
System Programming

Lecture Note 3.
File Programming

September 24, 2025

Jongmoo Choi
Dept. of Software

Dankook University
http://embedded.dankook.ac.kr/~choijm

(본교재는 2025년도과학기술정보통신부및정보통신기획평가원의 ‘SW중심대학사업’ 지원을받아제작되었습니다.)

2

Objectives

Understand disk geometry

Discuss system programs for disk (and storage)

Apprehend the internal structure of a file

Learn how to use file-related system calls

Make a program (command) that manipulates a file

Refer to Chapter 3, 4, 5 in the LPI and Chapter 10 in the
CSAPP

Introduction

Issues on file
 File manipulation (create, access, remove, …)

 Manage file attributes/access control

 Associate a file name with actual data stored in disk (regular file)

 Support hierarchy structure (directory)

 Support a variety of file types (device file, pipe, socket, …)

File related system calls
 open(), creat(): create a file, start accessing a file (authentication)

 read(), write(): read/write bytes from/to a file

 close(): finish accessing a file

 lseek(): jump to a particular offset (location) in a file

 unlink(), remove(): delete a file

 stat(), fstat(): return information about a file

 …

3

Disk structure (1/4)

Components
 Platter, Spindle, Surface

 Track, Sector, Cylinder

 Head, ARM

4

Disk structure (2/4)

Disk access
 Addressing

 LBA (Logical Block Address)

 head(surface), track(cylinder), sector

 Access time
 Seek time: move head to appropriate track

 Rotational latency: wait for the sector to appear under the head

 Transmission time: read/write the request sector(s)

5

 Try to reduce the Seek time and Rotational latency
 Make use of various disk scheduling (eg. SCAN or elevator

algorithm) and Parallel access techniques (RAID)

Disk structure (3/4)

Disk access
 Disk behaviors (from youtube)

6

Disk structure (4/4, Optional)

Disk vs. Flash memory

 No mechanical part (fast, lightweight)

 Overwrite limitation (erase before write)

 Read/Write vs. Erase granularity

 Endurance, Disturbance, Retention error

 Types: SLC, MLC, TLC, QLC, …

7

VS

System programs for Disk (1/7)

Disk device driver
 Abstract disk as a logical disk (a collection of disk blocks)

 The size of a disk block is the same as that of page frame (4 or 8KB)

 Disk command handling (ATA command: type, start, size, device, …)

 Disk initialization, scheduling, error handling, …

8

Disk device driver

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14

..

15 16 17

System programs for Disk (2/7)

File system
 Support file abstraction: stream of bytes

 Associate a file with disk blocks (inode, FAT)

 Support file attribute/access control, directory, …

9

Disk device driver

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14

..

15 16 17

File system

Reports.doc

start end (size=end-start)offset

10000byte

 1,5,6 디스크블록들이아니라 13, 14, 15
디스크블록들을할당하면?

System programs for Disk (3/7)

File system
 inode concept

 An object for managing a file in a file system (metadata)

 Used by various file systems such as UFS, FFS, Ext2/3/4, LFS, …

 Maintain information for a file (e.g. “ls –l”)
• file size

• locations of disk blocks for a file

• file owner, access permission

• time information

• file type: regular, directory, device, pipe, socket, …

 Stored in disk

 Constructed when a file is created

 Accessed when it is opended

10

Disk

69 6e
74 20
...

inode

(from LN1)

System programs for Disk (4/7)

File system
 inode structure

11

i_inode_number
i_mode
i_nlink, i_dev
i_uid, gid
i_op, i_size
i_atime, ctime, mtime

12 direct block

3 indirect block

….

inode type (4bit) u g s r w x r w x r w x

S_IFSOCK
S_IFLNK
S_IFREG
S_IFBLK
S_IFDIR
S_IFCHR
S_IFIFO 7

13
24

31
55

67
72 77

83
96 99

123 125 128 131

System programs for Disk (5/7)

File system
 inode example

 When we create a new file, named “alphabet.txt”, whose contents
include “AB…Z”.

•

12

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14

..

15 16 17

18

0 1 2 3 4

6 7 8 9 11

12 13 14

..

15 16 17

18

5

10

type : regular
size: 26
date, time
...
owner, group
access bits
locations :
10 _ _ _ _ _ _
_ _ _ _ _ _ _ _

ABCDEFG
...
XYZ

 When we write more data? (when a file is increased?)
For instance, it becomes 5KB, 50KB or 100KB?

Note that, in actuality, the inode size is much smaller
than the disk block size (128B or 256B)

System programs for Disk (6/7)

System call
 Support interfaces such as open(), read(), write(), close(), …

13

Disk device driver

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14

..

15 16 17

File system

Reports.doc
10000byte

fd=open(“Reports.doc”, …)
read(fd, buf, size) or write(fd, buf, size)
close(fd)

System call

13

System programs for Disk (7/7)

System call
 Use fd (file descriptor) instead of file name (for efficiency)

 fd: object to point out a file in kernel

 return value of the open() system call

 used by the following read(), write(), …, close() system calls

 fd is connected into inode through various kernel objects (file table)

14

program file_descriptor

file structure (file table)

inode

…
fd=open();
...

offset

 in-memory inode vs in-disk inode

Layered Architecture for Abstraction

Revisit LN1

15

application program

library

system call

file system

device driver

device itself

File Programming: Basic (1/11)

Practice 1: read data from an existing file

16

/* file_test1.c: read data from a file, by choijm. choijm@dankook.ac.kr*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#define MAX_BUF 16
char fname[] = “alphabet.txt";

int main()
{

int fd, size;
char buf[MAX_BUF];

fd = open(fname, O_RDONLY);
if (fd < 0) {

printf(“Can’t open %s file with errno %d\n”, fname, errno);
exit(-1);

}
size = read(fd, buf, MAX_BUF);
if (size < 0) {

printf(“Can’t read from file %s, size = %d\n”, fname, size);
exit(-1);

}
else

printf(“size of read data is %d\n”, size);
close(fd);

}

Refer to next slide (Syntax)

Inform the cause when an error occurs
cf) Error handling is quite important!!

File Programming: Basic (2/11)

Syntax of the open() and read() system call

17

int open(const char *pathname, int flags, [mode_t mode])
 pathname : absolute path or relative path
 flags (see: /usr/include/asm/fcntl.h or Chapter 4.3 in the LPI)

 O_RDONLY, O_WRONLY, O_RDWR
 O_CREAT, O_EXCL
 O_TRUNC, O_APPEND
 O_NONBLOCK, O_SYNC
 …

 mode
 meaningful with the O_CREAT flag
 file access mode (S_IRUSR, S_IWUSR, S_IXUSR, S_IRGRP, …, S_IROTH, …)

 return value
 file descriptor if success
 -1 if fail

int read(int fd, char *buf, int size) // same as the write(fd, buf, size)
 fd: file descriptor (return value of open())
 buf: memory space for keeping data
 size: request size
 return value

 read size
 -1 if fail

File Programming: Basic (3/11)

Practice 1: execution results

18

/usr/include/asm-generic/errno-base.h
#define ENOENT 2 // No such file or directory

18

File Programming: Basic (4/11)

Practice 2: extend the practice 1 so that it displays the read
data on terminal
/* file_test1_ext.c: read data from a file and display them, by choijm. choijm@dku.edu*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#define MAX_BUF 16
char fname[] = “alphabet.txt";

int main()
{

int fd, read_size, write_size;
char buf[MAX_BUF];

fd = open(fname, O_RDONLY);
if (fd < 0) {

printf(“Can’t open %s file with errno %d\n”, fname, errno);
exit(-1);

}
read_size = read(fd, buf, MAX_BUF);
// Due to the slide limit, I omit the error handling code (But, students must implement it)
write_size = write(STDOUT_FILENO, buf, read_size);
close(fd);

}

/usr/include/unistd.h 참조
#define STDIN_FILENO 0 // Standard input
#define STDOUT_FILENO 1 // Standard output
#define STDERR_FILENO 2 // Standard error

19

File Programming: Basic (5/11)

Practice 2: execution results

20

 Can we make the “cat” command? (or “more” command?)

File Programming: Basic (6/11)

Practice 3: make a “mycat” command (with argc, argv)

21

/* mycat program, by choijm. choijm@dku.edu */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#define MAX_BUF 64

int main(int argc, char *argv[])
{

int fd, read_size, write_size;
char buf[MAX_BUF];

if (argc != 2) {
printf("USAGE: %s file_name\n", argv[0]); exit(-1);

}
fd = open(argv[1], O_RDONLY);
if (fd < 0) {

// open error handling
}
while (1) {

read_size = read(fd, buf, MAX_BUF);
if (read_size == 0)

break;
write_size = write(STDOUT_FILENO, buf, read_size);

}
close(fd);

}

Command Convention

File Programming: Basic (7/11)

Practice 3: execution results

22

File Programming: Basic (8/11)

Practice 4: create a new file

23

/* file_create.c: create a new file, by choijm. choijm@dku.edu */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#define MAX_BUF 64
char fname[] = "newfile.txt";
char dummy_data[]="abcdefg\n";

int main() {
int fd, write_size, read_size;
char buf[MAX_BUF];

fd = open(fname, O_RDWR | O_CREAT | O_EXCL, 0664);
if (fd < 0) {

printf("Can't create %s file with errno %d\n", fname, errno); exit(1);
}
write_size = write(fd, dummy_data, sizeof(dummy_data));
printf("write_size = %d\n", write_size);
close(fd);

fd = open(fname, O_RDONLY);
read_size = read(fd, buf, MAX_BUF);
printf("read_size = %d\n", read_size);
write_size = write(STDOUT_FILENO, buf, read_size);
close(fd);

}

If we rerun this program?

If we rerun without the O_EXCL flag?

If we want to write data at the end
of this file?

If we comment out these close()
and open() statements?

O_CREAT or creat()

File Programming: Basic (9/11)

Practice 4: execution results

2424

File Programming: Basic (10/11)

Practice 5: want to read “d” from a file whose contents are
“abcdefg”
 Using lseek()

25

off_t lseek(int fd, off_t offset, int whence)
 fd : file descriptor
 offset : offset position
 whence (/usr/include/unistd.h)

 SEEK_SET : New offset is set to offset bytes.
 SEEK_CUR: New offset is set to its current location plus offset bytes.
 SEEK_END: New offset is set to the size of the file plus offset bytes

 return value
 new offset if success
 -1 if fail

Negative value is allowed

 sequential access vs. random access

File Programming: Basic (11/11)

Practice 5: want to read “d” from a file whose contents are
“abcdefg”

26

/* file_lseek.c: lseek example, by choijm. choijm@dku.edu */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#define MAX_BUF 64
char fname[] = "newfile_lseek.txt";
char dummy_data[]="abcdefg\n";

int main()
{

int fd, write_size, read_size, new_offset;
char buf[MAX_BUF];

fd = open(fname, O_RDWR | O_CREAT | O_EXCL, 0664);
write_size = write(fd, dummy_data, sizeof(dummy_data)); printf("write_size = %d\n", write_size);
close(fd);

fd = open(fname, O_RDONLY);
new_offset = lseek(fd, 3, SEEK_SET);
read_size = read(fd, buf, MAX_BUF); printf("read_size = %d\n", read_size);
write_size = write(STDOUT_FILENO, buf, read_size);
close(fd);

}

File Programming: Advanced (1/6)

Other system calls related to file
 creat() // same as open() with flag O_WRONLY | O_CREAT | O_TRUNC

 mkdir(), readdir(), rmdir()

 pipe()

 mknod()

 link(), unlink()

27

(Source: https://devconnected.com/understanding-hard-and-soft-links-on-linux/)

File Programming: Advanced (2/6)

Other system calls related to file
 dup(), dup2()

 stat(), fstat()

 chmod(), fchmod()

 ioctl(), fcntl()

 sync(), fsync()

28

(Source: CSAPP)

File Programming: Advanced (3/6)

Practice 6: device file

29

/* file_device.c, by choijm. choijm@dku.edu */
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#define MAX_BUF 4
char fname[] = "test.txt";
char tmp_data[] = "abcdefghijklmn";

int main()
{

int fd, size;
char buf[MAX_BUF];

fd = open(fname, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
write(fd, tmp_data, sizeof(tmp_data));
close(fd);

fd = open(fname, O_RDONLY);
lseek(fd, 5, SEEK_SET);
size = read(fd, buf, MAX_BUF);
close(fd);

fd=open(“/dev/pts/2”, O_WRONLY);
write(fd, buf, MAX_BUF);
close(fd);

}

Devices such as terminal can be
accessed using file interfaces

test.txt

abcd
ef…

inode

/dev/pts/2

File Programming: Advanced (4/6)

Practice 7: redirection (derived from “mycat” program)
 Same fd but different objects

30

/* file_redirection.c, by choijm. choijm@dku.edu */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#define MAX_BUF 64

int main(int argc, char *argv[])
{

int fd, fd1, read_size, write_size;
char buf[MAX_BUF];

if (argc != 4) {
printf("USAGE: %s input_file_name \”>\” output_file_name\n", argv[0]); exit(-1);

}
fd = open(argv[1], O_RDONLY);

while (1) {
read_size = read(fd, buf, MAX_BUF);
if (read_size == 0)

break;
write_size = write(STDOUT_FILENO, buf, read_size);

}
close(fd);

}

// for redirection. (eg. "mycat inputfile.txt > outputfile.txt“)
// close(STDOUT_FILENO);
fd1 = open(argv[3], O_RDWR | O_CREAT, 0641);
dup2(fd1, STDOUT_FILENO);
// redirection end

File Programming: Advanced (5/6)

Practice 7: execution results

31

 This is just an example. In general, redirection is in the form of
“./redirection sourcefile.txt > outputfile.txt” (shell actually handle the redirection code)

File Programming: Advanced (6/6)

Discuss the tradeoff about the buffer size in read()/write()
 Revisit mycat again: what if we change the MAX_BUF as 32 or 128

32

Tracing system call

Using “strace”

33

(Source: Operating Systems: Three Easy Pieces)

Summary

Understand the internal structure of disk

Find out the relation between system programs for disk
 Driver, file system, system call

Grasp the role of the inode

Make a program with file interfaces
 open, read, write, close / lseek / device file and redirection

34

 Homework 3: Make a command called “mycp”
1.1 Requirements

- use argc and argv[]
- do not create a file if the same name already exists in current directory
- shows student’s ID and date (using whoami and date)

1.2 Bonus: copy not only the contents but also the attributes
1.3 Write a report

- 1) Introduction: What to do, How, …
- 2) Design and Source code description
- 3) Execution Snapshots
- 4) Discussion: what you learn, issues, …

1.4 Deadline: Next week (same time)
1.5 How to submit? Send 1) report and 2) source code to TA using Google form

(e.g. https://forms.gle/vBbJdJRQ3TUtZdTi9)

Homework 3: Snapshot example

35 If you have any trouble to log in to the Linux server, Please inform your situation to TA.

Quiz for this Lecture

Quiz
 1. Describe the roles of three system programs for disk (using the

term of abstraction).

 2. How large size can an inode support using direct block pointer?
How about single, double, and triple indirect pointer?

 3. What is the functionality of O_NONBLOCK and O_SYNC in the
flags of the open() system call?

 4. How can we figure out the size of a file using file interfaces that we
learnt in this LN? (Note: 3 ways, NOT “ls –l”)

 5. SSD internally makes use of a SW called FTL (Flash Translation
Layer). Discuss why SSD needs FTL based on the differences
between Disk and Flash memory (2 key differences).

36

102
4
102
4

102
4
102
4

Appendix 1

How to download files from Linux server?
 scp (secure copy protocol)

 A means of securely transferring computer files between a local host and
a remote host or between two remote hosts

37

Appendix 1

How to download files from Linux server?
 ftp (File Transfer Protocol)

 a standard network protocol used for the transfer of computer files
between a client and server on a computer network

 sftp (secure ftp)

38

Appendix 1

How to download files from Linux server?
 Using free ftp application with GUI (note: port = 2222)

39

사사

본교재는 2025년도과학기술정보통신부및정보통신기획평
가원의 ‘SW중심대학사업’ 지원을받아제작되었습니다.

본결과물의내용을전재할수없으며, 인용(재사용)할때에
는반드시과학기술정보통신부와정보통신기획평가원이지
원한 ‘SW중심대학’의결과물이라는출처를밝혀야합니다.

40

