
System Programming

Lecture Note 2.
Programming Environment

September 15, 2025

Jongmoo Choi
Dept. of Software

Dankook University
http://embedded.dankook.ac.kr/~choijm

(본교재는 2025년도과학기술정보통신부및정보통신기획평가원의 ‘SW중심대학사업’ 지원을받아제작되었습니다.)

Objectives

Discuss the history of Linux

Understand key concepts of Linux

Learn how to access Linux

Learn how to use commands in Linux

Learn how to make programs in Linux

Refer to Chapter 1, 2 in the LPI

2

Linux Introduction (1/7)

Operating System
 Definition: Resource Manager
 Examples: Linux, Windows, OS X and so on.

(Source: IEEE Spectrum, 2001)

(source: https://www.deviantart.com/nick-
os/art/Os-war-choose-your-poison-110510677)

(source: https://maxhemingway.com/2015/
10/21/iot-device-security-considerations-and-
security-layers-operating-system/)

3

Linux Introduction (2/7)

Linux Definition
 Linux is a clone of the UNIX Operating System
 Written from scratch by Linus B. Torvalds, with assistance from a

loosely-knit team of Developers across the Network

 Univ. of Helsinki in Finland

 May, 1991: Release 0.0.1 version

 2025: Release 6.14.1 (refer to https://www.kernel.org/)

4

Linux Introduction (3/7)

Unix-like OSes

5

(Source: wikipedia.org)

 POSIX (Portable Operating Systems Interface for UNIX)

Linux Introduction (4/7)

Ken and Dennis

6

Linux Introduction (5/7)

Contributors
 GNU (www.gnu.org)

 Richard M. Stallman (rms)

 Free software

 Minix
 Andrew Tanenbaum

 BSD
 Bill Joy (cofounder of Sun Microsystems), FFS, TCP/IP, …

 Linus Torvalds has said that if 386BSD had been available at the time,
he probably would not have created Linux

7

Linux Introduction (6/7)

Applications

(Source: images at google)

8

Linux Introduction (7/7)

Some notes about UNIX and Linux (From LPI Chapter 1)
 Linux is a member of the UNIX family
 History

 1969~ : UNIX Invented by Ken and Dennis, UNIX 1~7 edition at AT&T
 1975~ : popularly used at universities include Berkeley, MIT and CMU.
 1979~ : BSD and new features (FFS, TCP/IP, C shell, ...)
 1981~ : System III and System V from AT&T
 1985~ : UNIX golden ages (IBM, HP, Sun, NeXTStep, SCO, ...)  UNIX War
 1990~ : Standardization (POSIX, FIPS, X/Open, SUS (Single UNIX Spec.)
 2021: Three representative OSes + Vendor proprietary OSes + New OSes

 1984~ : GNU by R. Stallman (gcc, Emacs, bash, …), GPL (General Public
License)

 1991~ : Linux by L. Torvalds, Minix + Intel optimization, GNU incorporation
 2025: Linux kernel version 6.14.1

 Linux version number
 x.y.z: Major.Minor.Revision
 Even minor: stable, odd minor: development (but NOT strict today)

9

Aside (Optional)

Linux vs. Distribution
 Linux: Kernel

 Distribution: Kernel + Packages + Frameworks + …

10

(Source: https://www.samsungsds.com/kr/insights/linux_distribution.html)

Fundamental Concepts of Linux (1/7)

From LPI Chapter 2
2.1 The Core of Operating System: kernel
 OS: Computing environments vs. Kernel: Central part of OS

 OS = Kernel + Other System Programs (GUI, Shell, GCC, Packages, …)
 Kernel’s role: 1) Process mgmt., 2) VM, 3) FS, 4) Device access, 5)

Networking, 6) system call, 7) multi-user support
 Kernel module: dynamic loadable SW runs in kernel mode

 User mode vs kernel mode (also called as supervisor mode)
 To protect kernel from applications
 Monolithic kernel vs. Microkernel (u-kernel)

 System: process’s viewpoint vs. kernel’s viewpoint

11(Source: https://talkingaboutme.tistory.com/entry/Study-Monolithic-Kernel-Microkernel)

Fundamental Concepts of Linux (2/7)

2.2 The shell
 Special-purpose program designed to read commands typed by a

user and execute them  command interpreter

 Examples: Bourne shell (Bell Lab.), C shell (BSD), Korn Shell
(AT&T), bash (GNU)

2.3 Users and Groups
 3 categories: user, group, others

 Superuser: has special privileges (User ID: 0, login name: root)

12

(Source: https://stackoverflow.com/questions/5725296/difference-between-sh-and-bash)

Fundamental Concepts of Linux (3/7)

2.4 Directory and Links
 file types: regular, directory, link, device, ... (almost everything is file)

 directory: a set of related file, support hierarchical structure

 Home directory, root directory, current directory

2.5 File I/O Model
 stdio library: fopen(), fread(), fwrite(), fclose(), printf(), scanf(), …

 system call: open(), read(), write(), close(), …  LN3

 After open(): file name  file descriptor

13

Fundamental Concepts of Linux (4/7)

2.6 Programs
 A set of instructions that describes how to perform a specific task
 Two forms: source code, binary (machine language)

2.7 Processes
 An instance of an executing program  LN4, 5
 Has its own virtual memory (layout: text, data, heap, stack, map)

2.8 Memory Mappings
 mmap(): maps a file into the calling process’s virtual memory
 Access file using a pointer instead of open()/read()/write()

14(Source: brunch.co.kr/@alden/13)

Fundamental Concepts of Linux (5/7)

2.9 Static and Shared Libraries
 Compiled objects (relocatable and logically related)
 Static libraries (also called as archive): compile-time linking

 extracts copies of the required object modules from the library and copies
these into an executable file

 Shared libraries: run-time linking
 instead of copying object modules from library into executable, just write a

record, which allows shared libraries to be linked on-demand

2.10 IPC and Synchronization
 Inter Process Communication and Process orchestration
 Examples: signal, pipe, socket, message queue, shared memory,

semaphore, …

15

(Source: http://www.gerhardmueller.de/docs/UnixCommunicationFacilities/ip/node6.html,

https://www.softprayog.in/programming/interprocess-communication-using-system-v-message-queues-in-linux)

Fundamental Concepts of Linux (6/7)

2.11 Signal
 User-level interrupt: inform to a process (^C)
 c.f.) Interrupt: a mechanism to inform an event to kernel

2.12 Thread
 A flow control in a process (threads share virtual memory)  LN5

2.13 Job control (Process group)
 Allows the user to simultaneously execute and manipulate multiple

commands or pipelines.
2.14 Session
 A session is a collection of process groups (jobs).
 Related with a terminal (controlling terminal, usually login terminal)

 One foreground job and multiple background jobs

16(Source: https://twitter.com/igor_sarcevic/status/1157349076809191425)

Fundamental Concepts of Linux (7/7)

2.15 Pseudo-terminal
 Connected virtual devices (e.g. terminal emulator)

2.16 Date and time
 Real time (also called as epoch time): Since 1st January, 1970.
 Process time (also called as CPU time)

 Total amount of CPU time that a process has used since starting
 system CPU time, user CPU time

Others
 Client-Server architecture, Realtime, /proc file system

17

(Source: https://kb.novaordis.com/index.php/Linux_TTY)

18

How to access Linux (1/4)

1) Standalone (usually with multi-boot)

2) Virtualization (or WSL)

3) Client-Server

 In our course
 Client: terminal emulator (telnet/ssh client, putty, …)

 Server: Linux system (PC)
• IP: 220.149.236.2 (primary), 220.149.236.4 (secondary)

 Alternative: Amazon EC2, Google Cloud, MS Azure or Solid Cloud

19

How to access Linux (2/4)

Client
 telnet, ssh, ping, …

 putty, SecureCRT, powershell, …

(Source: https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html)

20

How to access Linux (3/4)

Putty with ssh
 IP: 220.149.236.2 (check that “type is ssh” and “port is 22” or “2222”)

 Colours: click “Use system colours

 Translation: choose “UTF-8”

21

How to access Linux (4/4)

Login and shell

 ID: sys학번 (8 numbers of Student ID)

 Default passwd: sys****** (change using the “passwd” command)

22

How to use commands in Linux (1/12)

UNIX
 Two key objects in UNIX: file as a “place” and process (task) as a

“life” (by M. Bach, The Design of the UNIX Operating Systems)

File
 Array of bytes, stream of character (attributes: start, size, current

offset)

 Associated with disk blocks

 Supports a variety of objects using file concept (eg. device, network,
memory, and even process)

Process (Task)
 Program in execution

 Associated with CPUs (Scheduling entity)

 Having context such as memory space and CPU registers

23

How to use commands in Linux (2/12)

file related command
 create

 vi, gcc, mknod, …

 copy/move
 cp, mv, ln, …

 delete
 rm

 listing
 ls

 file content view
 cat, more, less, head, tail, objdump, hexdump

 file attributes manipulation
 chmod, chown, chgrp, touch

 redirection
 >

24

How to use commands in Linux (3/12)

directory related command
 create

 mkdir

 change
 cd

 delete
 rmdir

 current position
 pwd

directory
 a set of files

 provide hierarchical structure of files

 home directory, root directory, current directory

 relative path, absolute path

How to use commands in Linux (4/12)

file attribute manipulation
 Permission and owner

 cf. Command format: 1) command, 2) option, 3) argument

25

How to use commands in Linux (5/12)

 What are the differences between vi and notepad (or VS code)
 Explicit input mode vs. Instant editable

 No “파일” or “편집” button  need line command mode

vi editor (vim)

26

(vi vs. notepad)

How to use commands in Linux (6/12)

vi editor (vim)
 3 modes

 command/input/line command(a.k.a. execution mode)

 At first (just before loading vi): command mode

 Switch to the input mode

 a (append), i (insert), o, r, …

 Switch to the command mode

 ESC

 Switch to the line command mode

 : at command mode

 Switch to the command mode

 Enter or ESC

(Source: https://dololak.tistory.com/379)

27

How to use commands in Linux (7/12)

vi editor (vim)
 Actions allowed at the command/line command mode

 Navigation (cursor movement): up/down, begin/end of word/line, …

 File management: save, quit (e.g. :wq or :q), open, …

 Editing: delete, change, substitute, transpose, …

 Multiple windows, files, shell interaction, …

(Source: https://www.slideshare.net/TusharadriSarkar/vim-vi-improved-23917134)28

29

How to use commands in Linux (8/12)

process related commands
 process status

 ps, pstree, top, /proc

 Creation and deletion

 Implicitly: using shell (fork(), execve() and exit() internally)

 Explicitly: signal, kill command

29

How to use commands in Linux (9/12)

Advanced commands: pipe

30

How to use commands in Linux (10/12)

Advanced commands: pipe, redirection and background

( See LN1)31

How to use commands in Linux (11/12)

Generalization of file concept
 Treat device, socket, IPC as a file

32

How to use commands in Linux (12/12)

Reference: Dr. Jeong-Yoon Lee’s Kaggle demo (terminal
mode)

(Source: https://www.youtube.com/watch?v=861NAO5-XJo)

33

How to make and run a program in Linux (1/7)

Overall

(Source: computer systems: a programmer perspective, Figure 1.3)

34

How to make and run a program in Linux (2/7)

Assembly code

 Can be different based on the version of kernel and compiler

35

How to make and run a program in Linux (3/7)

Relocatable code
 Hexdump (or xxd), objdump

36

How to make and run a program in Linux (4/7)

Executable code

37

How to make and run a program in Linux (5/7)

What are the execution results of this program?

38

How to make and run a program in Linux (6/7)

debugger

 There are various valuable debugger commands such as breakpoint, step, next, info
reg, …  See http://beej.us/guide/bggdb/39

How to make and run a program in Linux (7/7)

Make utility
 Why? Using multiple files  1) complex gcc command, 2)

dependency

 Makefile format

 Makefile example

40

target : dependency1 dependency2
command1
command2

See https://losskatsu.github.io/programming/c-make/#

41

Summary

Discuss the features of Linux

Understand the commands related to file and process

Explore the language hierarchy in Linux (UNIX)

 Homework 2.
1.1 Make a file using vi editor that contains your favorite poem
1.2 Make a snapshot that

- has at least 10 commands (e.g. ls –l, ps, pipe, redirection, …)
including compilation practice (e.g. gcc, as, gdb, …)

- shows student’s ID and date (using whoami and date)
- Server IP: 220.149.236.4 (recommended) or 220.149.236.2

1.3 Write a report
- 1) Introduction: What to do, How, …
- 2) Snapshot for 1.1,
- 3) Snapshot for 1.2,
- 4) Discussion: what you learn, issues, …

1.4 Deadline: Next week (same time)
1.5 How to submit? Email to choiyg@dankook.ac.kr

Appendix 1. Snapshot Example

Example

42

Quiz for this Lecture

Quiz
 1. Classify UNIX-like OSes into 5 categories.

 2. Discuss the difference between OS (Operating System) and
Kernel using the below left figure.

 3. Explain differences between “$ls .” and “$ls ..”. Also, explain
differences between “ls” and “ls –l”.

 4. What is the background music in “Dr Jeong-Joon Lee’s Kaggle
Demo”? What commands can you find in the Demo? (at least 5 that
you have learned in the LN2.)

 5. Discuss three different modes in the vi editor.

 6. What are the roles of “break” and “step” command in gdb?

43

Appendix 1: How to access Linux: Alternative

WSL (Windows Subsystem for Linux)
 A compatibility layer for running Linux binary executables

(in ELF format) natively on Windows OS

44

45

Appendix 1: How to access Linux: Alternative

SOLID Cloud (or Amazon EC2 or Google or Toast Cloud)
 Supported by Dankook Univ. (like Amazon EC2 or NHN Toast)

(Source: 남재현교수님, SOLID CLOUD 사용자설명서및접속가이드)

Appendix 2: Effect of different compilers

Application programmer’s viewpoint

46

Appendix 2: Effect of different compilers

System programmer’s viewpoint

47

Appendix 2: Effect of different compilers

System programmer’s viewpoint

48

사사

본교재는 2025년도과학기술정보통신부및정보통신기획평
가원의 ‘SW중심대학사업’ 지원을받아제작되었습니다.

본결과물의내용을전재할수없으며, 인용(재사용)할때에
는반드시과학기술정보통신부와정보통신기획평가원이지
원한 ‘SW중심대학’의결과물이라는출처를밝혀야합니다.

49

