objects or systems to focus attention on details of greater importance;! it is similar in relovant in a given context, and
Communty portal nature to the process of generalization; R b A
REcant Ao i irrelevant in that context.

« the creation of abstract concept objects by mirroring common features or attributes of
Upload file . - — John V. Guttag!'!
various non abstract objects or systems of study® the result of the process of

Tools abstraction.

WHAT links: here: Abstraction, in general, is a fundamental concept in computer science and software development.”! The process of abstraction can
Related changes
Special pages

Permanent link

also be referred to as modeling and is closely related to the concepts of #heon and design!® Models can also be considered
types of abstractions per their generalization of aspects of reality.

Page information Abstraction in computer science is closely related to abstraction in mathematics due to their common focus on building
Cite this page: abstractions as objects,”] but is also related to other notions of abstraction used in other fields such as art.[¥
Wikidata item
Abstractions may also refer to real-world objects and systems, rules of computational systems or rules of programming languages
BODT/eXpOm: that carry or utilize features of abstraction itself, such as:

Dawnlaad 2z PRE

https/enwikiedia.org/wiki/Main_Page 9° of data types to perform data abstraction to separate usage from working representations of data structures within

(Source: https://thevaluable.dev/abstraction-type-software-example/)
I i

54 -

= D= 2025 G BB SRESME L WSS)| 2B
JHEIo] 'SWEAIHBIAIS XIS 20t M= S A LICH
= 2VSO HES MW 4 A0, AS(KHALZ)Z T
S BICA S SRESATY HESAI|HBIIA0| X
25 SWEAIHS S ZWS0l2ts SHE 26/0F LICH

SwWwEalcHsle
CHELR- 2 SWES O = SINIEho =,
SWZRIEQI=1s oraal

=pa -7 |2 - AbSiS] SWZizH=1= Zisis)
ZFIEISEF SWP =] A= AlSisie CHER= ors =5

55 he

